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I. Introduction 

One unequivocal aspect of agricultural supply response is its complex 

dynamic structure. The two decades since Nerlove's pioneering work have 

given us a variety of dynamic models and statistical estimation procedures. 

Nearly all of the research has focused on various forms of distributed lags 

in response, and statistical methods for estimating the parameters involved 

(see Dhryrnes, 1971a, for many of these models). A recent survey of agri­

cultural supply response studies which used the "Nerlove Model" and various 

extensions of it contained 190 references to the literature (Askari and 

Cummings), a good indication of the practical importance of such models. 

Usually a dynamic economic problem would suggest differential or 

difference equations among the endogenous variables, but many of the distributed 

lag behavioral assumptions in supply models are only dynamic in the structure 

expressed through lagged values of the exogenous variables. An example 

is the adaptive expectations model of Nerlove, which reduces to a linear 

equation in historic prices with the coefficients on lagged prices declining 

geometrically with respect to time measured backwards from the present. 

Models which include only lagged exogenous variables would be satisfactory if 

the set of current and lagged independent variables were complete, the 

history of the data sufficiently long, and the structure constant over the 
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sample period. Under this idealized situation, and assuming a correct spec­

ification of the supply equation, any lagged values of the dependent 

variable would be redundant because the history of the independent variables 

provides complete information which cannot be improved upon. 

Then we have other models, such as Nerlove's partial adjustment model, 

which directly imply a difference equation in the dependent variable. The 

rationale for the partial adjustment model was implicit in Cassels and 

centers on the time required for output changes of the firm. Existing 

assets of the firm (industry), currently employed labor, and other short-run 

conditions limit the speed of economic adjustment to changed prices. Neverthe­

less, an idealized specification of the supply equation with all relevant 

exogenous variables lagged over a sufficiently long history of data would 

capture all of these short-run conditions and make the difference equation 

unnecessary. 

The problems with a model which relies on such a complete specification 

and historical data series that all relevant information is taken into account 

are quite obvious. First, measurements on some variables needed in the 

complete specification will nearly always be missing. Second, the number 

of parameters to be estimated would be very large, creating a problem in 

degrees of freedom. The practice of smoothing the coefficients on lagged 

values of the exogenous variables by specifying a polynomial or frequency 

distribution curve would partially solve this difficulty (see for example 

Baritelle and Price; Chen, Courtney, and Schmitz; and Kulshreshtha). 

Third, the structure of supply response cannot be expected to remain 

unchanged for very long periods, even with a tolerable level of specification 

error. Therefore, the limited historical period over which the model :ls 

appropriate will severely restrict the information set implicit in the model. 

.. 

.,, 
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Fourth, the correct specification is almost certainly nonlinear in 

the lagged values of the exogenous variables. The usual arguement that linear 

relationships are adequate as an approximation is less convincing when we 

are dependent on the correct specification over an extended historical period 

to capture all the rigidities created by past investments in the productive 

capacity of the industry. 

Specification of a dynamic behavioral equation, such as for agricultural 

supply, is quite analogous to choosing the set of state variables which are 

used in a dynamic optimization problem. The state variables must be few in 

number but capture most of the information about the history of the decision 

process. In supply estimation, the predetermined variables must be efficient 

at summarizing information on the history of the many exogenous variables 

and the functional form in which they influence supply response. 

It would appear that a recent history of the levels of the supply 

response variable (planted acres, for example) would summarize a large part 

of the information implied by the historical time series of the exogenous 

variables which jointly describe the dynamic structure of supply. Nerlove's 

partial adjustment model (Nerlove, 1958, p.62) is a simplified case where the 

level of response last year summarizes the entire history. This model is 

easily generalized to higher order lags in the adjustment process, yielding 

correspondingly higher order difference equations and lags on the price 

variable. This kind of generalization is capable of handling the rigidities 

in production which typically distinguish various lengths-of-run. 

A difference equation in the supply response variable can be justified 

directly without recourse to the partial adjustment argument. With a first 

order difference equation, we could interpret the response level last year 
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as indicative of current capacity for aggregate production of the commodity. 

In a second order equation, we would have an indirect measure of capacity for 

the last two years, or alternatively, we could interpret the second order 
I 
equation as reflecting the level of capacity last year and the change in 

capacity last year. A third order equation would also reflect the rate of 

change in capacity to produce. We are using the term "capacity" rather 

loosely here; the same interpretation of the difference equation can be made 

with respect to inertia, habit, tradition, and crop rotations. In applications 

to livestock inventories the vague notion of capacity would have special 

connotations, likewise for perennial crops such as tree crops. 

The other main source of dynamic behavior in supply is associated with 

the formation of price expectations. The usual assumption is that of geo­

metrically declining weights on experienced prices backwards in time, and 

after a suitable transformation, this specification can be reduced to a first 

order difference equation in the supply response variable and only last year's 

price remains as an independent variable (Nerlove, 1956, p.502). If a 

difference equation has already been specified in the response variable 

before the transformation, the difference equation is of one higher degree 

after the transformation (Nerlove, 1958, p.64). 

Even when Nerlove's simple adaptive price expectations model is appro­

priate and the above transformation has been made, it might be necessary to 

include second or higher order lagged prices explicitly in the response equation. 

1, These extra-lagged prices taken jointly with the lagged values of the response 

\'\ I. variable can capture information on rigidities in the industry that would 

I 
fall into the error term otherwise. The higher the level of aggregation, the 

more likely it is that these lagged price variables will reflect extra 

.. 
;--. 

, ' 
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information with respect to restrictions on production response, i.e., 

information beyond that provided by lagged values of the response variable 

conjunctively with an exogenous variable at a single point in time. 

It is concluded that a combination of many economic, technological, 

and behavioral factors and constraints implies a difference equation in the 

supply response variable, and in addition, moderately small order lags on 

the exogenous variables are likely to be required to get a good approximation 

of the supply response equation. 

Other justifications for this type of specification are to be found 

in the economics literature on distributed lags, such as the general result 

of Jorgenson that any lag distribution can be approximated by a rational 

distributed lag function, or that the distributed lag pattern can be approximated 

by the Pascal distribution (Solow) . ..V Then going back another step in the 

logical process, Grether has recently shown that a rational distributed 

lag follows from fairly general assumptions about the underlying economic 

process which gives rise to an unobservable variable in a regression equation. 

The next section discusses problems of irreversibilities in agricultural 

supply studies, and the third section considers identification of various 

components in the dynamic structure of supply response equation. Section IV 

distinquishes between stochastic and nonstochastic difference equation; 

section V takes up statistical estimation of dynamic regression equations 

and section VI discusses the interpretation and specification of the error 

term. Some examples of applications of the methodology are given in section 

VII along with suggestions on the analysis of results from dynamic models of 

supply. The final section summarizes the main results and conclusions on 

supply estimation from time series data. 
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II. Irreversibilities in Supply 

The notion of irreversibilities in supply response have been with us 

for a long time (Cassels), but the practice of statistically testing for 

irreversibility has received considerable attention recently (Houck; Traill, 

Coleman, and Young; and Wolffram). It would appear that finding irreversi­

bility in a linear supply function with respect to price changes is a symptom 

of specification error associated with the dynamic structure of the model. 

