

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

978

UNIVERSITY OF CALIFORNIA

DEC 12 1973

Agricultural Economics Library

"THE REGIONAL CONSEQUENCES OF THE CANADIAN TARIFF STRUCTURE"

by

Tim Hazledine

Economic Council of Canada

正 美加工

CIAMMINI CONDITION OF CT AGRICULTURAL FORMICS

August 3, 1978

Preliminary, and not to be quoted without the author's permission.

I Introduction

The work reported in this paper is drawn from a larger study being undertaken by the author for the Economic Council of Canada under the rubric "The Costs and Benefits of the Canadian Federal Customs Union". In considering some conceivable alternatives to the present Federal system, my focus is limited to predicting their implications for production and trade through changes in the commercial relations (tariff structure) between the regions and with the rest of the world.

The empirical base for this study is a set of data assembled for the year 1974 giving industrially disaggregated production, consumption and trade flows for each of five regions of Canada (Atlantic, Quebec, Ontario, Prairies, British Columbia).

On this database is built a simple model in which changes in economic flows are functions of changes in tariffs, wage rates and exchange rates. The model is used to calculate, for a given change in a region's commercial policy, the adjustments in wages and exchange rates needed to maintain employment and the balance of trade at given levels.

For reasons of space we here consider only one alternative ('Option 1') to the present federal system. In Option 1, it is assumed that each region retains the present Canadian

Within such an approach, the relatively mild form of separation that would retain monetary union and free interregional trade, has no effect.

tariff structure and imposes it on the other regions. While not in itself a very likely event, Option 1 does allow us to assess how regional patterns of economic activity are affected by the Canadian customs union.

In this paper we will examine production and employment effects, but not consumption changes, so that no assessment will be made of the economic welfare consequences of Canada for its constituent regions.

II Changes in Production, Shipments, and Employment

- We disaggregate each region's shipment flows in each industry into five categories:

 - S -- 'regional exports' (goods produced within the region and shipped to other Canadian regions);
 - S_{WX} -- 'foreign exports' (within-region production shipped to other countries);

 - S_{WM} -- 'foreign imports' (shipped into the region from other countries).
- Shipments in each of the domestic categories (S_D , S_{RM} , S_{WM}) are determined by demand, which is a function, for each category, of the prices of all three. Making

use of the definition of elasticity of y with respect to a change in X

$$\varepsilon_{Y}^{X} = \frac{dY}{dX} \cdot \frac{X}{Y}$$

We have

$$\dot{Y} = \frac{dY}{Y} = \varepsilon_Y^X \dot{X}$$
 (1)

Where the 'dot' superscript denotes a variable in rate of change form. Then the formulae for changes in each of the domestic shipment flows (at base period prices) are:

$$S_{D} = \varepsilon_{SD}^{P} P_{D} + \varepsilon_{SD,RM}^{D} P_{RM} + \varepsilon_{SD,WM}^{P} P_{WM}$$
 (2)

$$\dot{S}_{RM} = \varepsilon_{SRM}^{P} \dot{P}_{RM} + \varepsilon_{RM,D}^{P} \dot{P}_{D} + \varepsilon_{SRM,WM}^{P} \dot{P}_{WM}$$
 (3)

$$\dot{S}_{WM} = \varepsilon_{SWM}^{P} \dot{P}_{WM} + \varepsilon_{SWM,D}^{P} \dot{P}_{D} + \varepsilon_{SWM,RM}^{P} \dot{P}_{RM}$$
 (4)

where, for example, ε_{SD}^P is the own-price elasticity of S_D with respect to P_D , and $\varepsilon_{SD,RM}^P$ is the cross-price elasticity of S_D with respect to P_{RM} . In these and subsequent equations, we will ignore any inaccuracies (non-linearities) that may be introduced by using the infinitesimal calculus in situations involving non-infinitesimal changes in variables.

Changes in shipments to other regions -- S_{RX} -- are more complicated. Under Option 1, the price received by a region's shippers (P_{RX}^S -the 'supply price') will fall as the tariff is imposed on interregional trade. We assume that the price fall wipes out the highest-

cost operators according to a 'capacity elasticity' $\epsilon_{QRX}^{p} \text{ defined as the proportion of base-period}$ shipments produced by the operators who would go out of business for the given price change.

As well, there will be a change in the price paid (P_{RX}^{d}) in other regions with the imposition of the tariff, which will affect sales of the surviving capacity. Thus we have

$$\dot{S}_{RX} = \varepsilon_{ORX}^{P} (\dot{P}_{RX}^{S} - \dot{C}_{RX}) + \varepsilon_{SRX}^{P} \dot{P}_{RX}^{d}$$
 (5)

where $\mathbf{C}_{\mathbf{R}\mathbf{X}}$ is the proportional change in costs that may result from adjustments to the tariff change.

Analogously, for foreign shipments

$$\dot{S}_{WX} = \varepsilon_{OWX}^{P} (\dot{P}_{WX} - \dot{C}_{WX}) + \varepsilon_{SWX}^{P} \dot{P}_{WX}$$
 (6)

Changes in employment are calculated from changes in shipments on the assumption that average employment/ shipments ratios of surviving capacity are constant. We have employment elasticity estimates that give employment/shipment ratios for the highest-cost plants, so that the employment effects of any reductions in an industry's capacity can be calculated.

III <u>Elasticities and Changes in Prices and Costs</u>

To solve equations (2) to (6) for each industry, we have to specify values for the parameters (elasticities), and explain how changes in the tariff structure and other policy

adjustments affect prices and costs.

l Elasticities

We have estimates, from various sources, of Canadian export, import, and domestic consumption price elasticities. It will be assumed that these estimates can be used as regional elasticities (implying, in particular, that $\epsilon_{SD}^{P} = \epsilon_{SRM}^{P} = \epsilon_{SRX}^{P}$). Cross-price elasticities are computed according to a heuristic formula

$$\varepsilon_{ij}^{P} = -\varepsilon_{j}^{P} S_{j}/S_{i} \tag{7},$$

where S_j and S_i are the shipments of j and i.

