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Potential Welfare Impacts From the Continued Spread 
of Wild Pigs 

Jason Holderieath, Michael Crosby, Eric McConnell 

Abstract 
Wild Pigs are spreading across the United States and bringing damage with 

them. Damage estimates from a survey of producers reported 2014 crop losses of $190 

million in 11 southeastern US states (Anderson et al. 2016), and associated short-run 

welfare losses were calculated at $142 million (Holderieath et al. 2018). With 

approximately 80% of corn, 78% of soybeans, 62% of wheat, 6% of rice, and 1% of 

peanuts produced in counties that do not have wild pigs, there is a substantial amount 

of production at risk in the event of continued spread. McClure et al. (2015) and Snow, 

Jarzyna, and VerCauteren (2017) have demonstrated that wild pigs can survive in much 

of the US; however, not all US counties are equally likely to be invaded. This work 

integrates the probability of wild pig invasion to predict the likely welfare effects of wild 

pigs continuing to spread using a random forest based machine learning model linked to 

an equilibrium displacement model. Results from this iteration show a likely increase in 

total surplus. However, this result should be interpreted with caution due to the relatively 

low number of observations and the need for further analysis, as well as the multitude of 

other causative factors. 



Introduction 
Invasive wild pigs, also known as feral swine and wild boars (Sus scrofa), were 

introduced to the Southeastern United States in the 16th century by Spanish explorers 

(Keiter, Mayer, and Beasley 2016). Wild pig presence can be costly as they are known 

to carry diseases dangerous to humans and livestock, depredate and compete for 

resources with native wildlife, and damage property. Total damages have been 

estimated at $800 million per year Pimentel, Zuniga, and Morrison (2005). Direct 

production losses to corn, soybeans, wheat, rice, and peanuts in 10 of the affected 

states were estimated at $190 million per year through a producer survey (Anderson et 

al. 2016).  

However, there is more to be considered than simple production losses. 

Production losses will affect prices, which will affect consumers and producers who do 

not experience damage. Net short-run welfare losses due to wild pig damage to corn, 

soybeans, wheat, rice, and peanuts were calculated at $142 million (Holderieath et al. 

2018). However, three of those crops are primarily grown outside of the counties with 

known wild pig presence.  

If wild pigs continue to spread, that absence may be short-lived. In recent years, 

wild pigs are spreading at an increasing rate across the continental United States. Over 

the 30 years between 1982 and 2012, the northward rate of expansion was 8.9 

kilometers per year, and the yearly average rate of northward expansion from 2009 to 

2012 was 12.6 kilometers per year (Snow, Jarzyna, and VerCauteren 2017). Building on 

the methods of Snow, Jarzyna, and VerCauteren (2017) and Holderieath et al. (2018), 

we paired an ecological model of the probability of spreading wild pigs with an economic 



model of crop damage to estimate the potential for welfare losses if wild pigs continue 

their northward spread. 

Methods 
Our basic approach was to estimate a similar model to Snow, Jarzyna, and 

VerCauteren (2017) with many of the same regressors and with the same end of 

predicting the probability of invasion in a period. However, we took a different approach 

to estimation, discussed in the next subsection. In three timesteps over 24 years, 

counties were randomly presented for a new infestation of wild pigs. Newly present wild 

pigs then affected the probability of neighboring counties when they were presented. In 

this way, the probability of spread was a function of the presence of wild pigs in 

neighboring and nearby counties in addition to regressors such as weather and land 

use. Once counties were presented for invasion, a random level of damage from a 

triangle distribution was assigned to the county. In modern times, wild pigs are rarely 

removed from a county, so the simulation did not provide for that. Another feature of 

modern invasion is likely human release at a distance from known populations. This 

model allowed for spontaneous invasion, given the likelihood developed from the model. 

Once wild pigs were present, they remained present for the duration of the simulation. 

Each county’s production was sent to a national market, and price changes were 

calculated with an equilibrium displacement model. Welfare measures are calculated as 

changes in producer and consumer surplus. 



Probability of Invasion 
Snow, Jarzyna, and VerCauteren (2017) used an openBUGS (Bayesian 

inference Using Gibbs Sampling) model (OpenBUGS 2018) implemented in R (R Core 

Team 2018) for their prediction of wild pig territory expansion. Spatio-temporal presence 

data is available (Lutman 2013; Snow, Jarzyna, and VerCauteren 2017). However, the 

intervals are not even, and the data does not specify absence, only presence. Any 

attempt to use this data as a panel data set for estimation of spread will encounter both 

spatial and temporal non-stationarity. The non-stationarity should be expected because 

spatial nearness to wild pigs is one of the best predictors of the presence of wild pigs. 

The time steps are uneven, and eradication is rarely observed leading to suspicion over 

the time dimension. These problems could be corrected with use of a consistent 

estimator (e.g., a within or first differences econometric model).  

The problem at hand is essentially an ecological classification problem—are wild 

pigs known to be present? This type of problem has been addressed with a machine 

learning method known as Random Forest (RF) (Cutler et al. 2007; Walsh et al. 2017). 

One particularly attractive characteristic of this approach is the lack of reliance on 

distributional assumptions (Cutler et al. 2007; Walsh et al. 2017), meaning that the non-

stationarity across spatial and temporal dimensions is not a problem. At its most simple, 

the software builds numerous weighted decision trees and uses those trees to predict 

an outcome. The intuition of decision trees is also attractive as we can see the 

importance of variables on the predictions and understand that distance to the nearest 

known population of wild pigs is an important predictor of wild pig presence, for example 

(Cook 2017). 



Data from the online appendix of Snow, Jarzyna, and VerCauteren (2017) was 

reshaped to standard panel format with variables in columns and observations across 

time in rows. Variables for precipitation, stream distance, road miles, and land-use were 

used in the analysis.  

However, variables relating to temperature were removed due to an apparent 

loss of prediction accuracy. Temperature is highly correlated with latitude, and the RF 

appeared to put too much weight on those variables, reducing accuracy in predicting 

presence in later periods as wild pigs move north.  

A more spatially direct modeling technique such as geographically weighted 

regression or kriging would not need data on distance to nearest known wild pigs 

because it would be implicit in the model. Adopting the RF approach meant a need to 

know how far wild pigs are from a given county (that is not itself). The distance between 

each county within 500 miles (Roth 2014) was combined with wild pig presence data 

(Lutman 2013) to create a minimum distance to wild pigs from each county variable to 

pair with the reshaped Snow, Jarzyna, and VerCauteren (2017) data.  

