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Richard Howitt - Stochastic C.Ontrol Symposium Notes 

CONTROL MOnEL SPECIFICATION AND SOLUTION TECHNIQUES 

Introduction 

The early interest and development of dynamic programming in agricultural 

economics has not been generally adopted by ·the mainstream of quantitative 

ar,ricultural economics, as have the essentially static optimal policy analysis 

techniques of linear and quadratic prog_ramming, econometric nrultiplier 

analysis, and suboptimal simulation. Why? The m:>st likely answer is that 

the problems with the most quantitative appeal during this decade were simply 

not solvable by the numerical search dynamic progranming techniques currently 

available. The emphasis in quantitative modeling was, and still is, on nnJlti

variable systems and their stochastic properties. Except for cases of 

remarkable aggregation or simple physical sys tens, the aptly named "curse of 

dinensionality" prevented the achievement of solutions even under deter

ministic assumptions. 

My main point today is that for the class of passive adaptive nndels and 

policies, the curse, althoup,h not entirely lifted has lost most o.f its effect 

due to alternative specifications and advances in solution techniques. 

Currently, the specification of the control problem which an applied researcher 

would face in deriving optimal policy actions from a conventionally estimated 

simultaneous system is readily solvable as an L.Q.G. problem. Given the 

solution complexities and.inconclusive advantages of the active adaptive 

models surveyed by Rausser, the.n_assive adaptive model~ appear to be a 
•••-... - •--•---., .. ._,.___.,_,,H --~- ,-,., .. .._ __ _ 

satisfactory compromise between TllD<lel conmlexity and the truly optinal 

solution. Indeed, from the results of the illustrative analytical example 

presented by Rausser in section 3, one can conclude that investment in 
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passive experimental information is more fruitful where there is either 

considerable doubt or ,Pre_~_ise knowledr,e about the controlled system. Under 

these conditions, the passive adaptive approach to control will have a 

similar performance as the active closed loop approaches. 

Initially, I will discuss two classes of solution techniques and some 

examples of their use with which I am familiar. However, ·as cautionary 

points, there are two significant problem areas that economists will encounter 
-------"T--•'•-••lce'-"•...-..,---• ... ,._..,.,,,..---.__.--,. • '«'•:• ~-.•.-••••~ ~,.,_, ---.•• ,.~ro-•-•----,. -••"'"''~....,..., 

First, the need for in-. -
equalitx c_c,~:!E!aints on states and controls for all initial trajectory models 

--.J~~--- _.,..._______ .... ·-

and some tracking models. Second, the problems encountered in specifying 

objective and penalty functions as cardinal measures of benefits. 

I. Two Solution Approaches. 

Polak in a survey of computational methods in optimal control [1973] 

characterized all methods utilizing Bellman's "principle of optimality" to 

separate the control horizon as Feedback Solutions. Referring to the conven

tional form of dynamic prograumdng with its search over the numerical solutions 

at feasible modes, he concludes:· 

"In spite of these attempts to make dynamic prograumdng a practical 

algorithm, it cannot be considered to be particularly successful in 

this role, The main use of dynamic programming has been as a 

conceptual tool, particularly, before the Pontryagin maximum principle 

was well unders too<l" [ 19 7 3] • 

This unfortunate dimensionality result can be traced to the prevalent 

analytical intractability of the ~artial difference equation of the inter

temporal rate of change of the objective functional (Bellman's equation 

;)J* -at> . 
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Linear Ouadratic Gaussian Solutions 

Application of Pontryagin's maximum principle to the dynamic progralll!ling 

two point boundary value problem by Kalm.~n [1960] and others yields an analytic 

solution to the dynamic progratTl'ting problem under specific conditions. The 

analytic solution is obtained by the introduction of the costate or "cost to 

go" matrix; which determines the functional relationship between the v~ctor 

of states and costates at any time. Under given conditions, the costate matrix 

is expressed as the solution to a discrete matrix Riccati equation that can 

be solved recursively backwards. 

As the name suggests 

!1) the control system must be linear 

,(2) the error terms on the equation of motion must have Gaussian (Normal) 

\ 
~ distributions. 