Capacity and employment elasticities come from distribution functions fitted by Statistics Canada for the author to data on individual establishments in each industry. Establishments were ranked by the ratio of costs to value of output and functions fitted to the distribution of costs and of employment against accumulated shipments.

We have assumed that domestic, regional, and foreign sources of supply are differentiated (non-perfect substitutes). This rules out the full-pricing-up-to-the-tariff assumption generally found in studies of effective protection and trade patterns. In a

Note that an implication of full-pricing-up-to-the-tariff is that imposing interregional tariffs would have no effect on prices and thus regional trade.

background study I found empirical support for the differentiated product postulate, and estimated a pricing equation which can be expressed

$$P_{D} = \frac{P_{W}}{r} (\theta T + C)$$
 (8)

where P_D and P_W are the domestic and world prices, r is the exchange rate, θ a markup on the rate of tariff protection, T, and C domestic costs relative to world costs. For the present paper, with given world prices, no changes in tariff rates (apart from extending their coverage), and in which the only source of cost changes will be wage changes, we can derive

$$P_{D} = -r + \alpha W \gamma \tag{9}$$

where α is the share of wages in total costs, w denotes the wage rate, and γ = C/(θ T+C). It was estimated that

$$\theta = 5.135 \times (\text{Herfindahl Index of Concentration})$$
 (10)

Regional imports are priced the same as domestic shipments in the base-period, and at the same price as foreign imports under Option 1. Using (8) and

$$P_{WM} = \frac{P}{r} (1+T) \tag{11}$$

we can get

$$\dot{P}_{RM} = \frac{(1+T)}{(\theta T+C)} (1-r) - 1$$
 (12)

Protection; and Prices, Profits and Productivity in Thirty-Three Canadian Manufacturing Industries', Economic Council of Canada Discussion Paper No.110, April, 1978.

³ Hertindahl Endex = 2(5:15)2, where Sile is the sing of indiating for

Approximating 1/(1+r) by (1-r), and given that

$$P_{WM} = - r (= P_{WX})$$
 (13).

The price paid for regional shipments, P_{RX}^d , changes from the domestic to the world price plus the tariff, so that

$$P_{RX} = \frac{(1+T)}{(\Theta T + C)} - 1 \tag{14}$$

The price received, P_{RX}^{S} , changes from the domestic to the foreign export price, P_{WX} , in domestic currency, so that

$$\dot{P}_{RX}^{S} = \frac{(1-r)}{(\theta T+C)} - 1 \tag{15}$$

The only source of cost change here considered is changes in wage rates, which affect all shipments; we assume equally. Thus

$$\dot{c}_{D} = \dot{c}_{RX} = \dot{c}_{WX} = \dot{w} \qquad (16)$$

where α is the share wages are of total costs, and \mathring{W} is the rate of change of the wage rate.

IV Policy Target Equations

The two policy targets considered here are the balance of external (regional and foreign) trade, and the level of employment. We will see that the equations of Section III imply equations for each of these targets that are linear functions of the region's exchange rate and wage level — two policy instruments. Thus the equations can be simply rearranged to show the levels at which the two instruments must be set to achieve any pair of policy targets.

The balance of trade is defined as:

$$B^{1} = X^{1} - M^{1} + R^{1} \tag{17}$$

where

$$x^{1} = (1 + \dot{P}_{WX} + \dot{S}_{WX})S_{WX}^{0} + (1 + \dot{P}_{RX}^{S} + \dot{S}_{RX})S_{RX}^{0}$$
(18)

$$M^{1} = (1 + \dot{P}_{WM} + \dot{S}_{WM}) S_{WM}^{0} + (1 + \dot{P}_{RM} + \dot{S}_{RM}) S_{RM}^{0}$$
(19)

$$R^{1} = TM^{1} \tag{20}$$

T is the tariff rate on imports and the superscripts 0 and 1 refer to before and after separation. Expanding (17):

$$B^{1} = (1 + \dot{P}_{WX} + \varepsilon_{QWX}^{P} [\dot{P}_{WX} - \dot{C}_{WX}]$$

$$+ \varepsilon_{SWX}^{P} \dot{P}_{WX}) s_{WX}^{0} + (1 + \dot{P}_{RX} + \varepsilon_{QRX}^{P} [\dot{P}_{RX} - \dot{C}_{RX}] + \varepsilon_{SRX}^{P} \dot{P}_{RX}) s_{RX}^{0}$$

$$- (1 - T) (1 + \dot{P}_{WM} + \varepsilon_{SWM}^{P} \dot{P}_{D} + \varepsilon_{SWM}^{P} \dot{P}_{RM}) s_{WM}^{0}$$

$$+ \varepsilon_{SWM}^{P} \dot{P}_{WM} + \varepsilon_{SWM}^{P} \dot{P}_{D} + \varepsilon_{SWM}^{P} \dot{P}_{RM} + \varepsilon_{SRM}^{P} \dot{P}_{RM} + \varepsilon_{SRM}^{P} \dot{P}_{D}$$

$$+ \varepsilon_{SRM,WM}^{P} \dot{P}_{WM}) s_{RM}^{0} \qquad (21)$$

Equation (21) can be rearranged to:

$$B^{1} = S_{WX}^{0} + S_{RX}^{0} - (1 - T)S_{WM}^{0} - (1 - T)S_{RM}^{0}$$
$$+ (1 + \varepsilon_{QWX}^{P} + \varepsilon_{SWX}^{P})\dot{P}_{WX}S_{WX}^{0} - \varepsilon_{QWX}^{P}\dot{C}_{WX}S_{WX}^{0}$$

