
Economic Research Institute Study Paper

ERI #96-13

ON SOME ASPECTS OF THE MANAGEMENT OF A

STOCHASTICALLY DEVELOPING FOREST

by

AMITRAJEET A. BATABYAL

Department of Economics
Utah State University

Logan, UT  84322-3530

May 1996



ON SOME ASPECTS OF THE MANAGEMENT OF A

STOCHASTICALLY DEVELOPING FOREST

Amitrajeet A. Batabyal, Assistant Professor

Department of Economics
Utah State University

Logan, UT  84322-3530

The analyses and views reported in this paper are those of the author.  They are not necessarily
endorsed by the Department of Economics or by Utah State University.

Utah State University is committed to the policy that all persons shall have equal access to its
programs and employment without regard to race, color, creed, religion, national origin, sex, age,
marital status, disability, public assistance status, veteran status, or sexual orientation.

Information on other titles in this series may be obtained from:  Department of Economics, UMC
3530, Utah State University, Logan, Utah 84322-3530.

Copyright © 1996 by Amitrajeet A. Batabyal.  All rights reserved.  Readers may make
verbatim copies of this document for noncommercial purposes by any means, provided that this
copyright notice appears on all such copies. 



ON SOME ASPECTS OF THE MANAGEMENT OF A 

STOCHASTICALLY DEVELOPING FOREST

Amitrajeet A. Batabyal

ABSTRACT

In this paper I focus on some important biological aspects of the forest management

problem. I model a stochastically developing forest as a multidimensional, continuous-time

Markov chain.  Next, I pose three questions concerning the long-run characteristics of a

stationary forest, the stochastic process followed by dying species, and the age of an arbitrary

species in the forest.  I then (a) characterize a stationary forest probabilistically, (b) describe the

stochastic process governing the demise of species in this forest, and (c) provide a method for

determining the age of an arbitrary species in the forest.  Finally, I discuss the forest management

implications of the issues raised in this paper. 
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Dedicated to the memory of Sutapa Batabyal. 1

ON SOME ASPECTS OF THE MANAGEMENT OF

A STOCHASTICALLY DEVELOPING FOREST1

1. Introduction

Many interesting questions in stochastic capital theory concern the determination of the optimal

time at which to terminate an aging process s ubject to biological and economic uncertainties.  The optimal

forest management problem is such a question.  Until very recently, this management question has been

analyzed in a deterministic contex t because the ". . . introduction of [uncertainty] complicates the analysis

considerably" (Dasgupta, 1982, p. 182).  While economists such as Brock and Rothschild (1984), an d

Brock, Rothschild, and Stiglitz (1988) have analyzed aspects of the forest management question in a

stochastic setting, they have done so in a very particular manner.  Specifically, they have posed the "tree

cutting" question as an optimal stopping time problem.  Even the more general analysis of Clarke and Reed

(1989) analyzes the management problem by positing that the price of timber follows a geometri c

Brownian motion process and that the logarithm of timber size follows a diffusion process whose loca l

behavior resembles that of a Wiener process with drift. 

Similarly, ecologists and foresters have also studied different aspects of this forest management

problem.  For instance, Hobbs and  Legg (1983) and Shugart, Crow, and Hett (1973) have applied Markov

models to study plant by plant r eplacement processes and the dynamics of vegetation stands, respectively.

Moore (1990) has, inter alia, studied nonequilibrium age structures in Montana forests using a

semi-Markov model of vegetation dynamics. 

While these analyses have undeniably advanced our understanding of the tree cutting problem in

a stochastic context, they have omitted three ke y aspects of the biological uncertainty affecting many large

and long standing forests, particularly those in developing countr ies.  These aspects pertain to the stochastic
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Due to various reasons such as insect infestation, natural disasters, and old age. 2

Research on the economic aspects of the problem is ongoing, and I expect to report those results separately.3

See Bailey (1964, pp. 117-136) or Ross (1983, pp. 141-183) for more details. 4

development of trees in long standing forests, the s tochastic demise of trees  and the uncertain introduction2

of new or previously known species into the forest.  These features characterize large areas of forest land

in many developing countries.  The Amazon Basin in Brazil, parts of the Chambal Valley in India, an d

portions of the Irrawady Basin in Myanmar are but three examples of forests in which the above-described

features play an important role in the evolution of the forest.  Further, national forest managers wh o

typically “inherit” such long standing forests with a multitude of species have a difficult time attempting

to formulate forest policy.  Before embar king on any policy—which, from an economic standpoint, would

involve the formulation and solution of an appropriate optimization problem—such managers would like

to acquire information about questions which are inherently stochas tic in nature.  What kinds of species and

how many trees within a particular species can one  expect to see in a mature forest?  Can one say anything

about the stochastic process governing the demise of species?  What can one say about the likelihood that

a given species with a specific number of trees is the oldest—in the sense that it originate d

earliest—species in the forest? 