This control problem specification has many Convenient Properties 

i. It is not restricted by dinensionality, but only by the computer's 

matrix inversion capacity, and is cheap to run average sized 

econometric ioodels and planning horizons. 

ii. It has a convenient economic structure for T11any models in that 

(a) the linear and Gaussian form arl'! __ ~h!? w-a)'_ ii} wh!_~l!, the E~cl~'l:1~-E?d 

forms of Many simultaneous equation mdels are calculated. 

(b) the quadratic form of objective function has had defendable 

justification as a direct measure of well being (Takayama and 

Judge [1964], r-.oreaux, Manne, et al. [1973]). As an approxima

tion to more conplex objective functions, the quadratic form 

has been shown to be comnaratively robust (Zellner and Giesel 

[1970]). 

iii. The L.Q.G. approach yields analytical solutions for both the 

Certainty Equivalent case :mcl the St:ttionary Stochastic Case 

(Chow [1Q75] and Aoki [1976]). 
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iv. Under the certainty equivalent specification, the separation principle 

(Joseph and Tou [1961]) allows independent solution of the optimal 

policy solution and the optimal conditional state estit'lator. This 

estimator is often obtained from a Kalman filter which, symmetrically, 

is also solved by the L.Q.G. procedure. 

v. Where the system equations estimated are not linear, the L.Q.G. 

solution can be used to track a target trajectory with linearized 

equations of ootion. The quadratic .form of the criterion function 

minimizes the errors due to the linearization (Athans [1972]). 

vi. The optinal solution yields the decision relevant (Marschak [1971]) 

value of passive information on the initial condition estimates, 

the equations of motion and the observation error, if specified. 

Practical Use 

Use of the L.Q.G. approach at Davis in the last four years has been over 

initial trajectory, tracking and filtering problems (Dixon [1976], Howitt 

[1975]) applied to optimal natural resource policy and externality policy. The 

routines have been written to be problem specific using subroutines from a 

system developed by White and Lee [1971]. A more general L.Q.G. package is 

under development. 

A model much used in published stochastic control results is by Chow 

[1967]. The L.Q.G. routine on a Burrou~hs 6700 ran this nine equation model 

for a ten period horizon usinr, 5.0 seconds C.P.U. at $1-30 for the certainty 
I • 

equivalent solution, and 6.0 seconds C.P.U. at $1-65 for the stationary 

stochastic solution. 
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Nonlinear Progral'll!Tling Solutions to Control Problems 

The deterministic nonlinear control problem can be formulated as a non

linear programming problem by stacking the equations of motion for each time 

period as constraints (Pindyk [1973]). Understandably this leads a constraint 

set of large dimensionality. A more elegant and efficient approach is 

advanced by Canon, Cullum, and Polak [1970], Aoki [1971], Fair [1974] and 

others, which solve the nonlinear difference equations for their transition 

,..._ . 