+
$$(1 + \epsilon_{QRX}^{P})\dot{P}_{RX}^{S} S_{RX}^{0} + \epsilon_{SRX}^{P}\dot{P}_{RX}^{d} S_{RX}^{0}$$

- $\epsilon_{QRX}^{P}\dot{C}_{RX}S_{RX}^{0} - (1 - T)(S_{WM}^{0} + \epsilon_{SWM}^{P}S_{WM}^{0})$
+ $\epsilon_{SRM,WM}^{P} S_{RM}^{0})\dot{P}_{WM}^{P} - (1 - T)(\epsilon_{SWM,D}^{P}S_{WM}^{0} + \epsilon_{SWM,RM}^{P}S_{WM}^{0})\dot{P}_{RM}^{0}$
- $(1 - T)(S_{RM}^{0} + \epsilon_{SRM}^{P}S_{RM}^{0} + \epsilon_{SWM,RM}^{P}S_{WM}^{0})\dot{P}_{RM}^{0}$
= $a_{0} + a_{1}\dot{P}_{WX} - a_{2}\dot{C}_{WX} + a_{3}\dot{P}_{RX}^{S} + a_{4}\dot{P}_{RX}^{d} - a_{5}\dot{C}_{RX}$
- $a_{6}\dot{P}_{WM}^{P} - a_{7}\dot{P}_{D}^{P} - a_{8}\dot{P}_{RM}^{P}$ (22)

where the a's are the coefficients of each of the price and cost change variables.

Making use of the expression for the P's and C's developed in Section III, we can further develop (22) to:

$$B^{1} = a_{0} - a_{1}\dot{r} - a_{2}\alpha\dot{w} + a_{3}\{\frac{(1-\dot{r})}{\theta T+C} - 1\}$$

$$+ a_{4}\{\frac{1+T}{\theta T+C} - 1\} - a_{5}\alpha\dot{w}$$

$$- a_{6}\dot{r} - a_{7}(\alpha\dot{w}\gamma - \dot{r}) - a_{8}\{\frac{1+T}{\theta T+C}(1-\dot{r}) - 1\}$$

$$= a_{0} + \frac{a_{3}}{\theta T+C} - a_{3} + \frac{a_{4}(1+T)}{\theta T+C} - a_{4} - \frac{a_{8}(1+T)}{\theta T+C} + a_{8}$$

$$- (a_{2}\alpha + a_{5}\alpha + a_{7}\alpha\gamma)\dot{w}$$

$$- (a_{1} + \frac{a_{3}}{\theta T+C}) + a_{6} - a_{7} - \frac{a_{8}(1+T)}{\theta T+C})\dot{r}$$
 (23)

For the change in employment, ΔE , we have:

$$\Delta E = \Delta E_D + \Delta E_{WX} + \Delta E_{RX}$$
 (24)

Assuming that each plant can expand output at a constant marginal cost gives:

$$^{\Delta}\mathbf{E}_{\mathbf{D}} = \dot{\mathbf{S}}_{\mathbf{D}} \cdot \mathbf{E}_{\mathbf{D}}^{\mathbf{0}} \tag{25}$$

$$\Delta E_{WX} = \dot{S}_{WX} \cdot E_{WX}^{0}$$
 (26)

For regional exports there is a loss in high-cost capacity. We have an estimate of the (total) employment elasticity with respect to changes in (total) capacity at the high-cost margin, $\epsilon_{\rm E}^{\rm Q}$, and we will assume that this elasticity holds for the portion of capacity involved in interregional shipments. Then

$$\Delta E_{RX} = \varepsilon_{E}^{Q} \dot{Q}_{RX} E_{RX}^{0} + \varepsilon_{SRX}^{P} \dot{P}_{RX}^{d} \delta$$

$$= \varepsilon_{E}^{Q} \varepsilon_{ORX}^{P} (\dot{P}_{RX}^{S} - \dot{C}_{RX}) E_{RX}^{0} + \varepsilon_{SRX}^{P} \dot{P}_{RX}^{d} \delta \qquad (27)$$

making use of (5); where

$$\delta = E_{RX}^{0} (1 + \epsilon_{E}^{Q} \dot{Q}_{RX})$$
 (28)

-- the base-period employment in the capacity that survives imposition of the interregional tariff. The total change in employment is thus found by summing (25), (26), and (27).

From (2) and (6) we have:

$$\Delta E = (\epsilon_{SD}^{P} P_{D} + \epsilon_{SD,RM}^{P} \dot{P}_{RM} + \epsilon_{SD,WM}^{D} \dot{P}_{WM}) E_{D}^{0}$$

$$+ \epsilon_{QWX}^{P} (\dot{P}_{WX} - \dot{C}_{WX}) E_{WX}^{0} + \epsilon_{SWX}^{P} \dot{P}_{WX} E_{WX}^{0}$$

$$+ \epsilon_{E}^{Q} \epsilon_{QRX}^{P} (\dot{P}_{RX}^{S} - \dot{C}_{RX}) E_{RX}^{0}$$

$$+ \epsilon_{SRX}^{P} \dot{P}_{RX}^{d} (1 + \epsilon_{E}^{Q} \epsilon_{QRX}^{P} (\dot{P}_{RX}^{S} - \dot{C}_{RX})) E_{RX}^{0}$$

$$= b_{1} \dot{P}_{D} + b_{2} \dot{P}_{RM} + b_{3} \dot{P}_{WM} + b_{4} \dot{P}_{WX} - b_{5} \dot{C}_{WX}$$

$$+ b_{6} \dot{P}_{PX}^{S} - b_{7} \dot{C}_{PX} + b_{9} \dot{P}_{DY}^{d}$$
(29)