In fact, an irreversibility with respect to one variable in the supply 

response function would seem to suggest irreversibility in most other 

variables of the equation. 

A sufficiently high order difference equation in the supply response 

variable jointly with a relatively short distributed lag on price, and 

possible other exogenous variables, should remove the irreversibility 

problem. A first order difference equation in annual data will reflect the 

level of output last year; a second order equation will indicate whether 

output was increasing or decreasing during the last two years; while a 

third order equation can also measure rate of change in output. This 

capability of difference equations taken jointly with second or third order 

lagged prices should take account of essentially all the factors associated 

with irreversibilities. Price level last year, its change during the last 

two years, and possibly the rate of change during the last three years 

taken jointly with the same type of information on output would be expected 

to capture the dynamics of supply response commonly manifested as irreversibil­

ities in static linear regression models. Of course, we would expect something 

as simple as a second order difference equation to be adequate in many 

applications. ~ . 
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The use of relatively high order lags on price, and sometimes other 

exogenous variables, without using a difference equation in the supply response 

variable has been used quite effectively in some studies; examples are 

Kulshreshtha for slaughtered beef and Baritelle and Price for tree crops. 

This success of econometric models with implicit irreversibilities without 

using difference equations merely raises the question of relative performance 

of two types of dynamic models. The author leans heavily in favor of the 

difference equation models, particularly nonstochastic difference equations 

to be introduced in section IV, reasons for this preference were covered in 

the introductory discussion. An example of the superiority of difference 

equations will be given later using acreage response of U.S. wheat producers. 

III. Identification Problemsl/ 

Detailed specifications of how producers' price expectations are 

formulated and the adjustment mechanism that governs their short-run changes 

in output would be viewed by many econometricians as superior to simply 

specifying a second or third order difference equation in the response variable 

with second or third order lagged prices as independent variables. The latter 

relatively loose specification would seem to border on mere empiricism -­

measurement without adequate theory. Let us examine the virtues and limit­

ations of these two approaches to specification or model building. 

Detailed Approach 

One of the goals in econometric work is to test hypotheses, and a 

detailed specification provides much sharper hypotheses to be tested. There 

is no a priori reason to expect that individual parameters which describe 

the various components of the dynamic structure of supply response can be 
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identified from economic time series data. Nerlove encountered a situation 

where two key parameters were not identified when he combined the partial 

adjustment and adaptive price expectations hypotheses into one model (Nerlove 

1958, p.64). Often when the parameters can be identified in principle, a 

serious problem of statistical precision will emerge when the model is fitted 

to time series data (Nerlove 1958, chapter 9 and Behrman). 

Most hypotheses about the structure of supply response come from the 

theory of the firm and postulated behavior of an individual decision agent, 

but the empirical equation is fitted to aggregate time series data (regional 

or national), which raises many questions about compatability between an 

hypothesis and the data used to test it. The nature of these problems is 

illustrated with acreage response of U.S. wheat producers. 

Land resources used in wheat production are extremely heterogenous, 

varying from marginal land for crop production in The Great Plains to highly 

productive land in the corn belt, as well as irrigated areas throughout the 

country. Although we might expect producers' formulations of price expectations 

to be quite similar across the nation, the rigidities and constraints on 

changes in acreage which characterize short-run adjustments are much different 

among the various regions of production. If new cropland is brought into 

production in the semi-arid Great Plains, the land is summer-fallowed the 

first year to build a soil moisture reserve and allow the sod to decay, which 

implies a technical constraint on short-run acreage expansion. On the 

other hand, shifting from one annual crop to another on existing cropland 

can be effected easily from year to year, except in parts of The Northern Great 

Plains where it is difficult to get winter wheat planted behind another 

crop because of the short growing season. But another constraint exists 
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in The Great Plains in that the traditional dryland farming practice is to 

summer-fallow the cropland every other year. This tradition is not completely 

rigid since there is a transition area in going from east to west in The 

Great Plains where summer-fallow is a marginal practice which is used when 

prices are relatively low but abandoned to some degree when prices are high. 

These rigidities associated with crop rotations are not limited to The Great 

Plains either; winter wheat cannot usually be planted after corn harvest in the 

fall which causes a constraint on rotation changes in The Corn Belt. Then 

there are also the constraints associated with specialized farm equipment 

for individual crops. 

These technical agronomic and practical economic constraints on changes 

in wheat acreage will tend to confound the test of a specific hypothesis such 

as Nerlove's partial adjustment model. There is a possibility of incorp­

orating a sufficient number of concomitant variables into the regression 

equation to remove influences of the technical rigidities, but the author 

would not be optimistic about this being successful. 

Many different detailed specifications on the forms of the lag 

distributions on independent variables would be about equally plausible on 

a priori grounds, as would many varied specifications of the short-run 

adjustment process. But experience with time series data and the usual size 

samples leads one to expect that several detailed specifications are 

likely to fit the data about equally well in supply estimation. This is 

nothing extraordinary in econometric research and merely a manifestation 

of the general indentification problem of science (Russell, p.330): 

"Every finite set of observations is compatible with a number 

of mutually inconsistent laws, all of which have exactly the 

same inductive evidence in their favour." 
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It is this author's opinion that overly specific models in supply response 

studies have a tendency to delude us into thinking that economic measurement 

is more precise than it is. 

A Robust Specification 

What do we lose by merely assuming that a relatively low order 

difference equation in conjunction with modest lags on the exogenous variables 

is capable of describing the dynamics of agricultural supply response? We 

give up an opportunity to identify the individual components which comprise 

the underlying forces behind a dynamic model of supply response. The mechanisms 

describing the formulation of price expectations and the rigidities in short­

run adustments are confounded, along with any other dynamic factors such 

as crop rotation constraints. 

An advantage of the more general specification would appear to be 

less frequent specification error, or at least, the nature of the specification 

error would tend to be that which the data is incabable of detecting. The 

detailed approach would in principle require the testing of many different 

algebraic forms for the separate dynamic components of the model, while the 

general approach would involve sequential testing of various orders of lags 

on the variables. In practice, the detailed approach is likely to be applied 

without testing various algebraic forms on the dynamic components of the 

model. 

A primary justification for the general difference equation specification 

is the result of Jorgenson that any distributed lag function can be approxi­

mated by a rational lag function. The difference equation emanates from 

multiplication of both sides of the response equation by the denominator 

of the rational lag function, which is a polynomial in the lag operator. 
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In agricultural supply estimation we also have a rather direct basis for the 

difference equation which emanates from rigidities in short-run adjustments. 

One way to view a relatively low order difference equation in supply response 

with several exogenous variables is that we force the same denominator on 

the rational lag function associated with each exogenous variable, and 

also, use this denominator function to describe the phenomena in supply 

response which warrant a difference equation directly. Ultimately the worth 

of this methodology must be determined by experience in application, some 

limited results of which are presented in section VI. 

IV. Stochastic Versus Nonstochastic Difference Equations 

Problems of statistical estimation are postponed so that we can contrast 

the conceptual aspects of stochastic and nonstochastic difference equations. 

We use Nerlove's partial adjustment model to illustrate the conceptual frame-

work (Nerlove 1958). 

