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An Extension of the Blinder-Oaxaca Decomposition Technique
to Logit and Probit Models

Robert W. Fairlie

Abstract
The Blinder-Oaxaca decomposition technique is widely used to identify and quantify the
separate contributions of group differences in measurable characteristics, such as education,
experience, marital status, and geographical differences to racial and gender gaps in outcomes.
The technique cannot be used directly, however, if the outcome is binary and the coefficients are
from a logit or probit model. | describe a relatively simple method of performing a
decomposition that uses estimates from a logit or probit model. Expanding on the original
application of the technique in Fairlie (1999), I provide a more thorough discussion of how to
apply the technique, an analysis of the sensitivity of the decomposition estimates to different

parameters, and the calculation of standard errors.
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1. Introduction

Identifying the underlying causes of racial and gender differences in educational, labor
market, health, and other outcomes has been the goal of an enormous body of literature in the
social sciences. Perhaps the most common approach used in the past few decades to identify and
quantify these causes is the technique of decomposing inter-group differences in mean levels of
an outcome into those due to different observable characteristics or "endowments" across groups
and those due to different effects of characteristics or "coefficients" of groups. The technique is
commonly attributed to Blinder (1973) and Oaxaca (1973). Attesting to the wide use of the
Blinder-Oaxaca decomposition technique, more than 1000 citations to these two articles were
found in the Social Sciences Citation Index as of June 2003.

The Blinder-Oaxaca decomposition technique is especially useful for identifying and
quantifying the separate contributions of group differences in measurable characteristics, such as
education, experience, marital status, and geographical location, to racial and gender gaps in
outcomes.' The technique is easy to apply and only requires coefficient estimates from linear
regressions for the outcome of interest and sample means of the independent variables used in the
regressions. A problem arises, however, if the outcome is binary, such as employment, college
attendance, or teenage pregnancy, and the coefficients are from a logit or probit model. These
coefficient estimates cannot be used directly in the standard Blinder-Oaxaca decomposition
equations.

A relatively simple method of performing a decomposition that uses estimates from a
logit or probit model was first described in Fairlie's (1999) analysis of the causes of the
black/white gap in self-employment rates. In this paper, I provide a more thorough discussion of
how to apply the technique, an analysis of the sensitivity of the decomposition estimates to

different parameters, and the calculation of standard errors. The non-linear decomposition

! Although not as commonly used, the technique is also useful for identifying the causes of geographical
(e.g. urban/rural or cross-country), time period, or other categorical differences in outcomes.



technique described below may be useful for identifying the causes of racial, gender,
geographical or other categorical differences in a binary outcome in which a logit or probit model

is used.?

2. Non-Linear Decomposition Technique
For a linear regression, the standard Blinder-Oaxaca decomposition of the white/black
gap (male/female, North//South, etc...) in the average value of the dependent variable, Y, can be

expressed as:
— — — — W — AW ~B
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where X/ is a row vector of average values of the independent variables and ,@ /s a vector of

coefficient estimates for race j. Following Fairlie (1999), the decomposition for a nonlinear

equation, such as ¥ = F(X ,é ), can be written as:

QY -y’ =2

LFxIp) NZBF(X,-B[}W) L 3 e i,
- N T N - N =3 N

where NV is the sample size for race j. This alternative expression for the decomposition is used
because Y does not necessarily equal F( X ,é ).> Inboth (2.1) and (2.2), the first term in

brackets represents the part of the racial gap that is due to group differences in distributions of X,
and the second term represents the part due to differences in the group processes determining
levels of Y. The second term also captures the portion of the racial gap due to group differences
in unmeasurable or unobserved endowments. Similar to most previous studies applying the
decomposition technique, I do not focus on this "unexplained" portion of the gap because of the

difficulty in interpreting results (see Jones 1983 and Cain 1986 for more discussion).

2 SAS programs for calculating the decomposition are available by request.
3 Note that the Blinder-Oaxaca decomposition is a special case of (2.2).



To calculate the decomposition, define Y/ as the average probability of the binary

outcome of interest for race j and F as the cumulative distribution function from the logistic
distribution.* Alternatively, for a probit model F would be defined as the cumulative distribution
function from the standard normal distribution.

