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The paper relates a subindustry's optimum organizational adjustment 

to decreased ~aw product output and new storage technol~gy. The research 

-product specifies Existing processing plants to be activated and associated 

spatial and temporal raw product flows from production· locations to 'acti­

vated plants, at alternative sites. A solution was obtained by employing 

an out-of-kilter algorithm and implicit enumeration. 

Key words: cotton gins, operational ·efficiency, plant location methodology 
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Optimizing 1Subindustry Short-run Marketing Organization: 
·A Large Scale Mathematical Programming Problem· · 

Stephen W. Fuller, Paul H. Randolph and Darwin Klingman* 

· The problem, of estimating efficient market areas or marketing subin­

dustry organization has received extensive treatment in the Jowmo.1.. 

Early models developed and applied by French, Henry and Seagraves, Olson, 

and Williamson treated space as continuous and assumed that a region had 
. . .• . . . 

. uniform average density of supply or demand. The solution specified most 

efficient plant size and corresponding demand or supply market area. A 

later model development by Stollsteimer was capab_le of including preselected 

potential plant locations and di~crete supply or ~emand lo~ations. The 

obtained solution communicated least cost number, size and location of 

marketing facilities. Recent extensions of the basic Stollsteimer model 

by Polopolus, Chern and Polopolus, Ladd and Halvorson, and Warrack and 

· Fletcher have enabled the applied researcher to incorporate additional 

realism, test sensitivity of solution and increase size of plant location 

problem. King and Logan applied a transshipment model to a plant location 

pro_blem where materials move from a supply point through another i-ntermediate 

supply point and on to the demaind point or even through an intermediate 

demand point. The basic transshipment model has been further developed 

by Hurt and Tramel, and Leath and Martin. Kloth and Blakely and Candler,· 

Snyder and Faught ·have used separable prograrrming and concave programming, 

respectively, t6 accomodate those situations where nonlinear long-run total 

·processing costs exist. 
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This paper reports a problem and solution procedure which partially 

· pa~all~ls 0pr~vioui plant location analysis; however, several unique elements 

exist. The encountered location problem involved a determination of a pro­

cessing.industry's optimal short-run organizational adjustment to a region's 

decreased raw. product output and ·new storage technology. The objective was 
. 

to specify existing processing facilities to be activated or deactivated 

and spatial and temporal flows of raw product to plants and/or storage to 

minimize total cost of assembly, storage and processing. Generally, the 

· plant location models employed by applied economists resolve optimal long­

run industry solutions which focus on trade-offs between regional transpor-

. tation cost and plant cost that is associated with increasing subindustry 

plant numbers. However, this problem required consideration of these addi­

tional complications: l_) short.:~un plant costs w~ich wer.-e· unique to each. 

plant, 2) availability of increasing plant output through use of higher 

cost overtime labor, 3) opportunity to activate or deactivate a plant on 

a_weekly rather than a seasonal basis and 4) availability of storing raw 

product to extend the processing season. ;;:._O:f'.;··-
. Most plant location solution procedures were unable to ~--=:~e=~ 

incorporate necessa;y r~alism ~ if appropriate, generally required -;:~"{fvw-· . 
extensive computer time to obtain a solution. Therefore, the problem was 

formulated as a network •problem and solved with the use of an out-of-kilter 

algorithm and implicit enumeration. The problem and solution procedure 

' should be of general interest to applied economists involved in locational 

analysis . . 
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Problem Situation 

Cotton production in several Southwestern irrigated Valleys has decreased 

by 50 percent. during the past decade, while regional processing· (ginning) 

capacity has remained relatively unchanged. Innovations in seed cotton 

storage have provided the opportunity to extend assembly and processing 

activities beyond the harvesting period. Because of the nature of variable 

plant costs and the feasibility of seed cotton storage, it was hypothesized 

that total system costs could be decreased by reducing the number of existing 

·plants which operate. 

Each plant has a unique, convex, piecewise linear variable cost function 

with a positive intercept (Figure 1)._ The positive intercept value represents 

a one-time annual fixed charge for a~tiv_ating and operating a plant and 

includes costs of salaried management personnel and an electrical connection 

charge~ The electrical connection charge purchases enough electricity to 

process that volume associated with the juncture of.the linear segments con­

stituting the plant cost function, i.e., Vj. Consequently, marginal costs 
. . 