The Partial Adjustment Model 

* Let xt be desired long-run equilibrium production of a crop and let 

xt be observed production in year t, while price is denoted by Pt• Long 

run supply is given by 

(1) x~ =a+ bp 1 t t-

The supply adjustment equation is 

(2) 

The supply response variable has been taken as production instead of 

acreage to make the role of the error term more obvious. Clearly, x~ is a 

conceptual variable which is unobservable. Should the supply adjustment 

equation be (2) or should it be redefined in expectational form as 
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* E(x) - E(xt_1) = y[x - E(x 1)] , 
t t; t-

(3) 

where E(·) denotes the expectation operator? 

If (2) is assumed, the size of the adjustment will depend heavily on 

weather conditions in year t-1 since a high yield and the associated large 

production will tend to reduce x and vice versa. Does this make sense? 
t 

The concept of a partial adjustment model would appear to fit the nonsto-

chastic model of (3) better than (2). The expected values of production are 

interpreted as quantities produced without any unusual events or conditions, 

given complete information implicit in the model defined by (1) and (3) 

jointly. Substitution of (1) into (3) yields 

(4) E(xt) = (ya)+ (yb)pt-l + (1 - y) E(xt_1) , 

and the right hand side makes it clear what the conditional information is 

upon which E(xt) depends. Solution of the difference equation of (4) shows 

that E(xt) depends on the entire history of prices. 

A statistical equation is obtained by adding a disturbance term to each 

side of (4) to get 

(5) xt = (ya)+ (yb)pt-l + (1 - y) E(xt_1) + ut 

* This direct approach for getting (5) from (4) assumes that x is nonstochastic 
t 

and uses the identity xt = E(xt) + ut, where E(ut) = o.1/ 

Let us consider (5) from a rather direct, even empirical, point of 

view. The term E(xt_1) is an indirect measure of the inertia for growing 

the crop and reflects such things as investments in specialized equipment, 

established rotations, existing labor supply and farm organizations, and all 

the factors which tend to create short-run constraints on production. If 

random factors subsumed in ut-l have an effect on production the following 

year, their impact is probably different, maybe even opposite in sign, than 
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the impact of E(x ). A generalization of (5) to accomodate the possible 
t-1 

influence of a lagged disturbance term would be 

which will be recognized as an equation with a moving average error term. 

Suppose that the actual adjustment process is as given by (3), but 

the operational regression equation is derived by using (2). Direct sub­

stitution of (1) into (2) gives 

(SY xt a (ya)+ (yb)pt-l + (1 - y)xt-l + Vt , 

where vt has been added as a disturbance term which emanates from (1) and/or 

(2) having a disturbance term added. But xt-l: E(xt_1) + vt-1 

which substituted into (5)> yields 

Comparison of (6)> with (6) reveals that the use of (5)> will give the same 

results as (6) if and only if e : 1 - y, a highly unlikely event.!±./ 

If the correct adjustment constraint is given by (3), then the use of 

(2) and the implied estimation equation in (5) > results in an "errors in 

variables" model. In Griliches' study of the aggregate U.S. farm supply 

function, he was puzzled by the relative instability of the distributed 

lag model. One of the possible causes suggested by Griliches was (Griliches 

1960, p.291): 

"the fact that measured output is not necessarily equal to 
planned output, due to "weather" and other random effects. 
This last factor would lead to a downward bias in the 
estimate of the coefficient of lagged output since the 
adjustment assumed by the model proceeds from the previously 
"planned" output, of which actual output is not an error­
free measure. The presence of random measurement errors 
in an "independent" variable usually leads to a downward 
bias in its estimated coefficient." 
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The above point is particularly plausible in view of the fact that relatively 

better results were obtained by Griliches for aggregate supply response of 

livestock and livestock products than for crops or total aggregate supply, 

the latter two being more susceptible to random weather factors. A weather 

index was included as an independent variable in the regressions for total 

supply and the crops aggregate, but such an index can only partially accomplish 

the needed adjustment for weather. 

When the variable xt is taken as acreage instead of production, the 

same considerations apply with respect to the random and systematic components 

of the variable, but the nature of the random component is not so obvious. 

Instead of the disturbance u being dominated by variations in crop yields 
t 

and the consequent variation in production, it will be the sum of all those 

influences on acreage which cannot be explicitly incorporated into the acreage 

response equation. Whether a generalization of the error term such as in (6) is 

needed is an empirical question, but it seems very unlikely that the random and 

systematic components of xt-l would have the same effect on xt. 

Nonstochastic Difference Equations 

Let us begin with the Nerlove first order difference equation which 

has been traditionally fitted by least squares, and to simplify things, 

let there be only one exogenous variable: 

The above difference equation is "stochastic" by two criteria, (1) the random 

error ut, and (2) the lagged dependent variable yt-l enters as an explanatory 

variable. The distinction made in this article between stochastic and nonsto-

chastic difference equations is on the basis of whether yt-l or E(y ) enters 
t-] 
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the equation as the predetermined variable. 

If we take expectations of both sides of (7), the result is 

since the usual assumption is made that E(ut) = 0. Technically (8) is the 

conditional expectation of yt, given the observed value of Yt-l" This is 

consistent with the way (7) would be fitted statistically, where Yt-l is 

simply a second independent variable in the regression equation. 

The counterpart of (8) for a first order nonstochastic difference 

equation is 

which defines the unconditional expectation of Yr· If we iterate (9) by 

successive substitutions for E(yt_j), the result is 

a+ Spt-l + A[a + Spt-Z + AE(yt_ 2)] 

a(l +A)+ S(pt-1 + Apt-2) + A2E(yt-2) 

(10) 

a(l +A+ A2 + ... ) + S(p + Apt 2 + A2p 3 +. · · ) 
t-1 - t-

which shows that the unconditional expectation of Yt is dependent only on the 

historical series of the exogenous variable. In contrast, the conditional 

expectation of y depends on both the historical series of the exogenous 
t 

variable• and the dependent variable itself. 

is 

If we truncate the iterations in (10) when AtE(y) appears, the result 
0 

a(l +A+ ... + At-1) + S(pt-1 + Apt-2 + ... + At-lpo) 

+ AtE(yo) 

lf the parameters a, S, and A were known together with E(y ), E(y) could be 
0 t 
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easily calculated fort z 1, 2, .. T, where Tis the sample size. 