The final list of variables used in the RF model of wild pig spread was 

“AREA_KM”, “ECO_DIVISN”, “mammal richness”, “P_Ag”, “P_Dev”, “P_For”, “P_Oth”, 

“P_Ran”, “P_Wat”, “P_Wet”, “A_MN_Ag”, “A_MN_Dev”, “A_MN_For”, “A_MN_Oth”, 

“A_MN_Ran”, “A_MN_Wat”, “A_MN_Wet”, “A_CV_Ag”, “A_CV_Dev”, “A_CV_For”, 

“A_CV_Oth”, “A_CV_Ran”, “A_CV_Wat”, “A_CV_Wet”, “PD”, “AREA_AM”, “AREA_CV”, 

“CWED”, “CONTAG”, “IJI”, “DIVISION”, “SIDI”, “AI”, “Annual_Precip”, “Summer_Precip”, 

“Winter_Precip”, “maxPrecip”, “minPrecip”, “STREAM_KM”, “ROAD_KM”, “HumanPop”, 



“precipsum”, “precipwin”, “popdes.slope”, “mi_to_county,” all except for “mi_to_county” 

were from Snow, Jarzyna, and VerCauteren (2017). 

A software product, H2O (Cook 2017), was used to implement the RF in R (R 

Core Team 2018). Training was carried out on the periods 1982-1988, 1988-2004, and 

2009-2012. A Cross-Validation method with fifty folds was used to validate the model. 

The model was able to predict presence or unknown with approximately 9% error. The 

model was tested with the period 2004-2009 and yielded slightly higher errors of 

approximately 10%. Output including the confusion matrix is available in Appendix 1. 

Spatio-temporal Simulation of Spread 
With an estimated probability of invasion function, counties were evaluated for 

the probability of invasion in random order, without replacement. The RF model 

developed in the previous section was used to evaluate iteratively updated data on wild 

pig presence. Random presentation, rather than south to north was an attempt to 

simulate human introduction. The county’s probability of invasion was evaluated, then a 

random draw from u(0,1) was compared to the probability of invasion. If the probability 

is greater than the draw, the county was invaded, and its status was updated. Time-

steps were set at an attempt to average the wildly varying periods between the 

observation points of 1982, 1988, 2004, and 2012. Predicted observations were set for 

2020, 2028, and 2036 for a long-term outlook on the problem. Intervals to simulate the 

short-run would have yielded stronger results. However, the observational data of wild 

pig spread across short-run periods does not exist. 



Price Changes 
Price changes due to the invasions were found with an equilibrium displacement 

model (equation 1). Equilibrium displacement models (EDM) begin with the premise that 

the market in question is in equilibrium, the market is shocked, and then moves to 

another equilibrium (Nogueira et al. 2015; Holderieath et al. 2018; Brester, Marsh, and 

Atwood 2004). For each of the five crops,  

𝐸𝐸𝑃𝑃𝑘𝑘 ∗ 𝜂𝜂𝑘𝑘𝑘𝑘𝐷𝐷 + ∑ (𝐽𝐽
𝑗𝑗=1 𝐸𝐸𝑃𝑃𝑘𝑘 ∗ 𝜂𝜂𝑘𝑘𝑗𝑗𝐷𝐷 ) + 𝑠𝑠𝑘𝑘

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ∗ 𝐸𝐸𝑃𝑃𝑘𝑘 ∗ 𝜂𝜂𝑘𝑘𝑘𝑘
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑠𝑠𝑘𝑘

𝐼𝐼𝐼𝐼𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ∗ 𝐸𝐸𝑃𝑃𝑘𝑘 ∗ 𝜂𝜂𝑘𝑘𝑘𝑘𝐼𝐼𝐼𝐼𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 +
∑ (𝐹𝐹𝐼𝐼𝐹𝐹𝐹𝐹
𝑓𝑓𝑓𝑓𝐸𝐸𝐸𝐸=1 𝑠𝑠𝑘𝑘

𝑓𝑓𝑓𝑓𝐸𝐸𝐸𝐸 ∗ (𝐸𝐸𝑃𝑃𝑘𝑘 ∗ 𝜂𝜂𝑘𝑘𝑘𝑘
𝑓𝑓𝑓𝑓𝐸𝐸𝐸𝐸 + ∑ (𝐽𝐽

𝑗𝑗=1 𝐸𝐸𝑃𝑃𝑘𝑘 ∗ 𝜂𝜂𝑘𝑘𝑗𝑗
𝑓𝑓𝑓𝑓𝐸𝐸𝐸𝐸) + 𝐸𝐸𝐵𝐵𝑘𝑘

𝑓𝑓𝑓𝑓𝐸𝐸𝐸𝐸)))  (1) 
 

was solved simultaneously with the change operator (𝐸𝐸) modifying the price of 

the commodity, 𝐸𝐸𝑃𝑃𝑘𝑘, is used to denote the relative change of the price of commodity (𝑘𝑘), 

elasticities (𝜂𝜂) of demand (𝐷𝐷), 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠, 𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠, and production locations (𝑓𝑓𝑖𝑖𝑒𝑒𝑠𝑠) for own 

price (𝑘𝑘𝑘𝑘) and cross price elasticities (𝑘𝑘𝑘𝑘), production and consumption weights (𝑠𝑠) with 

the same notation, and exogenous relative production shocks (𝐸𝐸𝐵𝐵). 

Elasticities were the same as used by Holderieath et al. (2018), except unit 

elasticities were used for import and export markets and additional supply elasticities 

originated from FAPRI‐MU (2004). Verification of the model was conducted with unit 

own price elasticities and no cross-price elasticities. Price changes with this set of 

verification elasticities were positive as expected from a restriction of supply. 

The only market level analyzed was at the farm production level, because that is 

where the damage occurs. Exogenous production shocks were randomly drawn from a 

triangle distribution with the lower limit and upper limit from the minimum and maximum 

values for each crop reported in Anderson et al. (2016) for each invaded county each 

period. The midpoint parameter for the triangle distribution was simply the center of the 



difference between the lower and upper values. There is substantial variation between 

states reported by Anderson et al. (2016), and it is not immediately apparent what 

states would be most alike with respect to wild pig damage drivers. Nor is it likely that 

counties are equally impacted within states. There were no consumption shocks in the 

model, so they have been omitted for clarity.  

As a matter of programming pragmatism, it was easier to solve this set of 

equations in the form 𝐴𝐴𝑒𝑒 = 𝑏𝑏. Five price changes, 𝑒𝑒, were solved by simplifying to a 5𝑒𝑒5 

matrix of weighted elasticities, 𝐴𝐴, and a 5𝑒𝑒1 matrix of weighted exogenous shocks. This 

was accomplished with some rearranging. 

The demand side for corn is expanded below as an example. First, notice that 

the domestic consumption does not have a weight. This is due to the derivation of the 

EDM not including a weight for domestic consumption. Second, notice that the export 

demand equation does not include terms for cross-price elasticities. The specification of 

the EDM did not include cross-price elasticities of export demand. Third, take note that 

there are no exogenous shocks included on the demand side. This was assumed in 

specification.  