An equally valid expression for the decomposition is:
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In this case, the black coefficient estimates, 5 are used as weights for the first term in the

decomposition, and the white distributions of the independent variables, X" are used as weights
for the second term. This alternative method of calculating the decomposition often provides
different estimates, which is the familiar index problem with the Blinder-Oaxaca decomposition
technique. A third alternative, used in Neumark (1988) and Oaxaca and Ransom (1994), is to
weight the first term of the decomposition expression using coefficient estimates from a pooled
sample of the two groups. Ultimately, the choice across these alternative methods of calculating
the first term of the decomposition is difficult and depends on the application with many studies
reporting results for more than one specification.

The first terms in (2.2) and (2.3) provide an estimate of the contribution of racial
differences in the entire set of independent variables to the racial gap in computer ownership.
Estimation of the total contribution is relatively simple as one only needs to calculate two sets of
predicted probabilities and take the difference between the average values of the two. Identifying
the contribution of group differences in specific variables to the racial gap, however, is not as

straightforward. To simplify, first assume that Ng=Ny and that there exists a natural one-to-one

* A useful property of the logit regression that includes a constant term is that the average of the predicted
probabilities must equal the proportion of ones in the sample. In contrast, the predicted probability



matching of black and white observations. Using coefficient estimates from a logit regression for
a pooled sample, ,@ ", the independent contribution of X; to the racial gap can then be expressed

as:
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Similarly, the contribution of X, can be expressed as:
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The contribution of each variable to the gap is thus equal to the change in the average predicted
probability from replacing the black distribution with the white distribution of that variable while
holding the distributions of the other variable constant.® A useful property of this technique is
that the sum of the contributions from individual variables will be equal to the total contribution
from all of the variables evaluated with the full sample.

Standard errors can also be calculated for these estimates. Following Oaxaca and
Ransom (1998), I use the delta method to approximate standard errors. To simplify notation,

rewrite (2.4) as:
- 1 X N e
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The variance of Di can be approximated as:

2.7) Var(D,) = (gz‘;j Var(B )L 2’? J

evaluated at the means of the independent variables is not necessarily equal to the proportion of ones, and
in the sample used below it is larger because the logit function is concave for values greater than 0.5.

> A black dummy variable is included in estimating the logit model with the pooled sample of blacks and
whites, but is not used to calculate the decomposition.
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density function.

In practice, the sample sizes of the two groups are rarely the same and a one-to-one
matching of observations from the two samples is needed to calculate (2.4), (2.5), and (2.7). In
this example, it is likely that the black sample size is substantially smaller than the white sample

size. To address this problem, first use the pooled coefficient estimates to calculate predicted

A

probabilities, Y;, for each black and white observation in the sample. Next, draw a random

subsample of whites equal in size to the full black sample (Ng). Each observation in the white
subsample and full black sample is then separately ranked by the predicted probabilities and
matched by their respective rankings. This procedure matches whites who have characteristics,
such as income and education, placing them at the bottom (top) of their distribution with blacks
who have characteristics placing them at the bottom (top) of their distribution.’

The decomposition estimates obtained from this procedure depend on the randomly
chosen subsample of whites. Ideally, the results from the decomposition should approximate
those from matching the entire white sample to the black sample. A simple method of
approximating this hypothetical decomposition is to draw a large number of random subsamples
of whites, match each of these random subsamples of whites to the black sample, and calculate
separate decomposition estimates. The mean value of estimates from the separate

decompositions is calculated and used to approximate the results for the entire white sample. In

® Unlike in the linear case, the independent contributions of X; and X, depend on the value of the other
variable. This implies that the choice of a variable as X; or X, (or the order of switching the distributions)
is potentially important in calculating its contribution to the racial gap. I return to this issue below.

7 The results presented below, however, are fairly similar when simply matching black and white
observations randomly.



the decompositions reported below, I use 1000 random subsamples of whites to calculate these

means. 8

3. Results

For illustrative purposes, I employ the non-linear decomposition technique to identify the
causes of racial differences in computer ownership (see Fairlie 2002 for more details). Estimates
from the Computer and Internet Use Supplement to the August 2000 Current Population Survey
(CPS) indicate that 70.9 percent of white, non-Latinos have access to a home computer, whereas
only 41.3 percent of African-Americans have access to a home computer. Of particular interest is
whether (and how much) group differences in the most likely "suspects" -- family income,
education and family structure -- contribute to this racial disparity in computer ownership. The
findings are useful for the policy debate over the causes and consequences of the "Digital
Divide."