'up to V. are less than those beyond v .. 
. J . J 

Plants have the opportunity to increase weekly and/or seasonal output 

by employing crews on a,n overtime shift. Thus, there are two levels of 

variable labor cost associated with each plant -- one for the regular and 

another for overtime. If the capacity of .the regular shift is exceeded, 

all of the additional cotton must be processed at the more expensive overtime 

rate. However, prudent use of overtime may be cost saving if it avoids the 

necessity of activating an additional plant. 

Additional cost trade-offs exist betw~en number of operating pl~nts 

and assembly cost, that is, as plants are activated, average assembly distance 
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Figure 1. Tofal Variable Plant Cost Exclusive of Variable Labor Cost 
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and assembly cost decrease. In addition, reducing regional processing 

capacity below peak week demands necessitates the storage of seed cotton 

and this adds an additional cost to the system. However, seed cotton 

storage may be preferable to activating an additional plant. 

The solution to the problem must specify regional ginning industry 

organization which minimizes aggregated costs of assembly, storage and 

processing. In pjrticular, the solution must designate existing plants 

to be activated each week, quantity of seed cotton to be field stored and 

· the quantity of seed cotton to be shipped from specific production locations 

to activated plants. 

Principal factors bearing on the optimal solution are: 

1} shipping cost between production locations and activated plants 

2} seed cotton storage cost 

3} maximum seed cotton storage period 

4} kurtosis of distribution relating harvested production per time 

period 

5) plant cost structure 

6} overtime labor cost 

7) regular and overtime plant processing capacity 

Mathematical Representation of the Problem 

C6nsider m production locations and n existing plants at alternative 

sites. The weekly quantities of raw product at each origin are known and 
• 

are denoted as P1k; ..• , Pmk' where k = 1, ... , W denotes the week. Also, 

the weekly capacities of each of the exist~ng plants are known and are denoted 
I I II II 

as K1, ... , Kn for output processed during regular hours and K1, ... , K0 for 
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output processed during overtime hours. Thus, marginal labor cost at each 

plant are given by,. 

rj = marginal labor cost incurred during regular hours, and 

rj = marginai labor cost incurred during overtime hours. 

Additional plant costs are given by, 

.FJ = annual fixed charge associated with activating plant j, 
. s 
cj = marginal cost exclusive of labor associated with plant j's 

initial linear cost segment, 
II 

c. = marginal cost exclusive of labor associated with plant j's . . . -.· J 

second linear cost segment . 

. where, the juncture point between the two segments is at V j for pl ant j and 
I II c3. < C •• 

·. J 

The cost of placing the raw product into storage and then_later removing 

. it represents a one-time cost which is independent of the production origin, 

the existing plant and the time period. This unit storage cost is represented 

by S. Assembly cost between each pair of origins and existing plant sites is 
. , 

proportional to the quantity shipped and theidistance between the origin and 

plant site. The unit assembly cost from origin i to plant site j is given 

by tij" • The objective of the problem is to select a configurationR of the 

n exist_ing ·plants such that the aggr_egated cost of assembly, storage and pro­

cessing is minimized, all raw material is processed and existing plant 

capacities are not exceeded .. 

' To obtain a mathematical model of this process, the following decision 

variables are defined: 

y. = a binary variable where yJ. = 1 when plant j is activated and . J 

y. = 0 when plant j remains closed. 
J 
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Xijk = quantity of ra~ product available ~tproduction origin i . 
. · ·. . 

and processed at plant j in week k during regular hours. 
It •. ' ' . . ., 

Xijk =.- quantity of ra~ product available at· production origin i 

and processed at plant j in week· k during overtime hours. 
,. ' 

5ijkl = quantity of raw product stored at production origin i in.·· 

week k and then processed at plant j during regular hours 

in week£. . 

. s;jkl = quantity of raw product stored at production origin i iri 

week k and then ~rocessed a·t plant j during overtime hours . 

· ,'in week l. 

. From these decision variables -it is po·ssible to determine, 

Xf = quantity of r~w prod~ct processed at plant j. • 

· In addition, it is useful to include th~ following function, 

In !' a standard indicator or characteristic function where 10 

(statement) = l if the statement is true and I (statement)= 0 - . . n .. 