EP𝑐𝑐𝐸𝐸𝐸𝐸𝑐𝑐 ∗  ηcorn,corn
D + 

 EPsoy ∗  ηcorn,soy
D +  

 EPwheat ∗  ηcorn,wheat
D +  

 EPrice ∗  ηcorn,rice
D + 

 EPpeanuts ∗  ηcorn,peanuts
D + 

 scorn
Exports  ∗  EPcorn ∗  ηkk

Exports  (2) 
 
Then the supply side. Again, import supply is specified without a shock or cross-

price elasticities, however, in practice, they are assigned zero values. For the sake of 



compactness, each county’s supply is indexed by the 𝑓𝑓𝑖𝑖𝑒𝑒𝑠𝑠 identifier. The county weight 

is distributed. 

𝑠𝑠𝑘𝑘
𝐼𝐼𝐼𝐼𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ∗  𝐸𝐸𝑃𝑃𝑐𝑐𝐸𝐸𝐸𝐸𝑐𝑐 ∗ 𝜂𝜂𝑐𝑐𝐸𝐸𝐸𝐸𝑐𝑐,𝑐𝑐𝐸𝐸𝐸𝐸𝑐𝑐

𝐼𝐼𝐼𝐼𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 

� (𝑠𝑠𝑘𝑘
𝑓𝑓𝑓𝑓𝐸𝐸𝐸𝐸  ∗ 𝐸𝐸𝑃𝑃𝑐𝑐𝐸𝐸𝐸𝐸𝑐𝑐 ∗  𝑒𝑒𝑒𝑒𝑎𝑎𝑘𝑘𝑘𝑘

𝑓𝑓𝑓𝑓𝐸𝐸𝐸𝐸 +
𝐹𝐹𝐼𝐼𝐹𝐹𝐹𝐹

𝑓𝑓𝑓𝑓𝐸𝐸𝐸𝐸

 

 𝑠𝑠𝑐𝑐𝐸𝐸𝐸𝐸𝑐𝑐
𝑓𝑓𝑓𝑓𝐸𝐸𝐸𝐸  ∗ (𝐸𝐸𝑃𝑃𝐸𝐸𝐸𝐸𝑠𝑠 ∗  𝜂𝜂𝑐𝑐𝐸𝐸𝐸𝐸𝑐𝑐,𝐸𝐸𝐸𝐸𝑠𝑠

𝑓𝑓𝑓𝑓𝐸𝐸𝐸𝐸 ) +  
 𝑠𝑠𝑐𝑐𝐸𝐸𝐸𝐸𝑐𝑐
𝑓𝑓𝑓𝑓𝐸𝐸𝐸𝐸  ∗ (𝐸𝐸𝑃𝑃𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝐸𝐸 ∗  𝜂𝜂𝑐𝑐𝐸𝐸𝐸𝐸𝑐𝑐,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝐸𝐸

𝑓𝑓𝑓𝑓𝐸𝐸𝐸𝐸 ) +  
 𝑠𝑠𝑐𝑐𝐸𝐸𝐸𝐸𝑐𝑐
𝑓𝑓𝑓𝑓𝐸𝐸𝐸𝐸 ∗ (𝐸𝐸𝑃𝑃𝐸𝐸𝑓𝑓𝑐𝑐𝑒𝑒  ∗  𝜂𝜂𝑐𝑐𝐸𝐸𝐸𝐸𝑐𝑐,𝐸𝐸𝑓𝑓𝑐𝑐𝑒𝑒

𝑓𝑓𝑓𝑓𝐸𝐸𝐸𝐸  ) +  
 𝑠𝑠𝑐𝑐𝐸𝐸𝐸𝐸𝑐𝑐
𝑓𝑓𝑓𝑓𝐸𝐸𝐸𝐸   ∗ (𝐸𝐸𝑃𝑃𝐸𝐸𝑒𝑒𝑒𝑒𝑐𝑐𝑝𝑝𝐸𝐸𝐸𝐸 ∗  𝜂𝜂𝑐𝑐𝐸𝐸𝐸𝐸𝑐𝑐,𝐸𝐸𝑒𝑒𝑒𝑒𝑐𝑐𝑝𝑝𝐸𝐸𝐸𝐸

𝑓𝑓𝑓𝑓𝐸𝐸𝐸𝐸 ) +  
 𝑠𝑠𝑐𝑐𝐸𝐸𝐸𝐸𝑐𝑐
𝑓𝑓𝑓𝑓𝐸𝐸𝐸𝐸  ∗ 𝐸𝐸𝐵𝐵𝑐𝑐𝐸𝐸𝐸𝐸𝑐𝑐

𝑓𝑓𝑓𝑓𝐸𝐸𝐸𝐸 )) (3) 
 

Once assembled as five very long equations without parentheses, the terms on 

the supply side multiplied by the 𝐸𝐸𝑃𝑃𝑘𝑘 terms were then moved to the demand side by 

multiplying them by −1. The numerical coefficients being multiplied by the 𝐸𝐸𝑃𝑃𝑘𝑘 terms 

were collected together by addition. Price changes were found by solving 𝐴𝐴𝑒𝑒 = 𝑏𝑏 for 𝑒𝑒. 

Presented in line with the development of this model is a test version with unit 

own price elasticities, cross price elasticities of zero, the same weights, and a random 

draw of exogenous shocks (Table 1). As one looks at each market individually, one 

should expect that additional destruction of crops by wild pigs will result in an inward 

shift of the supply curve. The inward shift should result in higher prices and lower 

quantity. The test case of unit elasticities with no cross-price elasticities is an 

opportunity to evaluate the theoretical performance of the equilibrium displacement 

model. Once solved, the model performed as expected yielding positive price changes 

(Table 2). As expected, quantities decreased (Table 3). 



Welfare Effects 
Welfare changes were measured geometrically and summed. The sensitivity of 

these types of shifts to functional form is minimal, and the error imposed by using linear 

approximations should be acceptable so long as the changes are relatively small 

(Brester, Marsh, and Atwood 2004; Alston, Norton, and Pardey 1995). Welfare changes 

from the initial time-step to the last are summed to find total damage over the simulation 

period. Only long-run elasticities are used, and the adjustment is assumed to be 

complete within each time-step. Welfare changes are calculated as changes in producer 

and consumer surplus. Consumer surplus change is calculated 

∫ 𝑓𝑓𝑄𝑄1
0 (𝑄𝑄)𝑑𝑑𝑄𝑄 − 𝑃𝑃1 × 𝑄𝑄1𝐷𝐷 − ∫ 𝑓𝑓𝑄𝑄0

0 (𝑄𝑄)𝑑𝑑𝑄𝑄 − 𝑃𝑃0 × 𝑄𝑄0𝐷𝐷. (4) 

where 𝑄𝑄1 and 𝑃𝑃1 represent the quantity and price clearing the market after the 

exogenous shock and 𝑄𝑄0 and 𝑃𝑃0 represent the quantity and price prior to the shock. 