Table 1 reports estimates of the nonlinear decomposition technique for the black/white
gap in home computer rates using four different set of coefficients. Logit regressions are
estimated using four separate samples -- white only, black only, white and black pooled, and all
races pooled.” The individual contributions from racial differences in sex and age, marital status
and children, education, income, region, and central city status are reported. The contribution for
a set of dummy variables, such as those for region, is calculated by simultaneously switching

distributions of all dummy variables. The results are generally similar across specifications.

¥ Estimates for the main specification are identical to the 4th decimal place using 10,000 simulations for all
contributions except two groups of variables (which were both less than 0.0001 different). In fact, using
only 100 simulations provided contribution estimates that were identical to the 4th decimal place except for
only two groups of variables (which were both less than 0.0002 different).

? Estimates are reported in the Appendix. All specifications include measures of sex, age, marital status,
children, education, family income, region, and central city status. The coefficient estimates indicate that
being married, the presence of children between the ages of 6 and 17, education, and family income
increase the probability of computer ownership. The coefficient estimates are generally similar across
specifications



The difference between white and black computer ownership rates is 0.3030. As
expected, the largest factor explaining this large racial disparity in home computer ownership is
income. Lower levels of income among blacks account for 0.0775 to 0.1031 (or 25.6 to 34.0
percent) of the white/black gap in the probability of having a home computer. In all
specifications these contributions are statistically significant. Lower levels of education among
blacks also contribute to the racial gap in computer ownership. The decomposition estimates for
the contribution of racial differences in education range from 0.0340 to 0.0369 (or 11.2 to 12.2
percent). Group differences in family characteristics explain a similarly large portion of the gap
(9.5 to 10.5 percent), whereas group differences in regional distributions explain a small portion
of the gap (2.8 to 5.2 percent). Finally, racial differences in sex and age and racial differences in
central city status explain virtually none of the gap. The decompositions reveal that group
differences in all of the included characteristics explain roughly half of the black/white gap in
computer ownership for the white and pooled specifications and 61.3 percent of the gap for the

black specification.

COMPARISON TO BLINDER-OAXACA RESULTS

Perhaps the first question that comes to mind regarding use of the technique is how the
results compare to those from a standard Blinder-Oaxaca decomposition using estimates from a
linear probability model. Specification 2 of Table 2 reports estimates. Specification 1 reports
estimates from the non-linear decomposition technique for comparison. For brevity, I focus on
the results for the All Races Pooled Specification. The estimates from the Blinder-Oaxaca
decomposition do not differ substantially from those from the non-linear decomposition
technique. The largest difference is for the marital status and children contribution, which is
0.0064 smaller in the linear specification. For this application in which the coefficient estimates
are well behaved and the decomposition is explaining a racial gap primarily located in the middle

of the distribution (i.e. between 0.4257 and 0.7286) the Blinder-Oaxaca decomposition



approximates the nonlinear decomposition results. The Blinder-Oaxaca decomposition may not
perform as well in cases in which the racial gap is located in the tails of the distribution or racial
differences in independent variables (e.g. a continuous measure of wealth) are very large. In fact,
an endowment effect may even be larger than 1 (or 100 percentage points) in the Blinder-Oaxaca
decomposition, which is difficult to interpret in terms of probability.

A good example of when the Blinder-Oaxaca technique may be problematic is in Fairlie
(1999). The contribution of racial differences in asset levels to the black/white gap in the
transition rate out of self-employment is 0.0117 or 9.0 percent using black coefficients as reported
in Specification 1 of Table 3 in the article. Using a linear probability model and the Blinder-
Oaxaca decomposition, I find a contribution estimate of 0.1812 or 114.4 percent. The linear
technique provides a much larger contribution because white asset levels are approximately 7
times larger than black asset levels as measured in the regression. The linear technique fails to
limit the influence on the probability that the outcome occurs at increasingly high asset levels
(even in this case when a quadratic term is included), and thus may be providing an implausible
estimate of the impact of racial differences in asset levels on black/white differences in exit rates.

Related to this issue, I also estimate a model using coefficients from a probit regression.
In this case, F in (2.4) and (2.5) is defined as the cumulative distribution function from the
standard normal distribution. Estimates are reported in Specification 3 of Table 2. The
contribution estimates are very similar to those using the logit coefficients. For this application,

the decomposition estimates are not sensitive to whether the logit or probit model is used.