Making use of the expressions in Section III:

$$\Lambda E = -b_{1}r + b_{1}\alpha W\gamma + b_{2}\{\frac{(1+T)}{\theta T+C} (1-r) - 1\}
-b_{3}r - b_{4}\dot{r} - b_{5}\alpha \dot{W} + b_{6}\{\frac{(1-\dot{r})}{\theta T+C} - 1\}
-b_{7}\alpha \dot{W} + b_{8}\{\frac{(1+T)}{(\theta T+C)} - 1\}
= (b_{7} + b_{2})\frac{(1+T)}{(\theta T+C)} + \frac{b_{6}}{\theta T+C} - b_{2} - b_{6} - b_{8}
+ (b_{1}\alpha \gamma - b_{5}\alpha - b_{7}\alpha) \dot{W}
+ (-\frac{b_{2}(1+T)}{(\theta T+C)} - \frac{b_{6}}{\theta T+C} - b_{3} - b_{4}) \dot{r}$$
(30)

Equations (23) and (30) will be calculated for each industry, then aggregated to give regional aggregate balance of trade and change in employment equations.

V. Solving the Policy Equations

The Model is solved using 1974 data with each region's economy disaggregated into twenty-eight sectors (listed in the Appendix). For space reasons, only results for Quebec are shown in this paper. Results for other regions are available on request.

Table 1 shows the 1974 (base-period) data, and Table 2 the parameters, for each industry. Table 3 shows the effects of imposing inter-regional tariffs, with no change in Quebec's exchange rate or money wage. The effect is to increase the deficit on total extra-regional shipments by nearly 40%, and to slightly reduce employment. The main reason for these changes is the fall in shipments to other regions of Canada.

Next we consider possible policy adjustments. Equations (23) and (30) computed for and aggregated across all industries, are:

$$\Delta E = -1.157 \times 10^{4} -1.212 \times 10^{5} \text{W} - 3.320 \times 10^{5} \text{ r}$$
 (32)

(31) and (32) can be re-arranged to get the policy instruments \cdot and \cdot as functions of the targets \mathbf{B}^1 and \mathbf{E} :

$$\dot{r} = -0.179 - 1.228 \times 10^7 \text{ B}^1 + 3.197 \times 10^{-6} \Delta E$$
 (33)

$$\dot{W} = 0.337 + 3.366 \times 10^{-7} B^{1} - 1.401 \times 10^{-5} \Delta E$$
 (34)

(33) and (34) suggest that a target of no-change from 1974, (i.e. $\rm B^1$ = -1.14x106 $^{(4-)}$, $\Delta \rm E$ =0)

could be achieved by a devaluation of Quebec's currency of 3.9%, coupled with a cut of 4.7% in money wages.

To eliminate completely the imbalance of payments, while maintaining 1974 employment levels, would require much larger adjustments - a devaluation of 17.9% and money wage <u>increases</u> of 33.7%. This money wage increase, by increasing the relative price of non-traded goods (mainly services) which are not affected by world prices, reduces the demand for them, and so frees labour to be employed in the export and import-substituting sectors. This suggests relaxing the 1974 employment constraint. With no changes in money wages, a zero balance of payments could be attained through a devaluation of 11.8%, with employment rising by 27,440. Table 4 shows, industry-by-industry, what happens when a mixed policy - 10% devaluation and 5% wage cut - is followed. This results in a fall in the total payments

⁽⁴⁾ The figure of 1.14 \$ billion for the 1974 Quebec deficit on trade was arrived at by adding to net exports the duty paid on the foreign imports.

deficit to \$136 million, and an increase in employment of 27,750.

There is not space to analyse these results in any detail. As a final <u>caveat</u>, it should be noted that both the database and the model are still subject to correction and modifications. As well, it may be repeated that no measurement is made here of the changes in economic <u>welfare</u> associated with the various options and policies. This will be attempted in subsequent work.

Appendix: List of Industries

- 1. Agriculture
- 2. Forestry
- 3. Fishing
- 4. Petroleum and Natural Gas
- 5. Other inedible Crude materials
- 6. Food and beverage manufacturing
- 7. Tobacco and products industries
- 8. Rubber and plastic products
- 9. Leather products
- 10. Textiles
- 11. Knitting mills
- 12. Clothing
- 13. Wood industries
- 14. Furniture and fixtures
- 15. Paper and allied
- 16. Printing, publishing and allied
- 17. Primary metals
- 18. Metal fabricating
- 19. Machinery
- 20. Transportation equipment
- 21. Electrical products
- 22. Non-metallic mineral products
- 23. Petroleum and coal products
- 24. Chemicals and products
- 25. Miscellaneous manufacturing
- 26. Residual manufacturing industries (none in Quebec)
- 27. Construction
- 28. All other industries