V. Statistical Estimation 

Adding a disturbance term to both sides of (9) gives 

(12) y z a+ Sp l + AE(y ) + u 
t t- t-1 t 

since y z 
t 

E(yt) + ut. Under classical assumption on the disturbance ut, 

maximum likelihood estimates of the unknown parameters can be obtained by 

searching over various values of A while treating pt-l + Ap 
t-2 

+ + ,t-1 
• • • A Po 

and At-las independent variables for given A. A least squares linear 

regression can then be fitted with E(y0 ) conceived as an unknown parameter, 

which is obvious from (11). This approach to estimation of the geometrically 

distributed lag on one independent variable was first recognized by Klein, 

but an interpretation of the model as a nonstochastic difference equation 

seems to have been largely overlooked.1/ The method is not much different 

than Nerlove's iterative method (Nerlove 1958); the essential difference 

is that Nerlove's method estimates E(y0 ) by applying the geometric lag to pre-

sample values of the independent variable instead of treating E(y0 ) as a parameter.ii 

Extending (9) to a second order difference equation 

and attempting an explicit solution to get the counterpart of (11) will 

demonstrate the practical difficulties of using a direct search procedure 

analogous to the first order case. Taking E(y0 ) and E(y_1) as given values 

and iterating (13) from t z 1, the general expression for observation t, 

which is the counterpart of (11), will contain a weighted sum of the lagged 

values of the exogenous variable with the weights being functions of A and 

µ , and there will be a term for each E(y0 ) and E(y_1) with a respective 

coefficient involving A,µ, and the observation number t. For given A andµ, 

✓ 
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this explicit solution can be viewed as a linear regression with E(y) 
0 

and E(y_1 ) treated as unknown parameters. Therefore, a direct search 

on A andµ combined with many solutions of a linear regression could be 

used to obtain least squares estimates of the unknown parameters (maximum 

likelihood if normality is assumed on the disturbance term). 

Not only are the computations quite heavy for anything higher than 

a first order equation, but we will probably want to consider general 

specifications on the error term such as serial correlation, moving average, 

or a combination of both. Therefore, a general nonlinear least squares 

algorithm was developed to handle essentially any order of difference equation 

jointly with serial correlation/moving average error terms. 

Error Term with Classical Properties 

We begin with the simplest case of a first order difference equation 

and the classical assumptions on the error term so that the reader can 

readily see the relationship of the method to the direct search procedure. 

Thus our model is given by (12) under the assumption that E(ut) = 0 and 

E(u2) = cr 2 fort= 1, 2, 
t 

In order to apply a nonlinear least squares algorithm, we must be 

able to calculate E(yt), t = 0, 1, 2, ... T - 1 and the partial derivative 

of y with respect to each parameter fort= 1, 2, ... T, where Tis the 
t 

number of data points in the sample (Draper and Smith). Some initial estimate 

of the parameters is assumed; in practice, these estimates will usually be 

calculated by using Yt-l in place of E(yt_1) and fitting a linear regression 

equation. Let the transitory estimates at a particular iteration be denoted 

~ ~ 
by a, S, and A. We take y0 as an estimate of E(y0 ); more will be said about 
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this later. 

At a given iteration, the estimate of E(yt) is given by 

(14) y =a+ Sp l + AY l, t t- t-

which can be calculated recursively with y0 set equal to y0 • Partial deriva­

tives of y with respect to each parameter estimate are also calculated recur­
t 

sively, with the initial condition given by zero since y is taken as a constant. 
0 

Let us illustrate with S, 

ay /as = 0 
0 

- -
ay1 /as po + A(ay /as) = po 0 

- - -
ay2/as = pl + A(ay1/as) 

Since (11) is an explicit solution of the difference equation, 

yt calculated recursively from (14) will be the same as if a, S, and A were 

substituted for the unknown parameters in (11) and E(y) set equal toy. 
0 0 

Likewise, the recursive calculation of the partial derivative for Sin (15) 

will give the same results as if (11) were used. From this observation, it 

is clear that the nonlinear least squares algorithm could just as well be 

applied to the explicit solution of the difference equation and used in place 

of the search procedure except that the above method does not estimate a 

parameter for E(y ). But there is no reason why this additional parameter 
0 

cannot be estimated simultaneously with a, S, and A . Basically all we 

need is another column vector of partial derivatives. Let the unknown 

parameter for E(y0 ) be n; then ayt/an = ~t which is obvious from (11) or 

a recursive calculation such as (15). 
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The use of y as an estimate of E(y) is justified for large samples 
0 0 

by the fact that the least squares estimates are consistent and efficient 

regardless of the value used for E(y) (Dhrymes 197lb.). Nevertheless, a 
0 

rather absurd value such as zero for E(y0 ) could produce poor estimates in 

small samples, but the results of Pesaran suggest that replacing E(y0 ) by y0 

should give good results compared to estimation of E(y 0 ) as a parameter. 

Only Monte Carlo studies can provide additional information on this issue. 

It would seem that there could be some advantage in smoothing a short series 

of the presample values of the dependent variable to get a more representative 

estimate of E(y) than simply y itself, particularly if the dependent 
0 0 

variable has inherently large variation around its mean such as would be 

the case with crop yield measurement. 

One of the main virtues of the nonlinear least squares procedure just 

described is its ease of generalization to essentially any order of nonsto­

chastic difference equation . .Z./ We merely note that the computational burden is 

highly dependent on the number of observations since the iterative calculation 

of partial derivatives for the parameters is rather time consuming, but this 

is certainly no problem with annual time series data frequantly used in 

agricultural supply estimation. Also, the number of parameters has a large 

influence on computational time for two reasons, (1) the usual reason that 

the matrix dimensions become large, and (2) the number of partial derivatives 

which must be calculated is equal to the number of parameters. 

The serious problem of getting initial starting values for the parameters 

when using nonlinear least squares is of minor importance in this case 

because we can use a linear regression with E(y .) replaced by yt . to get 
t-J -J 

these initial estimates. Except in cases where the variance of the residuals 



20 

is quite large such as with crop yield data, we would expect this initial 

linear regression to put us in the neighborhood of the least squares solution. 

The author has encountered little difficulty even with U.S. wheat yield as 

the dependent variable. 

Serially Correlated Error Term 

The linear nonstochastic difference equation is now generalized to 

allow serial correlation in the disturbance term. For discussion purposes 

we use a second order difference equation and second order serial correlation; 

the extension to higher order systems is then obvious. Let there be two 

exogenous variables p 1 and z, then the model is 
t- t 

(16) 

(17) 

y = S1 + S2p l + S3z + A1E(y 1) + A2E(y 2) + u, t t- t t- t- t 

ut = plut-1 + p2ut-2 + Et' 

E(u) = E(E) 
t t 

0, t = 1, 2, . . . T, 

E(E.E.) 
1 J 

0 , i # j 

j, all i and j 

Since (16) can in principle be reduced to an equivalent equation with 

the unobservable variables E(y 1) and E(y 2) replaced by a nonlinear 
t- t-

function of the unknown parameters and exogenous variables, as was illustrated 

for the simpler case of (12), we can treat (16) and (17) as a model where 

E(yt) is nonlinear in the parameters and the disturbance is described by a 

second order serial correlation process. The usual autoregressive trans­

formation can be applied by lagging (16) one and two periods, multiplication 

by pl and p2 respectively, and subtracting the two results from (16) to get 

(lB) yt = Sl(l - pl - p2) + S2(pt-1 - P1Pt-2 - P2Pt-3) 

+ S3(zt - pl2 t-1 - p22 t-2) + Al[E(yt-1) - plE(yt-2) - p2E(yt-3)] 

+ A2[E(yt-2) - plE(yt-3) - p2E(yt-4)] + P1Yt-l + P2Yt-2 + Et' 

t = 3, 4, ••• T • 

•. 

... 

; 

. ·, 
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Since the new residual E has the classical properties, least squares estimates 
t 

of the parameters in (18) will be maximum likelihood if we assume Et is 

normal and treat the presample values y2, y1 , E(y0 ), and E(y_1) as fixed 

from sample to sample,-~/ or estimate E(y0 ) and E(y_1) as additional parameters. 