ORDERING OF VARIABLES

Another potentially important issue regarding use of the technique is the effect of
ordering of variables in the decomposition. As noted above, because of the nonlinearity of the
decomposition equation the results may be sensitive to the ordering of variables. To investigate

this issue, Specification 4 of Table 2 reports estimates in which the order of switching



distributions of variables is reversed. Overall, the estimates are not substantially different than
the original estimates, but the differences are worth noting. The main changes are that the family
characteristics contribution declined from 0.0289 to 0.0175, and the education and income
contributions increased slightly. The total contribution, however, remains unchanged because the
sum of the individual contributions, regardless of their order, must equal the total contribution
defined in (2.2) or (2.3).

The effects of reordering, however, depend on the application. The initial location in the
logistic distribution and the total movement along the distribution from switching distributions of
other variables contribute to how sensitive the results are to the ordering of variables. Perhaps the
best solution to the problem is to experiment with different orders of variables to confirm the
robustness of results.'’ If the results continue to vary substantially, one solution for coming up
with a single point estimate is to randomize the ordering of variables. In fact, the ordering of
switching distributions could be randomized at the same time as drawing the random subsample
of whites. By using a large number of simulations the procedure approximates the average
decomposition across all possible orderings of variables while preserving the summing up
property. As a check, I estimate the decomposition using this procedure. All of the estimates lie
in the intervals created by the estimates reported in Specifications 1 and 4, which represent the
original "ad hoc" ordering of the variables and its reverse. In fact, I experimented with different
initial orderings of the variables and their reverses, and found that the average contribution in
each case approximated the estimate from the random ordering decomposition, suggesting a

relatively easy method of checking the sensitivity of results.



THE USE OF SAMPLE WEIGHTS

All of the estimates previously reported are unweighted for simplicity. If sample weights
are required, however, the decomposition technique needs to be modified slightly. If sample
weights are used to estimate both the mean outcomes and the logit regressions, then each
observation in (2.4) and (2.5) should be weighted. The only complication arises in choosing
whether the white or black sample weight is used when switching distributions, which represents
another index problem as there is no theoretical justification for preferring one over the other.

The other case is where sample weights are used to estimate mean outcomes, but not the
regressions. In this case, each observation in (2.4) and (2.5) should be weighted and the
interpretation of the contribution from group differences in observed characteristics remains
unchanged. The "left-over" or unexplained portion of the decomposition, however, now also
includes group differences in the discrepancy between the weighted mean of the outcome and the
average predicted probability using the weighted distribution of characteristics and unweighted
regression estimates.'' Estimating decompositions using both white and black sample weights

from the CPS, I find estimates that do not differ substantially from the unweighted estimates.

5. Summary

The non-linear decomposition technique discussed above is a relatively easy-to-
implement alternative to the standard Blinder-Oaxaca decomposition. The main advantage is that
the coefficient estimates from a logit or probit model can be used directly in the decomposition
specification. The technique is thus useful for applications in which it is inappropriate to model

the dependent variable as a linear function of the explanatory variables.

1% Another solution is to estimate each contribution by switching the variable of interest first (i.e. use (2.4)
to estimate the contribution for each variable). The sum of these contributions, however, may differ
substantially from the total contribution defined in (2.2) or (2.3).

" Note that if the weighted mean outcomes are similar to the unweighted mean outcomes then this is
unlikely to be large.

10



References

Blinder, Alan S. 1973. "Wage Discrimination: Reduced Form and Structural Variables." Journal
of Human Resources, 8, 436-455.

Cain, Glen G. 1986. "The Economic Analysis of Labor Market Discrimination: A Survey,"
Handbook of Labor Economics, Vol. 1, eds. O. Ashenfelter and R. Laynard, Elsevier Science
Publishers BV.

Fairlie, Robert W. 1999. "The Absence of the African-American Owned Business: An Analysis
of the Dynamics of Self-Employment," Journal of Labor Economics, 17(1): 80-108.

Fairlie, Robert W. 2002. "Race and The Digital Divide," University of California, Santa Cruz
Working Paper.

Jones, F.L. 1983. "On Decomposing the Wage Gap: A Critical Comment on Blinder's Method,"
Journal of Human Resources, 18(1): 126-130.