	\$61780815	4111450270	THPERTS, MERCEN	1881875,450	EXPERTS. NURLO	EXPURTS, KILL	734. SETF4:N*S
			(S [°]) . нн	(\$) E p	(S) XX	(S) RX	(5)
,	1301295	1915729.	616939		. 0.	n.	te.
;	43.55.27	66.9053	2:55/6-	r.	0.	Q.	ζ.
ί.	146.10	6(15).	11923.	С.	٥.	0.	∵.
	:7.	19 44.28 .	793661.	٠.	C.	0.	•
•	1095773.	421145.	Ð.	(.	672628.	n.	• •
í	4 1946 74	4415541.	1954".	115/311.	201264.	95441?.	32:7351.
`,	37.20.14	245851.	0.	176686.	1461.	207408.	1/ 8.
i	47.0046	684533.	157026.	289461.	34967.	199097.	2.71.5
ų	261 110 -	205741.	20833.	ceeic.	11053.	132616.	1.2122.
10	139 1963	166.616.	.0.	298965.	49578.	526714.	7(13)1.
11	41/205 -	275748 .	c.	40890.	4727.	172619.	2.463.
17	1454759.	836618.	-0.	76766.	56259-	630388.	762843.
12	825911 -	735435.	114568.	115622.	155139.	169547.	5(1225.
14	505113.	390986.	66459.	67315.	19478.	225423.	25.6609.
15	2615715.	1361172.	0.	302735.	966349.	590929.	1058416.
16	791645	721513.	63993.	75005.	29138.	183992 -	5765.5.
17	2485405 -	1606203.	291056.	436351.	715874.	89474: .	879383.
11	152 3520 .	170 1626 .	443770.	380715.	148838.	491605.	8:1393.
15	618751 .	1712106.	1139651.	291579.	149371.	188503.	2775.8.
20	1451156.	4090511.	2939461.	750254.	724785.	325819.	397918.
21	1258689.	1722664.	600954.	645231.	152765.	629424.	474644.
22	645971 .	675106.	40652.	122829.	48440.	105855.	5:11:7.
23	1 72 11 94 .	1387273.	68751.	21397.	72505.	351564.	1207146.
24	1649032 .	1528541.	167494.	581576.	136350.	73 32 23 .	7"8927.
25	515697.	864450.	449746.	233727.	46668.	288052.	253504.
24	1 -	351212.	0.	35121].	0.	0.	0.
27	2621979.	2785847.	163862.	0.	0.	0.	9.
21	17676720.	17373717.	0.	С.	303003-	0.	٥.

TABLE 2: CANADIAN INDUSTRY PARAMETERS

	CAPACITY ELASTICITY	EMPLOYMENT ELASTICITY	DEMESTIC DEMAMO PFICE ELASTICITY	IMPORT DENANC PRICE ELASTICITY	EXPURT DEMAND PRICF FLASTICITY	NET PATE OF PROTECTION	DOMESTIC Markup on World Price
1	C-467	1.000	-0.50	-C.50	-1 -00	0.003	1.305
,	0.467	1.000	-0.50	-0.50	-0.75	-0.003	0.999
3	C.667	1.000	-0.75	-0.50	-1 -00	-0.003	1.393
,	C.667	1.000	-0.75	-0.50	-0.50	0.001	1.601
-1	0.667	1.600	-0.50	-0.25	-1.00	-0.914	0.986
,	1.321	0.951	-0.50	-0.50	-1.00	0.055	
	1.447	1.419	-0.50	-0.50	-1 -CO	0.169	1.025
			-0.75	-1.00	-1.00	0.059	1.260
8	1.042	1.148	-0.75	-1.25	-1.00	0.158	1.321
9	0.567	1-066			-1-00	0.105	1.346
10	1.062	1.156	-0.75	-1.25			1.367
) 1	1.196	0.781	-0.75	-1.25	-1 -00	0.152	1.724
12	1.062	1.062	-0.75	-1.5C	-1.00	0.121	1.516
13	0.706	0.969	-0.75	-1.25	-1 -00	0.039	1.,06
14	0.690	1.041	-1.00	-1.25	-1.00	0.101	1.316
15	0.755	1.248	-0.75	-1.CO	-0.75	0.045	1.513
16	C - 64 1	1.225	-1.00	-1.25	-1.00	0.052	1.009
17	0.702	0.888	-0.50	-C.5C	-0 -75	0.027	1.344
16	C.563	1.065	-0.75	-C.75	-1-00	0.077	1.519
14	0.846	0.999	-1-00	-1.00	-0 -75	0.020	1.705
2 0	1.052	1.066	-0.75	-C.75	-0.75	0.007	1.305
21	1.031	1.144	-0.75	-1.25	-1-00	0.778	1.751
22	C-513	1.174	-0.75	-1.00	-0.75	0.650	1.735
23	3.748	1.033	-0.75	-C.5G	-0 -50	0.081	1.70
24	6-840	0.986	-0.75	-1.00	-0.75	0.048	1.522
25	0.997	1.092	-0.75	-1.00	-1 -00	0.074	1.737
26	C.467	1.006	0.0	0.0	0.0	0.0	1.303
27	C.667	1.000	-1.00	-1.00	1 -00	-0.024	1.500
20	C.667	1.000	-û.75	-0.75	0.50	-0.005	1.000

CAPACITY FRASSICITYS & CHARGE IN EDRESTIC CAPACITY FREM A 1% CHANGE IN PRICE

EMPLOYMENT ELASTICITY: & CHANGE IN EMPLOYMENT THOSE A 1% CHANGE IN SHIPMENTS

DEMISTIC BEHAVE PRICE FLASTICITY? & CHANGE IN CAMADIAN DEMAND FOR SCHESTIC METROL FROM A 1% CHANGE IN DUMESTIC PRICE FLASTICITY? & CHANGE IN CAMADIAN GENARD FOR IMPERTS FROM A 1% CHANGE IN IMPERT FROM FOR

EXPERT BEFORE FOLE CLASSIFIETS & CHARGE IN DEMAND FOR CONSCIAN FARORTS FROM A IN CHARGE IN CONSCIAN EXPORT PRICE HET RATE IT PRESENT FROM CANADIAN FURDER AS A

PETERKTICS ET POSCE

PORESTIC RAPIDAL OF ANKLO PROCESS 1 . 5.1350HEAFTMOAHL RET PALE OF PROTECTION

TABLE 3: QUIETO RESULTS, PUBLICAL INC. A

CON PULICY ADJUSTMENTS!