Based on the results of Pesaran, we would appear to lose very little 

by estimation of E(y0 ) and E(y_1 ) by y0 and y_ 1 . Therefore, we have a 

relatively simple procedure to apply and program for an electronic computer. 

Initial estimates for all parameters except pl and p2 can be obtained with a 

linear regression where Yt-j replaces E(yt-j), and then the residuals from 

that linear regression can be used to get initial estimates of Pl and p2 . 

Since the parameter estimates for a stochastic difference equation are not 

consistent when ordinary least squares is used in the presence of serial 

correlation in the residuals, care should be taken to try several different 

starting positions with respect to pl and p2 . Problems of local minima in the 

residual sum of squares should not be taken lightly in nonlinear estimation. 

Joint Serial Correlation and Moving Average Error 

A general specification of the nth order nonstochastic difference 

equation with an additive random disturbance which follows a joint serial 

correlation/moving average process is 

(19) 

(20) 

80 + 812 1t + 

plut-1 +. 0 E + E 
q t-q t 

where Et has the classic properties outlined under (17). The order of serial 

correlation ism and the moving average is of order q. The signs on the 

moving average parameters, e1 , ... 0 , are negative by the usual convention 
q 

in the time series literature (Box and Jenkins, Nelson). 
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The general autoregressive transformation, illustrated by the derivation 

of (18) from (16) and (17) for second order serial correlation, can be 

applied to (19) and (20). The result is an mth order generalization of (18) 

with respect to the serial correlation parameters, and also, the following 

moving average error terms are added, 

(21) - e E - e E -1 t-1 2 t-2 
• - 0 E 

q t-q 

Thus it is seen that the resulting equation is of the same general form as 

(18) except for the presence of a moving average error term. 

All of the parameters can be estimated simultaneously by nonlinear 

least squares. Note that the terms involving the moving average error in 

(21) constitute a linear difference equation in the {Et} so that the method ex­

plained in the last section for the difference equation in E(yt) can be applied. 

Initial values for E , E 1 , 
0 -

E-q+l must be assumed or else these initial 

values can be treated as additional parameters to be estimated, just like 

E(y 0 ), E(y_{), ... E(y_m+l). If initial values for E0 , ••• E-q+l are 

going to be specified a priori, the value zero is a natural choice since E(Et) = 0. 

This method of handling the presample values of the error term in the estimation 

of parameters in time series models is quite common (Box and Jenkins, Nelson).2./ 

It is important to recognize that E(yt .) in (19) is the unconditional 
-J 

expectation with respect to the dependence structure of the error term. After 

the autoregressive transformation to get (18) from the serial correlation 

specification of (16) and (17), we could define E(yt) as either conditional 

or unconditional with respect to yt-l and yt_ 2 which appear on the right 

hand side of (18). We choose the unconditional specification for E(yt) 

which ignores the information in the data associated with the serially 

correlated disturbance, i.e., E(yt) is taken directly from (16) using E(ut) 0 

., 
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instead of from (18) with yt-l and yt_2 taken as known data. The advantage 

of this somewhat arbitrary choice is explained in the next section. 

VI. Interpretation and Specification of 

the Disturbance Term 

The simplified model of (12) with a first order serially correlated 

disturbance term is used to interpret the nonstochastic difference equation 

model. Since the disturbance term is 

(22) U = pu + E t t-1 t 

we can write (12) as 

and Et obeys the classic assumptions. Now we know from the derivation of 

(10) and (11) that E(yt) is a function of lagged values of the exogenous 

variables, from t back to the first time period included in the sample, and 

E(y0 ). Therefore, E(yt) is strictly exogenous and not affected by the 

stochastic part of the model, i.e., not affected by lagged values of the 

dependent variable. 

However, information about the current level of the dependent variable 

contained in the stochastic part of lagged values of this variable is 

carried by u 1 , the lagged disturbance term. We think of this part of the 
t-

model, lagged values of the disturbance term, as the endogenous component of 

the model. Specification of E(yt) as an unconditional expectation with 

respect to lagged values of the dependent variable, or equivalently lagged 

values of the disturbance term, permits a partitioning of the model into 

exogenous/endogenous components. 

Let us rewrite (23) as 
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(24) E(y) + u =a+ Sp + AE(y 1 ) + put l +Et. 
t t t-1 t- -

This equation is comprised of two components (1) a nonstochastic difference 

equation in the mean of y, and (2) a stochastic difference equation in the 

disturbance term of y. That is to say, (23) is simply the sum of (22) and (9), 

where respective sides of the equations are added together. This interpre­

tation generalizes to higher order difference equations in an obvious way. 

In the context of agricultural supply estimation, the difference equation 

in the residuals permits the model to reflect information contained in historic 

levels of output which cannot be captured by available data on exogenous 

variables. It is the author's opinion that this stochastic component will 

usually be of substantial importance in applications because of data limitations, 

minor specification errors such as nonlinearities in variables, and a 

host of rigidities and constraints in farmer's response which defy direct 

specification. A plausible rule of thumb would be to specify the order 

of serial correlation at least equal to the order of the nonstochastic 

difference equation. 

Let us replace (22) by 

as the specification on the disturbance term, i.e., a first order moving 

average process. It is seen that the relationship in the stochastic part of the 

equation is no longer a difference equation, only one component of the error 

term in t-1 enters on the right hand side of (25). Since the {st} are assumed to 

be independently and identically distributed, the correlation between ut and 

earlier values of the disturbance term ends with ut-l and does not extend 

backwards in time at an exponentially declining magnitude as in the serial 
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correlation model. In a supply response model, (25) implies that only the 

disturbance last year has an impact on this year's output and the disturbance 

in earlier years has no impact whatosever, not even indirectly. The assump­

tion on the dependence structure is less dynamic, in a sense, than is the 

case with serial correlation. 

We might expect the first order moving average specification on the 

disturbance term to be appropriate for an annual crop which is competitive 

with only other annual crops, particularly on a regional as opposed to an 

aggregate basis. A first order difference equation in E(yt) would also 

be quite likely in such an application since changes in crops would often 

be relatively easy. The application to U.S. soybean acreage reported in 

the next section substantiates this conjecture. 

The general problem of specification of the structure of the error 

term is much the same as that encountered in Box-Jenkins type time series 

analysis, but somewhat more complicated because of the additional parameters 

associated with the exogenous variable and the difference equation. Not 

only are the additional parameters present, but they enter nonlinearly 

through the nonstochastic difference equation. One practical approach is 

to specify a fairly high order of serial correlation in the disturbance 

term since an invertible moving average process can be approximated in 

this way, as well as a combined serial correlation/moving average process 

(Nelson 1973 and 1976). Our emphasis in econometrics is frequently on 

the structural equation of the mean of the dependent variable with the 

systematic part of the error term viewed as merely a means to better esti­

mate that structure. Nevertheless, parsimony of parameter numbers is always 

advantageous and frequently improves prediction, so that some exploration 
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of the error structure might be justified. 

VII. Illustrative Empirical Results 

The results reported below are of necessity quite brief because of space 

limitations. The focus is on the relative advantage of nonstochastic 

over stochastic difference equations and the importance of specifying a 

sufficiently high order of difference equation to capture the dynamic structure 

in supply response. 