Neumark, David. 1988. "Employers' Discriminatory Behavior and the Estimation of Wage
Discrimination," Journal of Human Resources, 23, 279-295.

Oaxaca, Ronald. 1973. "Male-Female Wage Differentials in Urban Labor Markets," International
Economic Review, 14 (October), 693-709.

Oaxaca, Ronald, and Michael Ransom. 1994. "On Discrimination and the Decomposition of
Wage Differentials," Journal of Econometrics, 61, 5-21.

Oaxaca, Ronald, and Michael Ransom. 1998. "Calculation of Approximate Variances for Wage
Decomposition Differentials," Journal of Economic and Social Measurement, 24, 55-61.

11



Table 1
Non-Linear Decompositions of Black/White Gaps in Home Computer Rates
Using Various Coefficient Estimates

Specification
(1) (2) 3) (4)
Sample used for coefficients White Black Black/White  All Races
Pooled Pooled
White computer ownership rate 0.7286 0.7286 0.7286 0.7286
Black computer ownership rate 0.4257 0.4257 0.4257 0.4257
Black/White gap 0.3030 0.3030 0.3030 0.3030
Contributions from racial differences in:
Sex and age -0.0004 0.0001 -0.0004 -0.0002
(0.0003) (0.0010) (0.0003) (0.0002)
-0.1% 0.0% -0.1% -0.1%
Marital status and children 0.0315 0.0302 0.0317 0.0289
(0.0017) (0.0041) (0.0015) (0.0014)
10.4% 10.0% 10.5% 9.5%
Education 0.0340 0.0367 0.0341 0.0369
(0.0010) (0.0028) (0.0009) (0.0008)
11.2% 12.1% 11.2% 12.2%
Income 0.0775 0.1031 0.0797 0.0799
(0.0020) (0.0048) (0.0019) (0.0017)
25.6% 34.0% 26.3% 26.4%
Region 0.0102 0.0157 0.0104 0.0085
(0.0017) (0.0055) (0.0016) (0.0015)
3.4% 5.2% 3.4% 2.8%
Central city status -0.0015 0.0000 -0.0007 -0.0019
(0.0021) (0.0041) (0.0019) (0.0017)
-0.5% 0.0% -0.2% -0.6%
All included variables 0.1512 0.1859 0.1548 0.1519
49.9% 61.3% 51.1% 50.2%

Notes: (1) The sample consists of adults ages 25-55 from the specified racial group/s. (2)
Standard errors are reported in parantheses below contribution estimates. (3) The sample sizes
used to estimate the coefficients in Specifications 1-4 are 34,386, 4,555, 38,941 and 46,322,
respectively. (4) Contribution estimates are mean values of the decomposition using 1000
subsamples of whites. See text for more details.



Table 2
Non-Linear Decompositions of Black/White Gaps in Home Computer Rates
Linear Probabilty Model and Probit Estimates, and Reverse Ordering of Variables

Specification
(1) 2) ) 4)
Modification to decomposition All Races Linear Probit Reverse
Pooled Model Model Order
White computer ownership rate 0.7286 0.7286 0.7286 0.7286
Black computer ownership rate 0.4257 0.4257 0.4257 0.4257
Black/White gap 0.3030 0.3030 0.3030 0.3030
Contributions from racial differences in:
Sex and age -0.0002 -0.0008 -0.0002 -0.0003
(0.0002) (0.0003) (0.0002) (0.0003)
-0.1% -0.3% -0.1% -0.1%
Marital status and children 0.0289 0.0225 0.0279 0.0175
(0.0014) (0.0012) (0.0014) (0.0015)
9.5% 7.4% 9.2% 5.8%
Education 0.0369 0.0386 0.0366 0.0420
(0.0008) (0.0008) (0.0008) (0.0009)
12.2% 12.7% 12.1% 13.9%
Income 0.0799 0.0823 0.0806 0.0855
(0.0017) (0.0015) (0.0017) (0.0017)
26.4% 27.2% 26.6% 28.2%
Region 0.0085 0.0078 0.0082 0.0090
(0.0015) (0.0013) (0.0014) (0.0013)
2.8% 2.6% 2.7% 3.0%
Central city status -0.0019 -0.0016 -0.0019 -0.0017
(0.0017) (0.0014) (0.0016) (0.0015)
-0.6% -0.5% -0.6% -0.6%
All included variables 0.1519 0.1488 0.1512 0.1519
50.2% 49.1% 49.9% 50.2%

Notes: (1) The sample consists of adults ages 25-55. (2) All specifications use coefficient
estimates from the full sample of all races. (3) Standard errors are reported in parantheses below
contribution estimates. (4) Contribution estimates are mean values of the decomposition using
1000 subsamples of whites. See text for more details.