= 0 if the statement is false. 

Then, the mathematical JP~t of the problem i~ as follows: 

Detennine the values of the decision variables such that; 

·. z = t Yj [Fj + cj~j!N (xty j) + (cjVj+cj (xj-vj)) IN (xrj) 

+ r~(f(± x;jk +f f s;jkt))+ r;(~Jt<jk +f_i:s;jkl)). 
· i=l k=l l=l k=l -i=l k=l - l.;,l k=l · 

m W. £. 

+ sL·L L( s~jkl + s~jk.e.} 
.. i=l £.=l k=l . ·.. . •. 

+ i:(<if ( x;jk + x;jk) + t_· .1 z:k~-· l(s;jkl + s;jkl.ml 
_i_=l k=l ~ ~-

is minimized.subject to. the conditions: 
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1. All raw product which is available at production location i in week k 

is ejther processed or stored .. 

i=l, ... ,m 
k=l, ..• ,W 
l = k+ 1, • • • , W. 

2a. Plant's weekly processing capacity associated wi_th regular processing 

hours is not exceeded. For plant j in week l, this is 

m . . l-1 

L {x~jl .+ L s~jkl,) ~ K~ 
i=l k=l 

j=l, ••• ,N 
l=l, ,W 

·. • 2b. Plant's ~eekl_y processing capacity associated with overtime processing 

ho~rs is not exceeded. For plant j in week l, this is 

m( t-1 
11 II II. j = 1, , N L xijt +L \jkt) ~ Kj 

... 
l = 1, , w 

i=l . k=l .. 

3. To determine total seasonal output for plant j, X.' 
J 

the following is 

specified. 

m W W l 

L (L( x~jk + <jk) +LL( s~jkt + s~jkt)) 
i=l k=l l=l k=l _ 

= X. 
J 

j = 1, ... , n 

4. Restrictions on the decision variables are 
I II . I II . 

Xijk ~ o, xijk ~ o, sijkl ~ o, sijkl ~ o and yj = o or l 

.The mathematical model is, of course, nonlinear. However, it can be 

made linear by choosing an arbitrary subset, R, of the plants. Th~ 

assigning the' values yj = 1 if j<R and yj = 0 if j4R,~e.1r~ becomes ~~ 
one of linear programming for each possible subset of the plants. 

. rt~k 
Although the problem may •4formulated as one of linear programming, 

·. ~e~a-1·. dif.ficulties existJ )(1.) For t.he problem under consideration, the 
ll~-~~ . 

. ~~ ~ .~ ~·\ ...J ~ ~ f--:, ~ 
'M~ ~ ~ ~. -~, ~ ~ '' . 
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· linear pr~grammfog model is so large that no available simplex code can be 

~sed to find a solution directly. It ~- be possible to apply a doubie 

decomposition _procedure, but the computational_ c~nverge~e ~~position _ 

is known to be slow and in this case appeared impossible. 2) Even if there 
. . 

-: were- a simplex code that could solve the problem~ the solution would be for 
' 

o~ly a gi-ven sunset of plants. · This implies that for every possible subset 

· of· plants, a linear programming_ problem would be solved and then finally 
. ) . 

that subset whose linear programming solution is a minimum over all subsets, 

_ will.be the optimal configuration. Unfortunately, the.total number of· 
~ . . . 

possible configurations can be large, namely _2N-L For N = 20 there is _a 

total of 1,048;575 linear programming problems to be solved. If it were · 

optimistically assumed that the linear programming solution would require 
. .. . . ·.• . . . ·, 

one minute per subset,_then a total of three years would-be required to · 

examine all poss·i bl e subsets, assuming the computer operated 24 hours per 

. · ··• < · . ~Fortunately, thes~~ficultie~ndependent. ·. After careful exam-

~· .... ination of the problem structure,~ was fonnulated as a network flow 

problem, -so that a network algorithm could be used to find the best solution 

for any subset of plants. Then, using implicit enumeration, the number of 

subsets that are actually examined is reduced from the. 2N...;1 value. 