U.S. Wheat Acreage Response 

Acreage response of U.S. wheat producers provides an excellent illus­

tration of the role of difference equations in measuring dynamic behavior 

and irreversibilites in supply response. 

Rapid structural changes caused by variations in the government programs 

made it necessary to limit the sample period to 1961 - 77. There were not 

enough degrees of freedom to estimate a nonstochastic difference equation 

which requires three additional data points for a third order equation 

compared to the ordinary stochastic difference equation. The extra data 

points are required to handle the presample values E(y ), E(y ), and E(y_ 2), 
0 -1 

either as parameters estimated from the sample or observed values y0 , 

y_ 1 , and y_ 2 before the structural change. If y0 , y_ 1 , and y_ 2 are used 

as estimators of the unkown parameters and these values extend back into 

the time series where the structure has changes, these lagged values are 

likely to be poor estimators and distort all the other parameter estimates. 

When using an ordinary stochastic difference equation, dropping back into 

the series where the structure has changed is not nearly as serious because 

errors in y0 , y_1 , y_ 2 only affect the first three observations in the sample, 

• 
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but with the nonstochastic difference equation, the errors are carried for­

ward to all observations in the sample. 

The recent work of Garst and Miller was used as a starting point 

for the acreage equation. One necessary change was to remove the jointly 

dependent variables associated with acreage diversion and the set-aside 

programs. Garst and Miller entered the acres signed up for these two 

programs as independent variables in the acreage seeded equation, but 

we would expect all three of these acreage variables to be jointly dependent. 

Therefore, additional dummy variables were introduced to replace the 

acres in the diversion and set-aside programs. 

The variables in the acreage equation are: 

x1 domestic allotment (1000 acres) 

FGP 

SP 

p 

no allotment-dummy (takes the value 1 after 1971, 
0.26 in 1971, and zero otherwise -- see Garst and Miller) 

relaxed-allotment-dummy (takes the value 1 during 1965-70, 
0.74 in 1971, and zero otherwise -- see Garst and Miller) 

diversion-dummy (takes the value 1 during 1963-66 and 1969-70, 
otherwise zero) 

deflated feed grain price index (1967 base) 

deflated September price (1967 base) 

deflated season average price (1967 base) 

A= seeded acreage (1000 acres) 

The deflater used is the annual index of prices paid by farmers for produc­

tion items. When deflating price variables for a crop year, the calendar 

year index is a lagged deflator by a few months. 

The season average wheat price is average price received by farmers 

including government subsidies. September price is the market price plus 

the average government subsidy payment per bushel for the crop year in whL<' • 
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September falls, which assumes farmers were able to anticipate the subsidy 

forthcoming for their crop. 

A static model which seemed to give the best all-round performance was 

At= -52,256 + .4365 x1t + 30,648 x2t - 94 x3t 
(5.5) (6.3) (0.1) 

(26) -4,352 x4t + 5,807 FGPt + 7,462 SP + 10,747 P 
(4.2) (1.2) (3.9) t-l (7.9) t-l 

+ 11,945 pt-2 + 10,652 P 
(8.9) (7.8) t- 3 

i 2 = .985, Std. error of estimate= 1190, and 7 degrees of freedom. 

The numbers in parentheses are absolute values of the t-ratios for the 

parmeter estimates above them. No serial correlation of any significance 

was found in the disturbance term. 

The model would appear quite satisfactory except for two aspects, 

the parameter estimates fluctuate a great deal as the sample period is 

(1) 

changed by just an observation or two, and (2) prediction one year beyond 

the sample period is very poor in the latter part of the series when prices 

started to fall. The second deficiency is apparently a manifestation of the 

irreversibility phenomenon in supply response and the first problem of parameter 

instability is a symptom of specification error. 

Difficulty was experienced in "discovery" of a dynamic model because 

a first or second order difference equation showed no improvement over 

the model in (26), but a third order difference equation showed a profound 

improvement. The fitted equation with a first order serial correlation 

specification on the disturbance term is 

At= -60,461 + .5970 xlt+ 37,761 x2 + 272 X -1353 X + 13,144 FGP 
(29.8) (33.9) t (2.1) 3t (5.3) 4t (8.3) t 

(27) + 6047 SP + 691 P + 15,190 Pt_2 + .4502 A l - .5114 A 
(7.7) t-l (2.4) t-l (28.7) (21.5) t- (21.2)t-2 

+ .5619 A 
(26. 3) t- 3 

J 

.. 
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i 2 = .9996, Std. error of estimate= 191, 3 degrees of freedom, 

and the point estimate of the serial correlation parameter is -0.924. The 

numbers in parentheses are approximate t-ratios for the respective 

parameters, approximate because the serial correlation parameter was esti­

mated by nonlinear least squares simultaneously with the linear regression 

coefficients. 

The dynamic model of (27) predicted with excellent accuracy as is 

illustrated in Table 1, and in addition, the parameter estimates changed 

very little as the sample was shortened, even down to zero degrees of 

freedom. For comparison, one-year-ahead predictions from the relatively 

static model of (26) gave errors of -271, 6227, and 8244 thousand acres 

in 1975, 1976, and 1977, respectively. The largest error from the dynamic model 

of (27) was 2560 thousand acres in 1977. The deflated September price 

associated with the 1977 prediction was below any experienced prices in 

the sample used to estimate the models, which makes the prediction unusually 

difficult in any case. 

Elasticities of acreage response for various lengths of run are 

given in Table 2 for both (26) and (27) with price and acreage at their sample 

means. September price was treated as if it were current season average 

price in the calculation of these elasticities. Note that the long-run and 

one-year response elasticities are nearly the same for the two models, but 

the intermediate elasticities diverge considerably, especially the two-year 

response. 



Table 1 

Wheat Acreage Prediction from Third Order Difference Equation 

1961-74 SamEle 1961-75 Sam2le 1961-76 SamEle 
Harvest Seeded Predicted Predicted Predicted 

Year Acreage Acreage Error Acreage Error Acreage Error 
(units in thousand acres) 

1975 75,095 74,827 268 

1976 80,239 81,306 -1067 81,592 -1353 

1977 74,800 74 2 520 280 74,403 397 72,241 2560 

Table 2 

Acreage Response Elasticities for U.S. Wheat* 

Years to respond 1 2 3 4 limit 

Elasticities 
Static model .25 .61 1.01 1.37 1.37 
Dynamic model .20 .32 .77 1.03 1.47 

* Acreage and price at their means during 1961-77. 
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It is conjectured that the substantial negative serial correlation in 

the disturbance term for the dynamic model of (27) emanates from the cultural 

practice of summer-fallow in The Great Plains. An "unusually" large acreage 

in the aggregate this year implies an "unusually" small acreage next year because 

of the need to devote land to summer-fallow, ceteris paribus. This influence 

of summer-fallow on the disturbance term would be particularly important 

in the relatively wetter areas of The Great Plains where summer-fallow is a 

marginal practice. It would appear that the static model of (26) is too 

crude to pick up this behavior of the disturbance term; too many other con­

founding influences which are largely the result of specification errors 

must be relegated to the disturbance term. 