':, ~ matrix. A state vector of endogenous variables at any time period (t) can thus 
~~~~'-, 

\_ be expressed as a function of the initial state conditions and the trajectory of 

controls to (t). Since the equation of motion constraints are now nested via 

the transition matrix in the objective function, the optimal solution, 

assuming no state or control constraints, may be obtained by unconstrained 

gradient approaches. 

Algorithms 

The optimization literature abounds with alternative numerical nonlinear 

optimization routines. My practical experience has so far been limited to the 

variable lfetric Davidon Fletcher Powell algorithm that combines some of the 

advantages of both gradient and Newton-Raphson approaches (National Bureau of 

,Economic ·Research [1976]). Comparisons by Fflir [1974] indicate the D.F.P. 

algorithm to have good properties for large models. 

Tests with the same Chow [1967) model on the D.F.P. algorithm on an 

IBM 360 solve the certainty equivalent solution in 11 seconds C.P.U. and 

$ 2. 50 • 

Convenient Properties 

(i) Direct numerical solution of nonlinear problems without 1inearization. 

(ii) Derivation of the initial tarr,et trajectory for the stochastic 

linearized L.Q.r.. nethod to track. 
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(iii) The ability to _efficiently handle inequality constraints on states 

and controls through additional constraints iri the Pindyk formula

tion, or penalty functions on the Canon Cullum Polak formulation. 

(iv) An open loop feedback approach to the solution of the stochastic 

nonlinear problem has been sugp,ested by Fair [1974]. Essentially 

it involves recomputation of a deterministic nonlinear control 

problem at each time period using updated certainty equivalent 

estimates. 

Constraints on State and Control Variables 

In the scramble to adopt alluring control t00dels from engineering 

applications to macroeconomic, and more recently microecono~ic problems, the 

thorny problem of inequality constraints on state and control variables has 

largely been ignored. The two text books currently published on economic 

applications of stochastic control Chow [1975] and Aoki [1976] make only 

passing reference to the problem. An explanation of this gap in development, 

may be that the analytic stochastic models originally developed in the 

engineering literature were largely tracking models. The objective functions 

on these roodels were usually concerned only with the ter1'1i.nal trajectory state 

such as a moon landing or obliteration of a city by a missile (Polak [1973]). 

For these problems, fluctuations of the trajectory are of no consequence if 

the final state is achieved in a minimum time or with minimum fuel. Initial 

applications of this type of model to rnacroe~onomic teaching problems in

variably operated without the need for control or state constraints. Micro

econOt!lic applications, however, routinely require derivation of the optimal 

initial trajectory of states; and for market pricing, inventory, 
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investment and resource allocation decisions this initial trajectory is 

the crux of the control problem. 

The microeconomist is faced with three principle types of inequality 

constraints. 

(a) Feasible region constraints on states and controls, the simplest 

example being nonnegativity constraints on market prices and production 

quantities. 

(b) Institutional constraints on the range over which policy control 

actions can be set. }bst control specifications define the controls as 

belonging to a feasible set, but rarely say how the solution procedure 

keeps them there. 

(c) Constraints on the range of state variable values over which 

the linear state system estimates are viable approximations. l-1here 

the equations of nX>tion are linearized by a Taylor series expansion, 

significant departures of the state variable values from those about 

which the system was linearized will lead to errors. For equations of 

motion that are directly estimated in the linear form, the estimates 

may be only valid over a given range. 

The problem in imposing state or control constraints on the class 

of analytical feedback solution techniques, is that global optima in 

controls are needed to solve for the optimal cost to go relation. Using 

Bellman's principle, these relations have to be solved backwards in 

time or "offline;" while the values of states or controls which may or 

my not be bindin~, are solved forwards in real tine. Clearly, if a 

state or control becomes constrained, when the marginal value of 

previous actions is predicated on an unconstrained solution, the prior 
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decisions are suboptimal. To paraphrase -."If I had known that gas 

rationing was going to be imposed, I wouldn't have bought a Dodge 

Charger." 

The degree of suboptimality of the constrained solution will depend 

on (1) the length of the control horizon; (2) the timing of the binding 

constraints; and (3) the degree of control constraint. 

Methods of Inequality Constraints 

1. Analytical Feedback Solutions-. An "ad hoc" suboptimal method is 

to simply institute a subroutine in the "forward" loop that solves for 

optimal state and control values. The subroutine checks the values 

against the constraint boundaries at each time period, and substitutes in the 

boundary value if the constraint is binding. The degree of suboptimality of 

this method is specific to different solutions, but could be ascertained by 

numerical comparison with programming solution approaches. 

2. PrograI!ll'ling Solutions. Introduction of inequality constraints in 