/, Network Formulation 

Anetwork consists of a number of nodes or junction points, each Joined 

to some or all•of the others by arcs. Nodes are diagrammed as circles whi.le 
.. 

arcs are indicated. by lines or line segments-. The crossing of· arcs does not 

·indicate intersection of corresponding arcs· except at nodes. The unidirec-, . 

_ ·tfonalf_low of raw product is represented by an arrow placed·on an arc. To 
_· .. 
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exhibit the structure of the cost flow network, a prototype of the original 

problem is formulated in Fig. 2 and 3. The enclosed area in Fig. 2 is en-. 

larged in Fig. 3 . 

. The prototype problem involves four production origins, which produces 
\ . 

raw product for three consecutive weeks and four·- ·existing plants which may 

operate these three weeks plus an additional three weeks. Level iAk nodes 

represent ra~ product origin i ·in week k, while Pik depicts raw product 

produce·d at origin i in week k. In the example problem, a total of 12 pro­

duction nodes are represented. In addition, associated with each production 
. . . . . -

origin node are arcs which connect it with the jBlnodes, where jBl repre-
_ · .. . . ~~---

. sents available processing at plant j during we~k_l. ,.(Arcs connecting the 
. . . . - .· ~MP- .. -

iAk level nodes with the jBl level ~~des~ unit transportation cost 

. between origin and existing plant location· (t;j) and a one-time unit storage_ 

cost (S), if the value oft associated with the jBl level node is greater 

than the value of k associated with the iAk level node. All raw product 

· prbcessed in each plant during the six weeks is then channeled through a 

single node, called the weekly master node for that plant. The jC level 

node corresponds to the weekly master node for plant j. Two arcs connect 

each jBl level node with the jC level no~ arc represents plant j's 

regula~ weekly~:Y~ ~oc~·ated .B:@Jinal labor cost (1<) while . . J J 
. II 

the second arc depicts overtime weekly4capacity {Kj) and its associated 
II 

higher marginal labor cost (r.). To accomodate the two levels of~arginal 
• J_ . . . 

cost associated with the two linear segments comprising each plant 1 s cost 

function, D 1 evef nodes are introduced. Two arcs connect each C and D 1 evel 
. ,~ ~. ~ . ,, "(tba.~~ -~ ~ 

node. One arc N!:pi ~tt'it. marginal cost (t.) and4volume (V.) ~cHtid .wi~ 
. .J J ~ 

.. the j•th plant's first linear cost segment, while the second arc riepr-eseots 
IS fw-



Figure 2. Network Diagram of Prototype Problem 



Figure 3. Enlarged Network 
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marg~n_al cost (Cj) associated with the second linear cost segment. Finally, 

all flow .is channeled through a single node, node E, which acts as a sink 

for the entire raw product produ~tion. 

Each arc in Fig. 3 has marginal cost enclosed in a box (unless there is 

no cost), and a lower and upper bound. On some arcs only an upper bound is_ 

given, implying:a lower bound of zero. Other arcs have no bounds as stated, 

implying only that the fl ow should be nonnegative and, thus, c~ be infinite. 

Finall.)', some arcs have a single number without an inequality.,4,For these 

· :·arcs the lower and upper bounds are both equal to that number. The network 

problem then can be stated as follows: For a given set of plants find the 

least cost flow of goods through ·the network such that the flow does not 

violate the flow bounds on each arc .. 

Network Algorithm 

In general, a network can be considered as a set of nodes connected by 

a set of arcs. Let X denote the set of nodes and Ethe set of arcs. If i 

and j are nodes in X that are connected by an arc from i to j, then the arc 

can be represented by the ordered pair (i ,j) which is in E. 

The most general network flow problem may be stated as follows: Suppose 
. . . I\~ . .. 
that for each arc (i,jJ in E there are two ffl0alolu.!"'that limit flow -- a lower 

. bound denoted by Lij ~ 0 and an upperbound or capacity denoted by· Kij, where 

L;. < K ... Also supp6se on each arc there is defined a unit flow cost denoted lJ - lJ. · 
. by Cij' The qbjective of the network flow problem is to find a least cost 

.·. flow- that satisfi~s the~e bounds. This is referred to as the 

circulation problem. 
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I 
·Note that for each arc (i ,j) the triplet [L1.J .. ' K .. .&C .. ] is defined . 