U.S. Soybean Acreage Response 

Soybean acreage response of U.S. farmers is used to make a comparison 

of nonstochastic and stochastic difference equations. The specification of 

the response equation is a generalization of that presented in (Houck, et.al.). 

The main change is that prices are deflated with the index of prices paid 

for production items, and the market price received for soybenas is included 

as a separate variable in addition to the ratio of soybean to corn prices 

used in (Houck, et.al.). Deflation of prices introduces a measure of the 

absolute profitability of growing field crops. The resulting model contains 

a variable for each soybean and corn prices together with the ratio of 

these two prices which serves as an interaction term to measure nonadditivity 

in the net price effects. The separate price for corn is "effective price 

support rate" as defined in (Houck, et. al.) for the years before 1971 and 

is market price lagged one year after 1971. Both soybean and corn market 
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prices were lagged one year. As in (Houck, et.al.), soybean support price 

and effective diversion payment rate for corn in the current crop year were 

also used as independent variables. 

Only summary measures of fit and statistical precision are given to 

contrast the nonstochastic and stocahstic difference equation models. 

The sample period used was 1952-77 and the difference equations are first 

order. Up to third order equations were tried with essentially no improve­

ment in the fit or precision on the key economic variables. Results are 

summarized in Table 3. The average t-ratios are over the three variables: 

(1) lagged soybean price, (2) lagged ratio of soybean price to corn price, 

and (3) "effective price support rate" for corn (lagged corn price after 

1971). 

These results show the clear superiority of the nonstochastic difference 

equation for all three disturbance term specifications. It is noted that 

the t-ratios are only approximately distributed as the t-distribution because of 

nonlinearities in the parameters. All respective parameter estimates in 

the nonstochastic difference equations are essentially the same between the 

second order serial correlation and first order moving average error specifi-

cation, but the precision is quite a little better in the latter. The only 

equation which gave substantially different point .estimates of the parameters 

was the stochastic difference equation under the classical specifications.lo/ 

Adequacy of a first order difference equation suggests that irreversibilities 

in soybean acreage response are relatively simple compared to wheat which 

required a third order equation. Apparently the mathematical expectation 

of acreage last year subsumes all the information in the systematic part 

of the acreage equation which is useful for explaining expected acreage this 



Table 3 

Summary Measures of Fit and Statistical Precision 
for U.S. Soybean Acreage Models 

Model Description 

Classical Error Term 
Nonstochastic Dif. Eq. 
Stochastic Dif. Eq. 

Second Order Serial Correlation 
Nonstochastic Dif. Eq. 
Stochastic Dif. Eq. 

-2 
R 

.9931 

. 9862 

.9944 

.9900 

First Order Moving Average Erro~/ 
Nonstochastic Dif. Eq. • 9968 
Stochastic Dif. Eq. .9934 

Standard Error 
of the Estimate 

(1000 acres) 

1120 
1578 

1005 
1346 

766 
1095 

Average t-ratio on 
Price Variables s/ 

3.84 
2.82 

6.43 
3.85 

7.42 
3.95 

!!:_I Lagged prices of soybeans, corn, and the ratio of soybean to corn price. 

b/ The moving average error parameter had to be constrained to acheive inver­
tibility and was set equal to 0.95 in both equations. 
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year. Recent changes in acreage, or the rate of change, are relatively 

unimportant. 

The first order moving average error term also suggest a relatively 

simple dynamic structure in the stochastic part of the acreage equation since 

the disturbance in year tis correlated with the disturbance only back to 

year t - 1. Since the dependence structure of the disturbance term in a 

crop acreage response equation is probably dominated by aggregate crop ro­

tation constraints, these results suggest a rapid adjustment process in 

the rotations containing soybeans. This should be no surprise for readers 

familiar with farm level production of soybeans. In contrast, the role of 

summer-fallow in wheat rotations in The Great Plains would suggest that 

fluctuations in the disturbance term would require several years for 

dissipation, as characterized by first order serial correlation. 

Short-run price elasticity of acreage response at mean price and acreage 

during 1952-77 was estimated at 0.53 from the nonstochastic difference 

equation with moving everage error; the long-run elasticity implied by the 

model was 4.43. The short and long run cross elasticities with respect to 

lagged corn price were -0.53 and -4.46, respectively, essentially the same 

as own price elasticity except opposite in sign. The partial derivative 

of the acreage response equation with respect to soybean price is essen­

tially the same as that obtained by Kenyon and Evans (identically the same 

for two significant digits); their reported short-run elasticity is higher 

because of the mean price and acreage differences used for the calculations. 

U.S. Wheat Yield Response 

Aggregate yield per seeded acre was used as the dependent variable and 

the independent variables were linear trend, average price received by farmers 

♦ 

J 
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per bushel of wheat (including subsidies), and acreage seeded. A sixth order 

lag was used on wheat price, starting with the current year's price, and 

the prices for years t - 2 and t - 4 were deleted because of confounding 

of the estimators with the other lagged prices.QI The difference equation 

and serial correlation in the disturbance were each specified as third order, 

making a total of 13 independent parameters to estimate. The sample period 

used after accounting for the autoregressive transformation to estimate the 

serial correlation parameters was 1952-77, leaving 13 degrees of freedom. 

Results contrasting the nonstochastic and stochastic difference equations 

are presented in Table 4 for a classical disturbance term as well as third 

order serial correlation. The advantage of the nonstochastic difference 

equation is rather profound in this application because of the inherent 

variablity of crop yeilds; forcing the lagged disturbance term to have the 

same net effect on yield as the lagged expectation of yield poses a serious 

constraint, and this is exactly what the stochastic difference equation 

specification does. On the other hand, the third order nonstochastic 

difference equation, jointly with the same order of serial correlation spec­

ified on the disturbance term, provides a model which involves a pair of 

separate difference equations, one each for the systematic part of the 

yield equation and the random disturbance term. 

Montana Beef Cattle Breeding Stock 

Some very preliminary results from research by Randy Rucker is reported 

to show the apparent potential of nonstochastic difference equations in 

explaining changes in beef breeding herd inventories on January 1 each year. 

The model for Montana used a second order lag on annual hay production and 

average price received for calves in Montana during the last quarter of the 



Table 4 

Summary Measures of Fit and Statistical Precision 
for U.S. Wheat Yield Models 

Model Description 

Classical Error Term 
Nonstochastic Dif. Eq. 
Stochastic Dif. Eq. 

Third Order Serial Correlation 
Nonstochastic Dif. Eq. 
Stochastic Dif. Eq. 

-2 
R 

.9039 

.8662 

. 9631 

.8891 

Standard Error 
of the Estimate 

(bushels/acre) 

1.63 
1.92 

0.87 
1.50 

Average t-ratio on 
Price Variables 

1.93 
0.82 

7.95 
2.62 
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the calendar year; the other explanatory variable is the ratio of choice 

cattle price to corn price in Omaha. Second order difference equations with 

the same order of serial correlation in the distrubance term appeared 

adequate. 

Results are for the sample period 1951-78. The respective measures 

for the nonstochastic and stochastic difference equations are as follows: 

adjusted R-squared, .9967 and.9899; standard error of the estimate (1000 

head), 19.4 and 33.9; average t-ratio on prices, 13.5 and 2.82. 