Evaluation of the EDM yielded modest consumer surplus changes. The shift 

between 2012 and 2020 resulted in a loss of $63,666.42. Shifts between 2020 to 2028 

and 2028 to 2036 resulted in consumer surplus losses of $135,599 and $68,045.70, 

respectively. 

A priori it is unknown if the decrease in quantity will overcome the increase in 

price to make producers worse off. Corn producers in the evaluation scenario were 

better off in all years: $43,831,154, $63,481,915, $47,210,212 in 2020, 2028, and 2036 

respectively. Soybean and wheat producers also gained ground ($11,117,650, 

$17,582,688, $8,333,845 and $6,610,204, $9,473,328, $5,268,545, respectively). As 

one might expect, rice producers were not impacted much because most rice-producing 

counties were already impacted by wild pigs ($358,479, $75,647.27, $18,645.66). 



Peanut producers were also not impacted very much for the same reasons as rice 

producers ($174,743, $67,254.90, $0). 

Net surplus gains or losses are one indicator of the appropriateness of engaging 

in costly removal processes. For the 2020, 2028, and 2036 periods the total surplus 

change was $62,028,563, $90,545,234 and $60,763,202, respectively. This would seem 

to indicate that the spread of wild pigs will increase welfare. However, the story is much 

more complex than that. This was a single set of damage values for a single spread 

scenario. The picture becomes clearer with the full set of elasticities and several 

simulations with different spread and damage scenarios presented in the next section. 

However, we can tell based on these results that the equations are working properly, 

allowing us to move on to the next step. 

Results and Discussion: 
A single observation as presented in the Methods section is not an adequate 

exploration of the topic. The uncertainty surrounding what counties will be invaded and 

what damage will be likely in those counties suggests that a simulation is in order. To 

that end, the prediction model and price change models were run 100 times. For this 

draft of the paper, 100 simulations were chosen due to the approximately 5.83 hours 

required for a preliminary run on a Linux system with a GUI (5.25 hours without the GUI) 

required to run the model 100 times. Future drafts will increase the number of runs. 

In each panel, Figure 1 shows the percent of simulations in which wild pigs were 

present in each county by the captioned year. Recall that once established, wild pig 

populations could not be extirpated and that the probabilistic nature of innovation 

allowed for the non-continuous spread of wild pigs. The resulting map shows the 



probability of presence in each county in each period. The projected spread is 

aggressive, however, given the spread over the past 30 years not unreasonable. As one 

would expect, the spread will mostly be continuous. However, some probable pockets 

appear to have developed. 

Price changes with the full set of elasticities over the 100 simulations were 

spread across a relatively narrow range within each crop, excepting peanuts (Figure 2). 

Corn prices moved downward in all three periods in all simulations. Soybean price 

changes were very small, mostly centered on no change. Wheat prices were mostly 

negative, excepting the top 10% to 15% of price changes. Rice prices increased 

between 0% and 0.25%. Peanut prices were substantially more variant increasing 

across the 0% to 1.5% range. 

With the exception of corn, which had the most negative price movements, and 

wheat for a very small proportion of simulations consumer surplus was generally 

negative across periods (Figure 3, Figure 4, and Figure 5). Sum of change in consumer 

surplus across commodities was only positive in the last period. As domestic consumers 

of these products are facing a single market, there were no subgroups below this 

distribution to which the model can speak. 

Producer surplus in Figure 6, Figure 7, and Figure 8 are summed across 

counties, so this change in producer surplus represents the change of fortunes of 

producers as a whole. It is important to remember that between time-steps the entire 

market adjustment is completed. Only counties that have new wild pig damage would 

be expected to experience an exogenous shock. Change in producer surplus in 

counties with wild pig damage in previous periods will primarily be driven by price 



changes and secondarily changes in damage levels. Further analysis is needed to 

separate the effects of the spread between affected and unaffected counties. The 

positive change in corn producer surplus is enough to overwhelm the modest and 

negative changes in other commodities to net a large positive change in producer 

surplus. 

Total surplus gains are modest and centered approximately on zero for the first 

two periods followed by a very large expected gain in total surplus in 2036 across 

simulations (Figure 9). The difference between 2028 and 2036 is likely explained by the 

number and productivity of the counties invaded in that period. 

It would be reasonable to look at these results and suggest that allowing the 

spread may be beneficial. That is likely not the case. Practically speaking, only five 

crops are covered by the analysis. There are numerous other dimensions of costly 

damage inflicted by wild pigs. Future iterations of this work will investigate how to 

restrict supply beyond the use of elasticities. Cross price elasticities allow for 

substitution of production, which may be overstated. Further, we do not know if planting 

behavior changes with introduction of wild pigs. These are all avenues of elaboration for 

this work.  

As proof of concept, this model succeeds in using an accurate machine learning 

algorithm to predict the spread of wild pigs and then using that spread to determine 

welfare effects. Further research needs to examine factors leading to the pockets of 

probable wild pig spread that were not at the margin of an existing population. Further, 

examination factors leading to past non-continuous introduction and incorporating those 

factors explicitly into the spread model, possibly including factors not included in the 



Snow, Jarzyna, and VerCauteren (2017) analysis. More observations are needed. 

Future work will streamline the programming and increase observations. 

The analysis also begs the question, can the EDM be eliminated from the 

process? Only wild pig spread and damage was treated as uncertain in these scenarios. 

However, there is also uncertainty surrounding elasticities. It seems reasonable that a 

sufficiently sophisticated machine learning model could be used to predict damage with 

little loss in the ability to understand factors predicting that damage. 
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Tables and Figures 
Table 1. Exogenous Shocks Used in Verification of Equilibrium Displacement Model. 

 2020 2028 2036 
Corn -0.00217 -0.00314 -0.00233 
Soybeans -0.00164 -0.00259 -0.00123 
Wheat -0.00206 -0.00294 -0.00163 
Rice -0.00069 -0.00014 -0.00004 
Peanuts -0.00036 -0.00014 0.00000 
 

Table 2. Price Changes Found in Verification of the Equilibrium Displacement Model. 

 2020 2028 2036 
Corn 0.123% 0.179% 0.133% 
Soybeans 0.071% 0.112% 0.053% 
Wheat 0.078% 0.112% 0.062% 
Rice 0.024% 0.005% 0.001% 
Peanuts 0.018% 0.007% 0.000% 
 

Table 3. Quantities Found in Verification of the Equilibrium Displacement Model. 