	PERCENTACE CHARGE IN REGILARE SHIP-	PERCEGIAGE CHAPSE IN REGIENAL	RET EXTER- REGIONAL SHIFMENIS.	MET INTO THE RECTURNE SHIPMENIS.	1974 1974	CANEGAM PA
	MERIS CAPACITY	SHIPMINIS	1974	merang r		
ı	0.0	-0.001669	-616434.089	-6:64 - 7	112000.	112000.
2	6.4003	0.001633	-215526.185	-235526.180	16115.	16115.
3	0.0	0.0194.15	-51922.794	-51572.194	2400.	24 39 .
4	-6.000	40.000698	-193601.70#	-193/01.306	7	<i>1</i> .
5	C. (10	0.009568	472628 . 1 16	6726.5.136	25139.	25139.
ι	-0.433	-0.046995	-15/13-084	-11 0294.148	56841.	· 4.44 P .
1	-6.294	-0.262307	7/163.187	-20191-145	5P1P.	4261.
3	-0.022	-0.049385	-212484.744	-231551.648	13822.	1 2597 -
ς	- 6.043	-0.123170	560.25.317	31280.016	12564.	11904.
10	-0.067	-0.094014	21/127.284	192557.961	390-4.	27512.
11	-0.028	-0.122132	136455.342	110667.011	16026.	15349.
12	-0.010	-0.092723	615441.443	549356.926	67139.	r45. 1.
13	-0.005	-0.028534	90476.569	82676.474	24171.	.4698.
14	-[.(07	-0.096735	114126.570	86756.315	20081.	19785.
15	-0.010	-0.033529	1254543.364	1224258.343	45367.	45036.
16	-C.CC6	-0.048786	70131.590	58616.503	25269.	:5034.
17	-0.030	-0.021286	E83202.193	831545.259	30767.	36032.
18	-0.018	-0.060649	-164106.263	-237312.584	3916;.	38634.
15	-0.004	-0.019144	-1093755.271	-1101372.544	17467.	17446.
20	- C . CO 8	-0.007378	-2639655.409	-2643911.028	30006.	29947.
21	-0.050	-0.069054	-463445.368	-548044.926	33692.	32498.
2.2	-0.033	-0.042225	-9184.982	-18145.460	15545.	15441.
23	-0.114	-0.121877	333920 .735	268CC4.748	3254.	3171.
24	-0.01 R	-0.037205	120500.739	71254.044	26779.	26646.
25	-0.036	-0.062445	-346753.371	-383242.052	18578.	17969.
26	C-0	0.0	-351211.000	-351211.000	9.	0.
27	C.C	0.023521	-163868.031	-163868.031	47383.	47783.
28	c. 0	0.003750	303002.714	303002.714	1682391.	1682391.

TOTAL HET EXPORTS, 1974 = -2180747 (\$000)
TOTAL NET EXPORTS, UPITION 1 = -3018242 (\$000)
TOTAL EMPLOYMENT, 1974 = 2427000
TOTAL EMPLOYMENT, UPITION 1 = 2414936

TABLE 4: QUEBEC RESULTS, MODEL 1.1 (\$000)

(AITER 10% DEVALUATION, 5% CUT IN MONEY WACE RATE)

	PERCENTAGE CHANGE IN	PERCENTAGE CHANGE IN	NET FXTRA- REGIOSAL	NET EXTRA- REGIONAL	EKPLØYKENT 1974	EMPLOYMENT OF HON1
	REGIDAAL SHIP- MENTS CAPACITY	REGICNAL SHIPMENTS	SHIFHENTS, 1974	SHIPMENTS. OPTION 1		
1	C.088	0.086396	- (18434.089	-649355.794	112000.	112000.
2	0.076	0.077102	-235526.18	-247?02.489	16115.	16115.
3	C.100	C.119425	-51922.794	-54518.934	2400.	2400.
4	0.068	0.067504	- 793601 . 308	-8332P1.373	77.	12.
5	0.087	0.086920	£7262R.136	724000.573	25139.	24776.
6	0.104	0.089875	-15713.494	48266.405	56843.	56710.
7	-C.174	-0.138013	72163.387	13119.266	5618.	5003.
٤	0.091	0.063605	-212484.744	-226664.270	13822.	14476.
9	C.C63	-0.016957	56625.317	50781.265	12564.	12520.
10	0.044	0.018177	27/327.384	284092.553	39644.	78524.
11	C.104	C.010617	136455.342	146994.503	16926.	15749.
12	C-110	0.027721	£15941.443	688418.937	67139.	66781.
13	0.973	0.050193	90476.069	99591.297	24771.	24573.
14	0.071	-0.018558	114126.570	113539.774	20051.	19660.
15	0.012	0.048061	1254543.364	1411510.687	45267.	45273.
16	C.C69	0.025997	70131.599	75 152.108	25259.	24484.
17	0-644	0.052156	£63202.193	980135.960	30267.	30-67.
18	0.088	0.045558	-104106.263	-210621-12?	39161.	39708.
15	C.091	0.075461	-1093355.271	-1125710.412	17467.	16785.
20	C-104	0.164352	-2639655.409	-2679729.074	39066.	31686.
21	C.UO	0.041219	-463995.388	-501720.883	33692.	35/90.
22	0.066	0.056664	-9164.982	-6669.764	15545.	15/35.
23	(-(54	0.045/29	273420.735	364776.815	3254.	3133.
24	C.C71	0.051655	120506.739	153454.717	26779.	27'89.
25	(.(73	0.046269	- 248753.371	-3'1192.642	18574.	13561.
36	C - 96.7	0.066667	-351211.000	-366132.100	÷.	9,
21	6.074	0.097924	-165868.031	-163*(6.0.1	47383.	47 63.
26	0.090	C.093524	303602.714	375654.550	1632191.	1686422.