. lJJ lJ 

The flow in each arc is denoted X ... Obviously, 
. . . . . . . . lJ 

L..<X .. '<K .• 
· lJ - lJ - lJ 

for all (i,j}EE. At each node there must exist a flow balance, that is, the 
. . 

flow into the node must equal the flow out. For each node iEX this flow 

balance is represented by 

. _· ~x .. - ~ x .. = o 
. . ~ Jl ~ lJ 

j 

The objective is to find a set of flows, X .. , which satisfies the flow 
. lJ 

bounds and the flow balance and which minimizes total flow cost. 

Thus, 

· ~- ~-- C •• X •• = -:7. (min.) 6 ~ lJ lJ L 
i j 

the problem is essentially one of linear programming. Because of the 
. . 

structure of this linear programming problem it is possible to construct a 

special computational algorithm that is much more efficient•th.an the simplex . 

. The appropriate algorithm for this problem is called the out-of-kilter 

algorithm (Ford and Fulkerson). 

For each node equation define the dual variables u1, iEX. Then multiply 

each node equation by this dual yariable, add over .all the equations and sub­

tract this total from the cost function. This gives what Dantzig calls the 
. i 

relative cost function. The coefficients 'of the relative cost function are 

easily seen to be: 

* ' C .. = C .. + U. - U 
lJ lJ l j 

If the flow Xij is feasible and optimal, then c;j = 0 implies 

L .. < x .. < K .. , c~. < O implies x .. = K .. and C~. > O implies X .. = L. .. For 
lJ - · lJ - lJ lJ lJ lJ lJ • lJ l J 

. non-optimal but feasible flow, each arc can be classified in one of the following 

classes. 
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* 
.. 

a~ cij > O and x .. = L.. 
.. · .. ··.. . lJ l_J 

. b. * < 0 and X •• K •. ciJ = lJ lJ 
'* and L.. ·c. C •• =·o i( X •• :$ K •• 

lJ .· lJ lJ lJ 
* * > 0 and X •• L.. a. cij > lJ lJ 
* b . . * cij ;c· 0 and x .. 

lJ 
< K •• 

. lJ-
These five classes ·.may be illustrated by Fig. 4. The-arcs that are in classes . I . 

·a~·b or c satisfy the criterion for optimality and are thus 11 in-kilter. 11 If 
. ' . . . 

all arcs are· in-kilter, the solution is optimal . 

. But if the solution is not optimal, then_there are some arcs in class.a*· 
. .· *' . . . . ·, . 
·-or b. These arcs are 11out-of-kilter. 11 The objective is to bring all out-of-

. _kilter arcs into kilter. AThis may he accomplis~ed in two ways: l) change 
. . .·. . * . . . * . . 

· the flow so that an a- arc becomes an a arc or a b-- arc becomes a b..arc, .or 

2J chang:e the dual variables so that' an a":.-arc or a. b*- arc becomes a c~arc. 
. . 

·•The details of this procedure are given in Ford and Fulkerson and need not 

be repeated here, especially since there are available several out-of-kilter ~ 

codes •. 

The network formulation solves the same -problem ·as the linear pre>gra~ing· 
, . 14Sll'l~ ·-+At ·s'fl~ ~ ~ 

model11 namely, given a subset of plants what is the least cost flow of goods 

from production origins to the p~ant sites?· After the solution is obtained 

the total of the fixed charges for the pl ants in th~ subset must be added to. 

·. the total cost flow to obtain the ffnal subset cost. However, this still 
.. 

leaves the problem of finding which of the many subsets to be used. For . . 

this a process of implicit enumeration was employed . 

. · .. Selection of the Subsets 

· Al~hough the network formulation will yield an optimal solution for a 

;given subset of plants,· it does not indicate which subset is best. The · 
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problem of finding which of the _many plant combinati9ns will be least cost 

is a .problem of combinatorial mathematics. Numerous problems have been 

classed a·s combinatorial mathematics problems, but few have a clos~d fonn 

solutio~ method. Instead, an enumeration procedure is often used. · But as 

. noted earlier-, a complete enumeration of all comb·inations is not possible. 