 
2020 2028 2036 

Corn   10,317,951,844    10,317,933,682    10,317,920,200  
Soybeans     2,179,910,263      2,179,905,360      2,179,903,902  
Wheat     2,179,908,919      2,179,904,205      2,179,901,587  
Rice        198,274,068         198,273,855         198,273,802  
Peanuts     6,461,502,234      6,461,498,470      6,461,498,470  
 



 

Figure 1. Probability of Presence 
 



 

Figure 2. Empirical Cumulative Distribution of Changes in Price. 



 
Figure 3. Empirical Cumulative Distribution of Changes in Consumer Surplus in Year 2020. 



 
Figure 4. Empirical Cumulative Distribution of Changes in Consumer Surplus in Year 2028. 



 
Figure 5. Empirical Cumulative Distribution of Changes in Consumer Surplus in Year 2036. 

 



 
Figure 6. Empirical Cumulative Distribution of Changes in Producer Surplus in Year 2020. 



 
Figure 7. Empirical Cumulative Distribution of Changes in Producer Surplus in Year 2028. 



 
Figure 8. Empirical Cumulative Distribution of Changes in Producer Surplus in Year 2036. 



 
Figure 9. Empirical Cumulative Distribution of Changes in Total Surplus. 

  



Appendix 1. Machine Learning Output 
##  
## H2O is not running yet, starting it now... 
##  
## Note:  In case of errors look at the following log files: 
##     
C:\Users\User\AppData\Local\Temp\Rtmp6l9liC/h2o_JHolderieath_started_from_r.o
ut 
##     
C:\Users\User\AppData\Local\Temp\Rtmp6l9liC/h2o_JHolderieath_started_from_r.e
rr 
##  
##  
## Starting H2O JVM and connecting: . Connection successful! 
##  
## R is connected to the H2O cluster:  
##     H2O cluster uptime:         2 seconds 288 milliseconds  
##     H2O cluster timezone:       America/Chicago  
##     H2O data parsing timezone:  UTC  
##     H2O cluster version:        3.20.0.8  
##     H2O cluster version age:    3 months and 19 days !!!  
##     H2O cluster name:           H2O_started_from_R_JHolderieath_lpq068  
##     H2O cluster total nodes:    1  
##     H2O cluster total memory:   1.70 GB  
##     H2O cluster total cores:    8  
##     H2O cluster allowed cores:  8  
##     H2O cluster healthy:        TRUE  
##     H2O Connection ip:          localhost  
##     H2O Connection port:        54321  
##     H2O Connection proxy:       NA  
##     H2O Internal Security:      FALSE  
##     H2O API Extensions:         Algos, AutoML, Core V3, Core V4  
##     R Version:                  R version 3.5.0 (2018-04-23) 

## Model Details: 
## ============== 
##  
## H2OBinomialModel: drf 
## Model ID:  RF_defaults  
## Model Summary:  
##   number_of_trees number_of_internal_trees model_size_in_bytes min_depth 
## 1              50                       50              444856        19 
##   max_depth mean_depth min_leaves max_leaves mean_leaves 
## 1        20   19.98000        629        800   702.18000 
##  
##  
## H2OBinomialMetrics: drf 
## ** Reported on training data. ** 
## ** Metrics reported on Out-Of-Bag training samples ** 



##  
## MSE:  0.06402607 
## RMSE:  0.2530337 
## LogLoss:  0.2691617 
## Mean Per-Class Error:  0.09831253 
## AUC:  0.9665403 
## Gini:  0.9330807 
##  
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal 
threshold: 
##         present unknown    Error       Rate 
## present    2476     412 0.142659  =412/2888 
## unknown     347    6083 0.053966  =347/6430 
## Totals     2823    6495 0.081455  =759/9318 
##  
## Maximum Metrics: Maximum metrics at their respective thresholds 
##                         metric threshold    value idx 
## 1                       max f1  0.508090 0.941277 224 
## 2                       max f2  0.225485 0.957967 313 
## 3                 max f0point5  0.636420 0.946718 182 
## 4                 max accuracy  0.517544 0.918545 221 
## 5                max precision  0.999994 0.996314   0 
## 6                   max recall  0.000000 1.000000 399 
## 7              max specificity  0.999994 0.996537   0 
## 8             max absolute_mcc  0.517544 0.808586 221 
## 9   max min_per_class_accuracy  0.647111 0.906856 178 
## 10 max mean_per_class_accuracy  0.631689 0.909370 183 
##  
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or 
`h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)` 
##  
## H2OBinomialMetrics: drf 
## ** Reported on cross-validation data. ** 
## ** 50-fold cross-validation on training data (Metrics computed for 
combined holdout predictions) ** 
##  
## MSE:  0.06150035 
## RMSE:  0.2479926 
## LogLoss:  0.2191091 
## Mean Per-Class Error:  0.1043135 
## AUC:  0.969902 
## Gini:  0.939804 
##  
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal 
threshold: 
##         present unknown    Error       Rate 
## present    2409     479 0.165859  =479/2888 
## unknown     275    6155 0.042768  =275/6430 
## Totals     2684    6634 0.080919  =754/9318 
##  



## Maximum Metrics: Maximum metrics at their respective thresholds 
##                         metric threshold    value idx 
## 1                       max f1  0.461860 0.942284 243 
## 2                       max f2  0.260006 0.961970 305 
## 3                 max f0point5  0.719964 0.950091 154 
## 4                 max accuracy  0.515765 0.919725 224 
## 5                max precision  0.999693 0.998758   1 
## 6                   max recall  0.020013 1.000000 393 
## 7              max specificity  0.999997 0.999307   0 
## 8             max absolute_mcc  0.550210 0.811318 212 
## 9   max min_per_class_accuracy  0.640000 0.909972 184 
## 10 max mean_per_class_accuracy  0.633746 0.912356 186 
##  
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or 
`h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)` 
## Cross-Validation Metrics Summary:  
##                                mean           sd  cv_1_valid  cv_2_valid 
## accuracy                  0.9298214  0.012748753   0.9348837   0.9004525 
## auc                      0.96970826  0.008113522  0.98580605  0.94908464 
## err                      0.07017863  0.012748753  0.06511628  0.09954751 
## err_count                      13.1    2.5661254        14.0        22.0 
## f0point5                  0.9424099  0.014322855   0.9271978  0.89880955 
## f1                       0.94980645  0.008932908   0.9507042  0.93209875 
## f2                        0.9576857  0.010914464   0.9754335  0.96794873 
## lift_top_group            1.4510386  0.052003957   1.5808823   1.4539474 
## logloss                    0.219125  0.030309541  0.18164487  0.27059236 
## max_per_class_error      0.14761259   0.04816932  0.16455697   0.3043478 
## mcc                       0.8347905  0.030048912  0.86197037  0.76868683 
## mean_per_class_accuracy  0.90855354  0.021074388  0.91404504   0.8445366 
## mean_per_class_error     0.09144645  0.021074388  0.08595495  0.15546338 
## mse                     0.061452143 0.0072631626 0.051195297 0.084659204 
## precision                0.93773067  0.019253572   0.9121622    0.877907 
## r2                        0.7102924   0.03576039   0.7797373  0.60575515 
## recall                   0.96322507  0.015760724  0.99264705   0.9934211 
## rmse                     0.24702471  0.014678795  0.22626378  0.29096255 
## specificity                0.853882  0.049529858    0.835443   0.6956522 
##                          cv_3_valid  cv_4_valid  cv_5_valid  cv_6_valid 
## accuracy                     0.9375   0.9354839   0.9587629   0.9162561 
## auc                       0.9769779  0.96786684   0.9840872   0.9586375 
## err                          0.0625  0.06451613 0.041237112  0.08374384 
## err_count                      11.0        12.0         8.0        17.0 
## f0point5                 0.95446587   0.9429477  0.96049047  0.92907804 
## f1                        0.9519651       0.952   0.9724138   0.9390681 
## f2                        0.9494774   0.9612278  0.98463684   0.9492754 
## lift_top_group            1.5304347   1.5121951   1.3661972   1.4817518 
## logloss                     0.19698  0.20967759  0.16178817  0.25402424 
## max_per_class_error      0.08196721  0.12698413  0.13461539  0.16666667 
## mcc                       0.8626064   0.8547328  0.89391583  0.80667025 
## mean_per_class_accuracy  0.93292946   0.9202478   0.9291712  0.89476883 
## mean_per_class_error    0.067070566  0.07975223  0.07082882  0.10523114 