	\$61780815	CONSUPPRICE	TRPERTS, bedulo	1460875,550 0 05 1	EXPERTS.NURLD G (S.) MX	EXPURTS,KUL O ES 3 RX	TOM . SEEPHER'S
			. ин			" "	•
	1301295	1915729.	616434.		G.	n.	tr.
;	43357	66.4053	235576.	ť.	o.	0.	ζ.
· .	142.00	6(15).	11923.	с.	a.	٥.	ζ.
		793628	793601.	٠.	c.	0.	•
•	1095773.	421145	0.	(.	672678.	n.	
	4 946 14	4415541	19540.	115/311.	201264.	95447?.	32 - 735 1 .
٠,	3/2014	245851	0.	176666.	1461.	207408-	1/ 8.
	47.046.	684553	157026.	28546).	34967.	199097.	2.71.5.
1.	266370.	205741	20843.	ceelt.	11053.	137016.	1.2182.
10	139 1947	1666610.	-0.	291965.	49578.	526714.	7/13/1.
	41/200	275745 .	c.	40890.	4727.	177619.	2:46: .
11	1454759	834618.	-0.	76766.	56259.	636788.	762843.
17	825911.	735435.	114568.	115622.	155139.	169547.	5: 1225 .
1:		390986.	66457.	67315.	19478.	228423.	250600.
14	505113.	1361172.	0.	302725.	966349-	590929.	10584 6 .
15	2615715.	721513.	63993.	79005.	29138.	183992.	5765.5.
14	791665.	1606203.	291056.	436357.	715874.	894741.	87938 1.
17	2485405.	170/626.	443770.	300715.	148838.	491605.	8=1393.
11	1523520.	1712106.	1139651.	291579.	149371.	1885u3.	2775.8.
1.5	614751 •	4090811.	2939961.	750254.	724785.	325819.	307918.
20	1451156.		600954.	645231.	152765.	629424.	4746:4.
2.1	1358689.	1727614.	40652.	122825.	48440.	105855.	5:11:7.
2.2	655971.	675106.	68751.	21397.	72505.	351564.	1207146.
2.3	1 121194 -	1387273.		581576.	136350.	733223.	7"8927.
24	1649032 -	1528531.	167494. 449746.	233727.	46668.	288052.	2535.4.
25	515697.	864450.		351211.	0.	0.	0.
20	1-	351212.	0.	351211.	g.	Õ.	õ.
21	2621979.	2785847.	163862.	0.	303003-	o.	0.
2,t	17676720.	17373717.	0.	٠.	30,500,5	•	

TABLE 2: CANADIAN INDUSTRY PARAMETERS

	CAPACITY ELASTICITY	EMPLOYMENT ELASTICITY	DEMESTIC DEMAMO PRICE	IMPORT Demarc Price	EXPERT DEMAND PRICE	NET PATE OF PROTECTION	DOMESTIC MARKUP ON WORLD PRICE
			ELASTICITY	ELASTICITY	FLASTICITY		
			A • • •	-C.50	-1.00	0.003	
i	C.667 C.667	1.000	-0.50 -0.50	-C.5C	-0.75	-0.003	1.000
2		1.000	-0.75	-0.50	-1.00	-0.003	0.999
3	C.667	1.000	-0.75	-0.50	-0.50	0.001	1.000
4	C.467		-0.75	-0.25	-1.00	-0.914	1.601
5	0.667	1.600		-0.25 -0.50	-1.00	0.655	0.986
	1.321	0.951	-0.50	-0.50	-1 -CO	0.169	1.025
	1.447	1.419	-0.50	-1.00	-1.00	0.059	1.260
B	1.G42 0.567	1.148	-0.75 -0.75	-1.25	-1-00	0.059	1.021
9		1.066		-1.25	-1.00		1.346
10	1.062	1.156	-0.75			0.105	1.367
) 1	1.196	0.981	-0.75	-1.25	-1 -00	0.152	1.724
12	1.06?	1.062	-0.75	-1.5C	-1.00	0.121	1.310
13	0.706	0.969	-0.75	-1.25	-1.00	0.039	1.506
14	0.690	1.041	-1.00	-1.25	-1.00	0.101	1.316
15	0.755	1.248	-0.75	-1.CO	-0.75	0.045	1.513
16	C - 64 1	1.225	-1.00	-1.25	-1.00	0.052	1.009
1	0.702	C - 88 E	-0.50	-C.5C	-0.75	0.027	1.:44
16	C.963	1.065	-0.75	-C.75	-1.00	0.077	1.719
1 4	U.846	0.999	-1.00	-1.00	-0.75	0.020	1.005
20	1.052	1.066	-0.75	-C.75	-0.75	0.007	1.30%
21	1.031	1.144	-0.75	-1.25	-1-00	0.778	1.751
27	C-913	1.174	-0.75	-1.CC	-0.75	0.650	1.735
23	1.748	1.033	-0.75	-0.50	-0 -50	0.081	1.170
24	0.840	0.986	-0.75	-1.00	-0.75	0.048	1.522
25	0.997	1-092	-0.75	-1.00	-1 -00	0.074	1.737
24	C.667	1.000	0.0	σ.ε	0.0	0.0	1.305
27	0.667	1.000	-1.00	-1.00	1 -00	-0.024	1.400
2.5	C.667	1.000	-û.75	-0.75	0.50	-0.005	1.000

CAPACITY FRASSICETYS & CHARGE IN EDITISTIC CAPACITY FREM A 1% CHANGE IN PRICE

EMPLOYMENT FLASTICITY: & CHANGE IN EMPLOYMENT FAOR A 18 CHANGE IN SHIPMENTS

DEMESTIC DEHAUT PRICE FLASTICITYS & CHANGE IN CAMADIAN DEMAID FOR DEMESTIC PRICE DEMOND FROM A 18 CHANGE IN DURESTIC PRICE.

IMPERT DEMAID CRICE FLASTICITYS & CHANGE IN CAMADIAN CERARD FOR IMPERTS FROM A 18 CHANGE IN IMPERT PRICE.

EXPERC DEPOSIT. FROM CAMADIAN CAMADIAN FOR COMPUTAN FARDERS FROM A 18 CHANGE IN CAMADIAN CAM

PETTARTITUAL PRICE

PONESTIC MATERIAL OF MIKEO PAICES IN A SERBONE AFTWOMENT PARE OF PROTECTION

CON PERIOR ADJUSTMENTS!