III. Sunnnary and Conclusions 

The complex dynamic structure of agricultural supply response is best 

approximated by difference equations in the response variables jointly 

with relatively low order finite distributed lags on the exogenous variables. 

A distinction is made between stochastic and nonstochastic difference equations, 

and it is argued that the nonstochastic version is better adapted to measure­

ment of supply response. 

However, the ulitimate dynamic model for supply estimation uses a combin­

ation of stochastic and nonstochastic difference equations by a partitioning 

of response into exogenous and endogenous components. The exogenous component 

is a nonstochastic difference equation in a variable defined as the uncon­

ditional mathematical expectation of the response variable, while the endo­

genous component is a stochastic difference equation in the random disturbance 

term. The latter component is introduced in practice by specifying the dis­

turbance term with a serial correlation structure, or possibly, a moving 

average error structure which does not exactly yield a stochastic difference 

equation for the disturbance term. 

We speak of the dependence structure (serial correlation or moving av ~;:·age 
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error) in the disturbance term as an endogenous component because its infor­

mation content emananates from lagged values of the disturbance term, i.e., 

lagged values of the stochastic component of the supply response variable. 

Consequently, the informational value of the dependence structure of the 

disturbance term is generated internally from lagged values of the dependent 

variable, and is conceptually endogenous in nature within the constructs of 

the model. 

Statistical estimation of parameters in these dynamic models is feasible and 

not particularly expensive or burdensome on the analyst. Nonlinear least 

squares algorithms handle the problem quite easily by recursively calcu-

lating partial derivatives of the response variable with respect to the 

parameters of the equatioJ:11 ; the Marquardt algorithm is recommended parti­

cularly with the improvements developed in Fletcher. Starting values for 

the parameters are easily obtained by replacing lagged expectations of the 

dependent variable by observed lagged values. Under the assumption of 

normality on the disturbance term the nonlinear least squares estimates are 

maximum likelihood. 

So-called problems of irreversibility in supply response are obviated 

by specification of a sufficiently high order difference equation. When 

symptoms of irreversibility are found in an estimated regression equation, 

it is merely a manifestation of specification error associated with the 

dynamic structure of the response equation. 

Summary results are presented for applications to U.S. wheat and 

soybean acreages, U.S. wheat yield, and Montana beef breeding herd inven­

tories. These results verify the logical developments of the paper and 

show the order of magnitude of improvement that can be expected in empirical 

research. Apparent improvements in statistical precision are substantial 

r 

' 
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and would suggest a much improved methodology for statistical estimation 

of supply response from time series data. 

The nonstochastic difference equation models would appear to be espec­

ially vulnerable to confounding influences of seasonal variation in the data. 

For example, a second order nonstochastic difference equation with complex 

roots can be solved explicitly in time as a sinusoidal function of the gen­

eral form A cos(vt + 6). Such a relationship could easily track the periodic 

behavior of seasonal variation instead of measuring the general dynamic 

structure of supply response. Therefore, special care must be exercised to 

remove the influence of seasonal variation from the data before building 

a dynamic supply model (see Sims 1974a). 



... 
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FOOTNOTES 

• l_/ The reader is referred to Griliches' 1967 survey article or (Dhrymes, 

,.· 1971a) for an analysis of various lag distributions. 

J:./ We do not consider problems of jointly dependent variables and simultan-

eous equation systems. 

]_/ If we were to add a disturbance term to (1), making x; stochastic, then 

the expected values in (3) would have to be interpreted as conditional, 

4/ 

21 

In this case, the disturbance term u in (5) would be comprised 
t 

of two components, one emanating from a disturbance added to (1) and the 

second from additional variation in xt caused by such things as weather, 

minor omitted variables, etc. In either specification, the disturbance term 

in (5) should have essentially the same properties, and the choice between 

the two specifications is purely arbitrary . 

In order for this conclusion to hold, we must be careful to define 

E(x ) as the condition al expectation, given xt-l in (5)~ or given 
t 

ut-1 in (6). This point will be clarified in section VI. 

K~menta obtains (9) from (7), where u is specified as ut = Et - AE 
t . t-1 

which emanates from the Koyck transformation, but he seems to use (9) only 

u 
as a pedagogical device to derive (11), see (Kiminta, p.481) 

~/ Some other ideas on ways to deal with the presample data problem and to 

estimate E(y) are explored by Pesaran. 
0 

7/ A disadvantage is that stability constraints on the difference equation are 

difficult to impose as compared to the direct search procedure. One should 

always check for stability after getting the least squares estimates, and in 

the case of serial correlation models which follow, the resulting parameters 



Footnotes (con't) 

should be analyzed to check for a stationary stochastic process. The 

moving average error models discussed later need to be checked for 

invertibility (Nelson 1973). 

'§_/ The two observations lost by the autoregressive transformation can be sal­

vaged by application of a special transformation to each the first 

and second data points (Schmidt). Maximum likelihood estimates for 

this larger sample will not be the same as those obtained by minimizing 

the error sum of squares in (18), but will approach the least squares 

estimates for large samples. The difference between least squares and 

maximum likelihood estimates would appear to be trivial for small samples 

unless the boundary for stability of the serial correlation process is 

approached. One problem with saving the observations lost by the 

autoregressive transformation is that an assumption must be made that 

the stochastic process generating the residuals u has been in operation 
t 

for an extended period of time and is stationary (Theil, footnote p.253). 

In agricultural supply analysis, we cut off the sample at some point 

because we suspect a serious change in structure, consequently, it would 

seem rather dubious to try to salvage a couple of observations in light 

of the tacit assumption required to justify doing so. 

2/ The computer program developed by the author with the able assitance of 

Stuart Townsend sets the presample values of the {st} equal to zero and 

those for the {E(yt)} equal to yt. This method saves some degrees of 

freedom in small samples and the results are asymptotically independent 

of the method used to deal with the presample values. A problem exists in 

using least squares estimation for the moving average error model becaw-,e 

invertibility is not imposed in the estimation precedure and the method only 

approaches maximum likelihood for large samples (Wallis). Therefore, the 

I 

" 
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Footnotes (con't) 

least squares method can encounter problems when the parameters are 

close to the invertibility boundary and sample size is small to moderately 

large. 

10/ Problems associated with lagged values of the dependent variable as explan-

atory variables in regression when there is serial correlation in the 

residuals are well known (Fuller and Martin). Such models are also likely 

to be misleading in that there is a tendency for specification errors to 

be hidden (Sims 1974b, p. 300). 

11/ Additional research is underway to try to find a more acceptable constraint 

on the distributed lag parameters for price. These parameter estimators are 

highly correlated in a systematic way which suggests a confounding caused 

by the role of summer-fallow in the crop rotations of The Great Plains. 

12/ This same approach to parameter estimation could be used when producer expected 

price is defined as a known function (except for unknown parameters) 

of lagged prices. Expected price is simply treated as an unobservable 

variable comparable to the lagged expectation of the dependent 

variable in the nonstochastic difference equation. This approach 

would be particularly useful in the risk models for supply modelling 

which Richard Just has developed (Just 1974a, 1974b, and 1977). 
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