## mse                     0.057315197 0.058498546 0.040672716 0.070079185 
## precision                0.95614034  0.93700784   0.9527027  0.92253524 
## r2                        0.7469144   0.7388288  0.79269254  0.68061346 
## recall                    0.9478261  0.96747965   0.9929578  0.95620435 
## rmse                     0.23940593  0.24186473  0.20167477  0.26472473 
## specificity              0.91803277   0.8730159  0.86538464   0.8333333 
##                          cv_7_valid  cv_8_valid cv_9_valid cv_10_valid 
## accuracy                  0.9126214   0.9453552   0.920904   0.9470588 
## auc                       0.9493719   0.9829365  0.9570912    0.985005 
## err                      0.08737864  0.05464481 0.07909604 0.052941177 
## err_count                      18.0        10.0       14.0         9.0 
## f0point5                  0.9317212  0.96746576 0.95158595  0.95284873 
## f1                        0.9357143   0.9576271 0.94214875  0.95566505 
## f2                       0.93974173   0.9479866  0.9328969    0.958498 
## lift_top_group            1.4820144       1.525  1.4390244   1.6831683 
## logloss                  0.26470956  0.19371651 0.24186061  0.18362957 
## max_per_class_error      0.14925373 0.058333334 0.09259259 0.072463766 
## mcc                      0.79957104  0.88176966  0.8183729  0.89004207 
## mean_per_class_accuracy  0.89659613   0.9470238  0.9171183  0.94396615 
## mean_per_class_error    0.103403844  0.05297619 0.08288166 0.056033865 
## mse                      0.07118255 0.055463616 0.06909897 0.051511213 
## precision                0.92907804   0.9741379  0.9579832  0.95098037 
## r2                       0.67564666  0.75430936  0.6740738  0.78638625 
## recall                   0.94244605  0.94166666  0.9268293  0.96039605 
## rmse                     0.26680058  0.23550715 0.26286682  0.22696082 
## specificity               0.8507463  0.95238096  0.9074074  0.92753625 
##                         cv_11_valid cv_12_valid cv_13_valid cv_14_valid 
## accuracy                  0.9494382  0.94711536      0.9375   0.9398907 
## auc                      0.98661906    0.975469    0.972929   0.9716619 
## err                     0.050561797 0.052884616      0.0625  0.06010929 
## err_count                       9.0        11.0        13.0        11.0 
## f0point5                  0.9461664   0.9660574  0.96231496   0.9549689 
## f1                        0.9626556   0.9641694  0.95652175  0.95719844 
## f2                        0.9797297   0.9622887  0.95079786   0.9594384 
## lift_top_group            1.5213675   1.3506494   1.3774835   1.4296875 
## logloss                  0.18400167  0.19081248  0.19495863  0.21208708 
## max_per_class_error      0.13114753  0.09259259   0.0877193  0.10909091 
## mcc                       0.8881837  0.86332273  0.84598863  0.85635924 
## mean_per_class_accuracy   0.9301527   0.9342232   0.9296503   0.9259233 
## mean_per_class_error     0.06984728  0.06577682 0.070349716 0.074076705 
## mse                     0.049808357  0.05335354 0.057592176 0.061682552 
## precision                 0.9354839  0.96732026   0.9662162  0.95348835 
## r2                        0.7788808  0.72242814   0.7105068  0.70657855 
## recall                     0.991453  0.96103895   0.9470199   0.9609375 
## rmse                     0.22317787  0.23098385  0.23998371  0.24835972 
## specificity              0.86885244   0.9074074   0.9122807   0.8909091 
##                         cv_15_valid cv_16_valid cv_17_valid cv_18_valid 
## accuracy                  0.9221557  0.92941177  0.93406594  0.92899406 
## auc                      0.95682627  0.96940106  0.96871305    0.945913 
## err                     0.077844314  0.07058824  0.06593407  0.07100592 