Appendix
Logit Regressions for Probability of Having a Home Computer

Specification
Explanatory Variables (1) (2) (3) (4)
Sample White Black White and  All Races
Black
Female 0.0144 -0.0341 0.0050 0.0083
(0.0276) (0.0749) (0.0258) (0.0235%5)
Age -0.0032 -0.0017 -0.0034 -0.0016
(0.0018) (0.0048) (0.0017) (0.0015)
Married 0.4799 0.5545 0.5032 0.4648
(0.0424) (0.0945) (0.0383) (0.0346)
Previously married 0.0172 0.0906 0.0408 0.0383
(0.0474) (0.1067) (0.0430) (0.0397)
Number of children 0.0455 -0.0522 0.0241 0.0077
(0.0213) (0.0478) (0.0192) (0.0166)
Children ages 6 to 17 0.7425 0.8049 0.7527 0.7410
(0.0464) (0.1133) (0.0426) (0.0380)
High school graduate 0.6545 0.4017 0.6098 0.7203
(0.0535) (0.1253) (0.0492) (0.0410)
Some college 1.2688 1.0271 1.2240 1.3490
(0.0554) (0.1285) (0.0508) (0.0426)
College graduate 1.6291 1.5359 1.6046 1.7265
(0.0609) (0.1555) (0.0565) (0.0485)
Graduate degree 1.9702 1.8084 1.9440 2.0742
(0.0778) (0.2105) (0.0727) (0.0642)
Family Income: $10,000 to 0.3497 -0.0632 0.2688 0.3230
$15,000 (0.0911) (0.1840) (0.0808) (0.0710)
Family Income: $15,000 to 0.5734 0.2783 0.5166 0.4912
$20,000 (0.0892) (0.1790) (0.0792) (0.0702)
Family Income: $20,000 to 0.4808 0.1933 0.4368 0.4576
$25,000 (0.0828) (0.1751) (0.0741) (0.0662)
Family Income: $25,000 to 0.7448 0.5826 0.7208 0.7352
$30,000 (0.0808) (0.1641) (0.0720) (0.0643)
Family Income: $30,000 to 1.0453 0.7098 0.9967 0.9843
$35,000 (0.0797) (0.1701) (0.0714) (0.0638)
Family Income: $35,000 to 1.0767 1.0635 1.0736 1.0859
$40,000 (0.0805) (0.1740) (0.0724) (0.0651)

(continued)



Appendix (continued)
Logit Regressions for Probability of Having a Home Computer

Specification

Explanatory Variables (1) (2) (3) (4)
Family Income: $40,000 to 1.3234 1.2009 1.3030 1.3644
$50,000 (0.0760) (0.1598) (0.0680) (0.0613)
Family Income: $50,000 to 1.4889 1.2622 1.4597 1.4917
$60,000 (0.0774) (0.1654) (0.0694) (0.0625)
Family Income: $60,000 to 1.6876 1.8948 1.7030 1.7088
$75,000 (0.0781) (0.1763) (0.0705) (0.0637)
Family Income more than 2.1842 2.5912 2.2102 2.2049
$75,000 (0.0758) (0.1776) (0.0684) (0.0615)
In MSA but not in central 0.0526 0.0930 0.0662 0.0319
city (0.0409) (0.0881) (0.0363) (0.0317)
Rural area -0.1121 -0.1913 -0.1014 -0.1159
(0.0439) (0.1329) (0.0403) (0.0367)
Central city status 0.0172 0.2772 0.0466 0.0425
not identified (0.0484) (0.1166) (0.0440) (0.0399)

Region Controls Yes Yes Yes Yes

Race/Ethnicity Controls No No Yes Yes
Mean of Dependent Variable 0.7286 0.4257 0.6932 0.6590
Sample Size 34,386 4,555 38,941 46,322

Notes: (1) The sample consists of adults ages 25-55 from the specified racial group/s. (2)
Standard errors are in parentheses below coefficient estimates.