the Pindyk (1973] progranming for11U1lation is a simple addition to the 

large set of equality constraint~. In the Canon, Cullum, Polak approach, 

inequality constraint~ are implemented by penalty functions, which preserves 

the convenient feature of the unconstrained gradient search. However, this 

method can lead to constraint violations if the penalty functions are 

inappropriately chosen since the penalty function form is usually 

quadratic. Kim, Goreaux, and Kendrick (1975] report on the successful use -·----~.. ... -······ - ... . . . ........ --- : 

of gradient nx,dification to satisfy constraints. 

Users of ad hoc constraints on feedlock r.iodels should consider 

testinr, the dep,rce of suhoptimality of their results with deterministic 

prograrnminr, solutions. 
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The &onomic Meaning of Objective and Penalty Functions 

The origins of analytic stochastic contr.ol in physical tracking 

problems has often influenced the specification of the objective 

function for initial trajectory problems. Athans [1972] in his survey of 

the L.Q.G. approach has a section on the "Selection of Weighting Hatrices." 

The microeconomist, for whom the value of the objective function signifies 

a cardinal level of well-being does not enjoy such selection alternatives. 

The basis of microeconomic objectives are likely to be in demand, yield 

or damage functions; and model specifications Must satisfy economic as 

well as optimization constraints. Principle points are: 

(i) Symmetry in quadratic objective functions can lead to absurd results 

in initial trajectory models if state variables are unconstrained, 

In sone cases this can be avoided by normalizing the quadratic 

function such that the miniT!l1.lm (maximum) is never approached. 

Tracking models have similar problems in that the costs of over

achieving are rarely the same as under-achieving. Athans [1972] has 

suggested a procedure for deriving weights based on the second 

derivative of the Hamiltonian along the initial trajectory. 

Gradient solution approaches do not encounter similar problems due 

to the ability to specify asymmetric· or truncated objective functions; 

and constraints on state variables. 

(ii) Terninal Period Values. The effect of changes in the terminal period 

_objective function value depends on the length of the planning 

horizon. For empirical nicroeconomic r.1odels the policy horizon will 

probably he short, depending on institutions and politics. The terminal 

period of a policy m:>clel does not inply the termination or 
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scrapping of the investment, as is the usual eng·ineerinp, interpretation 

of the terminal value function. For this type of medium horizon 

policy model, a satisfactory compromise is achieved by specifying 

the terninal value on the same basis as the other time periods. 

This decision implicitly assumes that an alternative policy 

planning model will post-date the current one before the terminal 

time is reached. 

(iii) Penalty Functions are suggested by Fair [1974], Chow [1975] and others 

as a method of implementing inequality constraints. Of the two 

alternative specifications, the "exterior method" promises the 

least chance of distorting the cardinal value of the objective 

function. However, where the linear approximation of the function 

is poor, or its weighting low, the intrusion of penalty function 

values into the optimal objective function occurs. Penalty functions 

have the ·advantage of exactly representing nonlinear constraints if 

they are required. 

(iv) Policy Transaction Costs. ~ advantage of the objective function 

generally specified_for control rodels is that it specifically 

includes the cost of controls. That is, the social transaction 

costs of inplementing policy actions. These costs may be hard to 

empiricise, but where the state related parameters measure consumer's 

surplus, the tr~nsaction costs of policy actions should also be 

included to yield an optimal social policy • 

.. 
' 
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Conclusions 

The curse of dimensionality which has prevented the routine use of 

optimal dynamic policy analysis for simultaneous equation models is being 

lifted. If a researcher can specify an objective function or policy weight

ings on the endogenous variables in a linear or quadratic form, they can 

obtain optimal policies under certainty equ~valent and stationary stochastic 

information structures quickly and cheaply. The main problems I foresee in 

the policy use of stochastic control in microeconomics are in constraining 
~----·•·- . --------------·--···---- ----- ----···-··· ··- ···•· .. 

states and controls, and specifying meaningful objective functions. 

Currently, a promising compromise of solution techniques is to use a 

gradient programming approach to solve the deterministic and constrained 

initial trajectory. Then use the L.Q.G. stationary stochastic approach to 

examine the optimal policy under exogenous stochastic conditions, and the re

sulting passive information values. 

bf 
7-29-77 
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FIGURE 1 

Simulation Versus Control Results 

Chow's [1967] Model is simulated to give the target endogenous variable values - YD - (change in income) 
1s the only value plotted here to show the precision of tracking 
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FIGURE 2 

'policy variable G (Change in Governme~t-Spending) - control action is lower or equal to 
simulated action. 
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