## err_count                      13.0        12.0        12.0        12.0 
## f0point5                  0.9395425    0.953125   0.9621451  0.93333334 
## f1                       0.94650203    0.953125    0.953125  0.95454544 
## f2                        0.9535655    0.953125  0.94427246   0.9767442 
## lift_top_group            1.3916667    1.328125     1.35625   1.3307086 
## logloss                  0.23016892  0.21390663  0.36277843  0.24476203 
## max_per_class_error      0.17021276  0.14285715  0.07692308  0.26190478 
## mcc                       0.8045505  0.81026787  0.84327406  0.80546314 
## mean_per_class_accuracy  0.89406025   0.9051339   0.9307692  0.86511064 
## mean_per_class_error    0.105939716 0.094866075  0.06923077   0.1348894 
## mse                     0.066072926  0.06254792 0.054539576 0.074973375 
## precision                0.93495935    0.953125  0.96825397    0.919708 
## r2                       0.67327875   0.6637584   0.7327561   0.5985537 
## recall                    0.9583333    0.953125  0.93846154    0.992126 
## rmse                     0.25704655   0.2500958   0.2335371  0.27381265 
## specificity              0.82978725  0.85714287   0.9230769   0.7380952 
##                         cv_19_valid cv_20_valid cv_21_valid cv_22_valid 
## accuracy                 0.93193716  0.94285715  0.96756756   0.9506173 
## auc                       0.9653398   0.9756875  0.98695254  0.98357075 
## err                      0.06806283 0.057142857 0.032432433 0.049382716 
## err_count                      13.0        12.0         6.0         8.0 
## f0point5                  0.9356288   0.9526699  0.97110754  0.95238096 
## f1                       0.95057034   0.9631902   0.9758065  0.96666664 
## f2                        0.9659969  0.97394544  0.98055106   0.9813875 
## lift_top_group            1.4921875      1.3125    1.504065   1.3846154 
## logloss                  0.23136492  0.19511554  0.17319117  0.15156467 
## max_per_class_error      0.15873016        0.18  0.06451613  0.15555556 
## mcc                       0.8446536   0.8385571    0.926913  0.87572414 
## mean_per_class_accuracy   0.9089162    0.900625  0.95961183   0.9179487 
## mean_per_class_error     0.09108383    0.099375 0.040388145 0.082051285 
## mse                      0.06731529 0.055915814  0.04574462   0.0423923 
## precision                 0.9259259  0.94578314       0.968   0.9430894 
## r2                        0.6954701  0.69176406   0.7947011   0.7886907 
## recall                    0.9765625     0.98125  0.98373985    0.991453 
## rmse                      0.2594519  0.23646525  0.21387991   0.2058939 
## specificity              0.84126985        0.82   0.9354839  0.84444445 
##                         cv_23_valid cv_24_valid cv_25_valid cv_26_valid 
## accuracy                 0.91099477   0.9230769  0.91061455  0.90361446 
## auc                       0.9696801  0.96802604   0.9642641    0.963211 
## err                      0.08900524  0.07692308  0.08938547  0.09638554 
## err_count                      17.0        14.0        16.0        16.0 
## f0point5                 0.91374266  0.95524955   0.9450727   0.9160959 
## f1                        0.9363296  0.94067794       0.936  0.93043476 
## f2                       0.96006143  0.92654425   0.9270998   0.9452297 
## lift_top_group            1.4921875   1.5041323   1.4094489   1.4821428 
## logloss                  0.21763203  0.21776639  0.22680107  0.23908634 
## max_per_class_error      0.22222222  0.08264463 0.115384616   0.2037037 
## mcc                      0.79677093   0.8336803  0.78908676   0.7767154 
## mean_per_class_accuracy  0.87717015   0.9258908   0.9029376   0.8758267 
## mean_per_class_error     0.12282986   0.0741092  0.09706239  0.12417328 



## mse                      0.06672845 0.065854676  0.06880225 0.073764354 
## precision                0.89928055   0.9652174   0.9512195  0.90677965 
## r2                       0.69812495   0.7044614  0.66618824   0.6639136 
## recall                    0.9765625  0.91735536   0.9212598  0.95535713 
## rmse                      0.2583185  0.25662166  0.26230183  0.27159593 
## specificity               0.7777778  0.93442625  0.88461536   0.7962963 
##                         cv_27_valid cv_28_valid cv_29_valid cv_30_valid 
## accuracy                  0.9247312  0.92134833    0.877095   0.9293478 
## auc                      0.97310823  0.97550035   0.9536957   0.9667318 
## err                      0.07526882  0.07865169  0.12290503  0.07065217 
## err_count                      14.0        14.0        22.0        13.0 
## f0point5                  0.9332322  0.92654425   0.8768116  0.95689654 
## f1                        0.9461538  0.94067794   0.9166667  0.94468087 
## f2                        0.9594384  0.95524955  0.96031743   0.9327731 
## lift_top_group             1.464567    1.547826   1.4672132   1.5333333 
## logloss                  0.21242973   0.2266093  0.25174806   0.2282332 
## max_per_class_error      0.16949153  0.15873016  0.36842105       0.075 
## mcc                       0.8237921   0.8265832   0.7171776  0.84852815 
## mean_per_class_accuracy   0.8995062   0.9032436   0.8116911     0.93125 
## mean_per_class_error    0.100493796 0.096756384  0.18830888     0.06875 
## mse                      0.06184408  0.06823833  0.08067384 0.065495126 
## precision                  0.924812  0.91735536  0.85211265   0.9652174 
## r2                        0.7144591  0.70157856   0.6282901  0.71127564 
## recall                   0.96850395   0.9652174   0.9918033       0.925 
## rmse                      0.2486847   0.2612247  0.28403142  0.25592014 
## specificity               0.8305085  0.84126985   0.6315789      0.9375 
##                         cv_31_valid cv_32_valid cv_33_valid cv_34_valid 
## accuracy                  0.9361702    0.884058   0.9476744   0.9408602 
## auc                       0.9765898  0.94048876  0.97451437   0.9846675 
## err                      0.06382979  0.11594203  0.05232558 0.059139784 
## err_count                      12.0        24.0         9.0        11.0 
## f0point5                  0.9635812   0.9009629   0.9461664   0.9548611 
## f1                        0.9548872  0.91608393   0.9626556  0.95238096 
## f2                        0.9463487   0.9317212   0.9797297   0.9499136 
## lift_top_group            1.3925925   1.4892086   1.4700855   1.6034483 
## logloss                  0.19529128  0.28786054   0.1945776  0.18610537 
## max_per_class_error       0.0754717  0.23529412  0.14545454 0.071428575 
## mcc                      0.84699905   0.7320492    0.879655   0.8744277 
## mean_per_class_accuracy  0.93263453  0.85357594   0.9229992  0.93842363 
## mean_per_class_error    0.067365475  0.14642404 0.077000774 0.061576355 
## mse                      0.05589251  0.08739081 0.051522408 0.053453173 
## precision                 0.9694657  0.89115644   0.9354839  0.95652175 
## r2                       0.72390425  0.60382897  0.76313305  0.77225786 
## recall                   0.94074076  0.94244605    0.991453  0.94827586 
## rmse                     0.23641597  0.29561937  0.22698548  0.23119943 
## specificity               0.9245283   0.7647059   0.8545455   0.9285714 
##                         cv_35_valid cv_36_valid cv_37_valid cv_38_valid 
## accuracy                   0.920904   0.9483568  0.94634145  0.91935486 
## auc                       0.9646547   0.9845929  0.98097885  0.97354823 
## err                      0.07909604 0.051643193 0.053658538  0.08064516 