	PARCENTACE CHARGE IN REGIETAL SHIP- MERIS CAPACITY	PERCENTAGE CHAPPET IN REGIENAL SHIPMENTS	RET EXTENS REGIENAL SHIFMENIS, 1974	MET INTO THE RECTURNE SHIPMERIS. INTICKE	EMPLOYAF',T 1976	EMPLOMM AT ET FIGHT
ı	0. e	-0.001669	-618634.089	-6: Na PS	1120.00.	112000.
	6.4003	0.001643	-215526,180	-235526.180	16115.	16115.
	C • 6	C -0194.15	-51922.794	-51522.194	2400.	.44 311 .
4	-0.000	-0.00069#	- 193601.208	-193/01.306	7	72.
- 5	C. (:10	6.009568	£7:7:28.136	6726.5.136	25139.	25139.
Ŀ	-0.633	-0.046905	-15/13-084	984.498011-	56846.	£ 1.44 P .
•	-0194	101:35.0-	7/163.387	-2019: 145	5218.	441.
3	-0.022	-0.049385	-212484.744	-231955.648	13822.	1 .597.
•	- 6.043	-0.123170	56(25.217	31285.816	12564.	11904.
10	-0.067	-0.094074	21/127.284	192557.967	190-4.	17510.
2.1	-0.028	-0.122132	136655.342	110007.011	16076.	15349.
12	-0.010	-0.092723	(1544).443	549356.526	67139.	c45.7.
13	-0.005	-0.028534	904 / : 509	82676.474	24771.	:4698.
14	-0.007	-0.096735	114126.570	86796.315	20051.	19795.
15	-0.010	-0.033529	1254543.364	1224258.343	45367.	45006.
16	373. 3 -	-0.048786	70131.590	58010.503	25289.	:5034.
17	-0.630	-0.021286	EB3202.193	831545.159	30267.	30032.
18	-0.018	-0.060649	-164106.263	-237212.584	39161.	38634.
15	-0.004	-0.019144	-1693755.271	-1101372.544	17467.	17446.
20	-0.008	-0.007378	-2 639655 .409	-2643911.028	30006.	29947.
21	-6.050	-0.069054	-463995.368	-548^44.92C	33692.	32498.
22	-6.633	-0.042225	-9184.962	-18145.400	15545.	15441.
23	-0.114	-0.121877	333920.735	268CC4.748	3254.	3171.
24	-C.018	-0-037205	120500.739	71254.044	26719.	26646.
25	-0.036	-0.062445	-346753.371	-383242.052	18578.	17989.
26	C-0	0.0	-351211.000	-351211.000	0.	0.
27	c.c	0.023521	-163668.031	-163868.031	47383.	47783.
2.8	C.0	0.003750	303002.714	303002.714	1682391.	1682391.

TOTAL HET EXPORTS, 1974 = -2180747 (\$000)
TOTAL HET EXPORTS, UPITER 1 = -3018242 (\$000)
TOTAL EMPLOYMENT, 1974 = 2427000
TOTAL EMPLOYMENT, UPITER 1 = 2414926

TABLE 4: QUEBEC RESULTS, MODEL 1.1 (\$000)

CALTER 10% DEVALUATION. 5% CUT IN MOREY WACE RATE!

	PERCENTAGE CHANGE IN REGIONAL SHIP- MENTS CAPACITY	PERCENTAGE CHANGE IN REGICNAL SHIPMENTS	NET FXTRA- PEG 10NAL SHIPMENTS: 1974	NET EXTRA- REGIONAL SHIPMENTS, OPTION 1	EMPLOYMENT 1974	EMPLOYMENT OF 11 GN1
1	C.088	0.066346	-(18434.089	-649355.794	112000.	112000.
2	0.076	0.077102	-235526.18	-247302.489	16115.	16115.
3	C.100	C.119425	-51922.794	-54518.934	2400-	2400 -
4	0.068	0.067504	- 793601 - 308	-833281.373	72.	72.
5	0.087	0.086920	£72628.136	724000.573	25139.	24776.
6	0.104	0.089875	-15713.484	48266.405	56840.	56710.
7	-C.174	-C.138010	72163.387	13119.266	5618.	5003.
٤	0.091	0.063605	-212484.744	-226664.270	13822.	14476.
9	0.063	-C.016951	56625-317	50781.265	12564.	12520.
10	0.644	C.018177	271327.384	284092.553	39044.	38524.
11	C.104	0.010617	136455.342	146994.503	16926.	15749.
12	C-110	C.027721	6 15941.443	688418.937	67139.	66781.
13	0.973	0.050193	90476.069	99551.247	24771.	24573.
14	0.071	-0.018558	114126.570	113539.774	20051.	19660.
15	C.612	0.048061	1254543.364	1411510.687	45:67.	45.73.
16	C.C69	0.025997	70131.599	75 192.108	25259.	24484.
17	C-(44	0.052156	£83202.193	980135.960	30267.	30-67.
18	0.088	0.045558	-104106.263	-210621-127	39161.	39708.
15	C.(91	0.075461	-1093355.271	-1125710.412	17467.	16785.
20	C.104	0.164352	-2639655.409	-2699929.034	30066.	31686.
21	C.460	0.041219	-463995.38A	-50172C.883	33692.	35190.
22	0.066	6.056664	-9164.982	-6869.704	15545.	15/35.
23	(.(54	0.045729	373420.735	364776.815	3754.	5:53.
24	C.C71	0.051655	120506.739	153454.717	26779.	27'69.
25	(.(73	0-046269	-348753.371	-371192.642	18578.	19561.
3.6	C - 94- 2	0.066661	-351211.000	-366332.100	ü.	9.
21	0.074	0.097977	-165868.031	-1634(6.051	47183.	47 81.
2 ₺	6.090	C.093524	303062.714	375654.550	1632 191.	1656422.