However, to find an optimal combination in a reasonable time, it may be 1 

possible to organiZ\ the comput~tions in such a way that only a fraction of 
· 11.lO... 

· the combinations,1be examined. If the problem lends itself to development of 

· binary variables, i.e., if a plant is either turned-on or turned-off, then, 

· · .. a technique referred to as implicit enumeration is applicable. - The procedure 

does not deal with a specific mathematical framework nor does Jt follow the 

conventional iterative idea of an optimization process. Implicit enumeration 

is nothing more than an organized method of complete enumeration in which 

only a fraction of the total number of combinations are examined. 

The basic id~a of implicit enumeration is to picture the construction pf 

a solution to an optimization problem as a search over a l_ogic tree composed 

of branches and nodes. The computation then proceeds along a branch until 

it becomes .obvious that continued progress along a given branch is unnecessary 

because the best possible payoff on that branch can be shown to be inferior 

· to payoffs already observed on other-branches. In this way, only partial 

examination of most branches need be considered, thus, significantly reducing 

number of combinations considered. Techniques for implicit enumeration vary 

' widely from problem to problem; however, some of the basic principles are· 

indicated by Garfinkel and Nemhauser. 
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Emp_irical Analysis 

. An _extensive resource commitment was necessary to develop data inputs 

to carry-out _the locational analysis. A 139 X 14 matrix relating production, 

production locations and distance to existing gin sites was developed from 

aerial ~hotos and Agricultural Stabilization and .Conservation Service data . . 
' . . , . . 

The most expensive data gathering activity was that associated with estimating 

individual plant cost functions. Work measurement data was collected on each 

plant by use of the work sampling technique. Input-output parameters for 

energy, plant downtime and capacity utilization characteristics and other 

technical aspects of production effecting variable cost was obtained by 

monitoring plants throughout the 1973 season (Fuller and Washburn). Storage 

system input-output parameters were determined by monitoring ~rn area which 

·. had adopted this -technology. Once production functions had been specifi~d, 

· the cost functions were determined by applying factor prices. 

The considered ginning subindustry is located along an irrigated segment 
. . 

of the Ri-0 Grande Valley which extends for approximately 90 miles and varies 

from .25 to 7 miles in width. Currently fourteen gins operate in this area 

and annually process an average of 3071 bales per plant. Typically, harvest 

extends over a 16 week period with approximately 50 percent of the area output 

bei.ng col 1 ected in four consecutive peak harvesting weeks. 

The optimum solution involved activation of six plants each processing 

a seasonal ave~age of 7167 bales, during a sixteen week period. The selected 
. 

plants were evenly dispersed throughout the production region with some 

mo~ification for l ocationa 1 pulls associated with more intensive production 

areas.· Approximately seven percent of the region 1 s cotton production was 

processed during overtime shifts, whereas, slightly over ten ·percent of the 
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production entered storage. Utilization of overtime shifts and storage 

occurred ~uring peak harvesting weeks, when harvested output exceeded pro­

cessing capacity • 

As previously noted, cost trade-offs exist between plant costs and 

shipping, storage and overtime labor costs. That is, as additional plants. 

are activated,' system .. plant- cost increas(6because of each plant/ fixed 

charge,_while shipping, storage and overtime labor cost decrease •. Concep-

tionally, the least cost solution is characterized by a point where marginal 

savings in shipping, storage and overtime labor cost is equal to the marginal 

· loss in plant cost (with respect to activating additional plants at their 

associated l~cat~ons). The least cos~ solution involved deact~vation of · · 

numerous plants, utilization of overtime and storage to increase the selected 

plants annual volume and a tendency to select a plant locational pattern. 

which minimized shipping cost. One of the principal factors effecting plant 

selection was the substantial variable cost differences among plants. The 

selected plants experienced variable costs which were 13 percent less than 

·the non-selected plant group and accordingly per hour processing capacity" 

averaged 18 percent greater than the other plant group. Because of the 

inverse relationship between plant capacity and variable cost, storage cost 

was also favorably effected by selecting larger than average plant sizes • 
. . . ·. , ~e_.. . 
· · · Even though ~aAb fixed charges must have strongly influenced optimal 