## err_count                      14.0        11.0        11.0        15.0 
## f0point5                 0.92621666     0.95625  0.97451276  0.93607306 
## f1                            0.944  0.96529967   0.9594096   0.9425287 
## f2                        0.9624796   0.9745223   0.9447674   0.9490741 
## lift_top_group            1.4123682   1.3653846   1.4748201   1.4418604 
## logloss                  0.38864395  0.17515951  0.18410112  0.20031828 
## max_per_class_error      0.19642857  0.14035088   0.0647482  0.15789473 
## mcc                        0.814676  0.86612517  0.88298833   0.8080528 
## mean_per_class_accuracy  0.88938904  0.92020917  0.95247436   0.8977968 
## mean_per_class_error     0.11061098  0.07979082 0.047525615  0.10220318 
## mse                     0.062465835 0.048032053  0.04989624 0.060116474 
## precision                 0.9147287   0.9503106   0.9848485   0.9318182 
## r2                        0.7111877   0.7549296  0.77143127  0.71715087 
## recall                    0.9752066   0.9807692   0.9352518  0.95348835 
## rmse                     0.24993166  0.21916215  0.22337466  0.24518661 
## specificity               0.8035714   0.8596491    0.969697  0.84210527 
##                         cv_39_valid cv_40_valid cv_41_valid cv_42_valid 
## accuracy                 0.94857144   0.9306931   0.9273743  0.91525424 
## auc                        0.984498  0.97203654    0.970088   0.9614826 
## err                      0.05142857  0.06930693   0.0726257 0.084745765 
## err_count                       9.0        14.0        13.0        15.0 
## f0point5                 0.95022625  0.94109195   0.9496753  0.94383776 
## f1                        0.9655172   0.9492754  0.94736844  0.94163424 
## f2                        0.9813084   0.9576023   0.9450727  0.93944097 
## lift_top_group            1.3779528   1.4852941   1.4435484   1.3720931 
## logloss                  0.16205977  0.21623117   0.2229956  0.23114163 
## max_per_class_error      0.16666667  0.13636364  0.10909091  0.14583333 
## mcc                       0.8695085   0.8408522   0.8303283  0.78708297 
## mean_per_class_accuracy   0.9127297   0.9134358  0.91722876   0.8960756 
## mean_per_class_error     0.08727034  0.08656417 0.082771264 0.103924416 
## mse                     0.044648424 0.061807718   0.0644598  0.06923242 
## precision                 0.9402985   0.9357143   0.9512195   0.9453125 
## r2                       0.77569586   0.7190283   0.6971618  0.64971215 
## recall                     0.992126   0.9632353   0.9435484  0.93798447 
## rmse                     0.21130173  0.24861158  0.25388935  0.26312053 
## specificity               0.8333333   0.8636364   0.8909091   0.8541667 
##                         cv_43_valid cv_44_valid cv_45_valid cv_46_valid 
## accuracy                 0.94285715   0.9230769  0.93333334  0.90909094 
## auc                       0.9706929   0.9677419  0.96665215   0.9488304 
## err                     0.057142857  0.07692308  0.06666667  0.09090909 
## err_count                      10.0        14.0        14.0        17.0 
## f0point5                 0.96345514   0.9279141  0.93911916  0.91352856 
## f1                        0.9586777   0.9453125  0.95394737   0.9390681 
## f2                       0.95394737   0.9633758  0.96925133   0.9660767 
## lift_top_group            1.4344262    1.467742    1.418919    1.406015 
## logloss                  0.21619517  0.21944155  0.20541325  0.24746177 
## max_per_class_error       0.0754717  0.18965517  0.17741935   0.2777778 
## mcc                       0.8664163  0.82065195   0.8373556  0.77461725 
## mean_per_class_accuracy    0.937674  0.89307564   0.9011552  0.85359234 
## mean_per_class_error    0.062326014  0.10692436  0.09884481  0.14640768 



## mse                      0.06142077  0.06432131 0.058101133  0.07502667 
## precision                0.96666664   0.9166667  0.92948717  0.89726025 
## r2                         0.709092   0.7037571  0.72076505  0.63469684 
## recall                    0.9508197   0.9758065   0.9797297   0.9849624 
## rmse                     0.24783213  0.25361645  0.24104176  0.27390996 
## specificity               0.9245283   0.8103448  0.82258064   0.7222222 
##                         cv_47_valid cv_48_valid cv_49_valid cv_50_valid 
## accuracy                  0.9585799   0.9081081   0.9378531    0.920904 
## auc                      0.98054224   0.9614172   0.9613361  0.96989566 
## err                     0.041420117  0.09189189  0.06214689  0.07909604 
## err_count                       7.0        17.0        11.0        14.0 
## f0point5                  0.9576271   0.9039548   0.9591195  0.94262296 
## f1                       0.96995705  0.93772894  0.95686275  0.94262296 
## f2                        0.9826087   0.9741248   0.9546166  0.94262296 
## lift_top_group            1.4824561   1.4453125   1.3828125   1.4508197 
## logloss                   0.1866811  0.22904293  0.23142505  0.21246149 
## max_per_class_error      0.10909091   0.2982456  0.10204082  0.12727273 
## mcc                      0.90554786  0.78707033  0.84584093  0.81535023 
## mean_per_class_accuracy   0.9410686  0.85087717   0.9255421   0.9076751 
## mean_per_class_error    0.058931418   0.1491228 0.074457906  0.09232489 
## mse                      0.05021729  0.06960763 0.068232454  0.06374601 
## precision                0.94957983   0.8827586  0.96062994  0.94262296 
## r2                         0.771251  0.67347574    0.659175  0.70236975 
## recall                   0.99122804         1.0    0.953125  0.94262296 
## rmse                     0.22409214  0.26383257  0.26121342  0.25247973 
## specificity               0.8909091   0.7017544   0.8979592   0.8727273 

## H2OBinomialMetrics: drf 
##  
## MSE:  0.09620613 
## RMSE:  0.3101711 
## LogLoss:  0.3301547 
## Mean Per-Class Error:  0.1197961 
## AUC:  0.9554861 
## Gini:  0.9109721 
##  
## Confusion Matrix (vertical: actual; across: predicted) for F1-optimal 
threshold: 
##         present unknown    Error       Rate 
## present    1101     257 0.189249  =257/1358 
## unknown      88    1660 0.050343   =88/1748 
## Totals     1189    1917 0.111075  =345/3106 
##  
## Maximum Metrics: Maximum metrics at their respective thresholds 
##                         metric threshold    value idx 
## 1                       max f1  0.520000 0.905866 212 
## 2                       max f2  0.404430 0.942982 243 
## 3                 max f0point5  0.680000 0.907154 159 
## 4                 max accuracy  0.540000 0.889247 206 
## 5                max precision  0.999989 1.000000   0 



## 6                   max recall  0.160000 1.000000 339 
## 7              max specificity  0.999989 1.000000   0 
## 8             max absolute_mcc  0.520000 0.776006 212 
## 9   max min_per_class_accuracy  0.600000 0.874816 186 
## 10 max mean_per_class_accuracy  0.540000 0.882215 206 
##  
## Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)` or 
`h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)` 
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