. . ~ 

plant numbers,~ varied little between plants and accordingly had an 

insignificant hffect on plant selection. The solution revealed thit use of 

Some storage and labor overtime was costa-preferable to opening additional 

P_lants; howe_ver, the storage constraint vw.s not reached. With addi tiona 1 
. ·:x~k~¼~~~ 

. storagel se.i;e12al l!lOt e-'piants ~ve been deactivated since 22 processing 

, +o 
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weeks were available and no plant operated in excess of 16 _,weeks. Clearly, 

cost savi~g ·{fixed charges} associated with further reductions in plaht. 

numbers failed to offset increases in storage, shipping and overtime labor 

costs. The effect of shipping costs on the,.optimal solution evidenced 

itself ~n the fo}lowing manner: .1) A locational configuratioli which closely 

. approximates one predicted by a priori· reasoning; that.is, plants situated 

so as to minimize shipping cost. 2) With the optimal solution, excess plant 

·. capacity exists during a portion of the season, thus the opportunity to 

route cotto~ to the more efficient p_lants. Since this never occurred,. it 

implies that these processi.ng cost savings failed to offset shipping costs 

associated with the additional shipping distances . 

. Because of the ginning 1ndustry's excess plant capacity it was not 

. necessary to operate all area plants to meet peak harvest demands. Therefore, 

some ~eduction in operating plant numbers and associated plant cost was 

available without introduction of storage. , Thus, to identify system cost 

savings directly attributable to new storage technology, a solution was 

obtained which disallowed this activity. This was accomplished by removing 

.the storage arcs between A and B level nodes (Figure 2,3). 

The least cost solution, disallowing storage, involved the operation 

of ~ine _plants each processing a seas.anal average of 4778_ bales. Approx­

·1mately, seven percent of the regions cotton production was pr_ocessed during 

overtime shifts and .was activated in those weeks when harvested output 

exceeded processing capacity. Characteristics of the non-storage optimal 

solution was similar to the optimal solution ·permitting storage. All' six of 

the plants included in the optimal soluti6n involving storage also appeared 

. Jn the o~tim~l non~stor~ge solution, thus the tendency to s~lect the higher 
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capacity plants which experienced lower variable cost. As exhibited by the 

least .cos~ solution which included storage, principal system cost savings 

are ~vailable through reducing plant numbers (fixed charges} and maximizing 

volume per pl~nt. 

Cl_osing unneeded plants was. predicted to reduce system cost by 13.5 

percent, while the introduction of storage decreased cbsts an additional 

2.5 percent (Table 1). Based on savings attributable to storage, 6.5 years 

would b_e re'quired to capture capital investment necessary. for implementation 

of the new storage technology. 

Surrmary 

As applied economistsendeavor to include additional realism into their 

locational analysis, conventional solution techniques become limiting and 

unaccomodating. The encountered- plant location problem involved consideration 

of several dimensions not conveniently incorpprated into existing location 

models. The problem required consideration of 1) short-run costs unique to 

each plant but whose general form was non-linear with an annual fixed charge, 

2} two levels of v~riable labor cost associated with regular and overtime work 

shift£ and -each shifts weekly output constraint, 3) storage c~st and 4) shipping 

cost between each pair of production locations and plant sites. The least 

cost solution identified 1) plants to be activated at alternative sites and 

associated quantity processed per week, 2) quantity processed at each plant -. 
in regular and overtime labor shifts per week and 3) quantity to be stored 

per week. 

To attain the desired degree of realism, the problem was formulated as a 

network problem and solved with a network code. The network fonnulation permits 



Table 1. · Contrasted Characteristics of Conventional 
.Short-run IndOstry Organization 

Organization 

Conventional 

Optimum with­
out storage 

· Optimum with 
Storage 

Number·of 
Operated 

Plants 

14 

9 

6 

Plant 
Cost.!/ 

,, ($) 

528122 

,, 445065 

393018 

Storage 
Cost 

($) 

0 

0 

26786 

. 
and Optimum 

Total 
Assembly System 

Cost Cost 

($). ($) 

69167 597289 

71326 516391 

80970 500775 

llooes not include plant fixed cost, bagging and ties, office supplies and 
utilities, advertising and travel •. 
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the applied economist·to incorporate additional realism into his analysis 

and recent developments in network code algorithms allow investigation of 

larger problems. -

.. 
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