To the best of my knowledge, these questions have not been addressed in the ecological literature

previously.  As such, in this paper I propose to answer these thr ee questions.  In order to do so, I shall adapt

and apply stochastic population models to the forest manage ment problem [see Bailey (1964, pp. 117-136),

Bartlett (1960, pp. 17-44), and, in particular, Ross (19 83, pp. 156-164)].  In this paper, I shall be concerned

with the biological and not the economic aspects of the management problem.   More specifically, I shall3

model the stochastically developing forest with the biological characteristics alluded to above as a

multidimensional,  continuous-time Markov chain (CTMC).   As far as I am aware, the use of thi s4



C(t) {C1(t) , C2(t) , C3(t) , . . .}

{C (t): t 0}
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It is important to stress that I am not claiming that the use of Markov models in ecology is novel.  What I5

am claiming is that the use of the multidimensional CTMC to study the questions of this paper is novel. 

In this three-letter designation, the first letter refers to the fact that the interarrival times of customers in a6

queue has the Markovian property.  The second letter refers to the fact that the server's service times have a general
distribution.  Finally,  refers to the case in which there are an infinite number of servers.  For more details, see Wolff
(1989, pp. 75-81). 

As the reader will note, I have used a countable state space to ease the mathematical exposition.  If I7

constrain the state space to be finite, all of the subsequent analysis will carry through, albeit with greater algebraic
clutter. 

modelling technique to study the above-described questions is novel.   I wish to point out that this model5

bears considerable resemblance to the M/G/  of queuing theory, and thus I will point out some of th e6

similarities in due course.  In order to provide closed-form a nswers to the three questions that I have posed,

it will be necessary to make some distributional assumptions.  Without such assumptions, the proble m

becomes intractable and closed-form answers to my questions cannot be provided. 

2.  The Modeling Framework

In order to answer the three outstanding questions, I will analyze a mature, i.e., stationary, forest.

Suppose that new trees are “born” from existing trees in a forest in a statistically independent manner at

an exponential rate .  Due to a variety of possible reasons—some of which are listed in footnote 2—trees

are assumed to “die” independently at an exponential rate .  In a queuing context, one would say that trees

“depart” at an exponential rate .  Finally, new individuals “enter” the forest due to reasons such a s

plantings, pollination by natural agents, etc., according to a Poisson process with rate .  In a queuing

framework, one would say that new individuals “arrive” at rate .  I shall assume that  < .  This

assumption will ensure ergodicity and, hence, the existence of stationary probabilities for my CTMC. 

If I let C (t) be the number of species at time t which have k trees, d  0, and if I letk

 be the vector of all possible numbers of species in the forest unde r

consideration,  then the vector stochastic process, ,  is a CTMC because along ever y7

dimension  for all  and for nonnegative integers 
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Appropriate state space definition is a crucial aspect of the modelling exercise.  As van Hulst (1979) has8

noted in another context, if this is not done carefully, the state space can blow out to enormous size. 

the property that 

(1)

holds.  With respect to the state vector,  I can now define the following four

states of the CTMC.   Let 8

(2)

(3)

(4)
and let

(5)

Equation (2) denotes the state that t he CTMC is in after  if a new tree is “born” in a species with k trees,

k  1.  Equation (3) denotes the state after  if a tree in a species with k trees “dies,” k  2.  Equation (4)

denotes the state after  when a new tree “enters” due to plantings or pollination.  Finally, (5) represents

the state after  when a species consisting of one tree loses that tree. 

Let  denote the CTMC's instantaneous transition rates.  For my purposes, the relevan t

transitions are

(6)

(7)

and

(8)

Before I proceed to analyze the above-described forest, which I have modeled as a CTMC, I note th e

following.  In what follows, I shall assume that the forest under consideration once consisted of a bare tract

of land, i.e., at time   Further, I shall call an entering tree, a type k tree, if the species of

which this tree is a member will consist of k trees at time t.  Finally, I shall say that a particular species is

in state k if this species consists of k trees.  I am now in a position to analyze the above-described forest.
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3. Analysis and Results

The first question of interest to a forest manager concerns the characteristics of a matur e

(stationary) forest.  To answer this question, I now determine the stationary probabilities for this CTMC.

By generalizing Theorem 4 of Wolff (1989, p. 74), I note that the  are

independent Poisson distributed random variables with mean  where P (w) is the probabilityk

that a species which originated at time w will consist of k trees by time t.  Denote the stationary

probabilities by   I can now state

Theorem 1:  The CTMC  has stationary probabilities given b y

 where

  Proof:  In order to prove the theorem, I shall use (a) the time

reversibility of  (b) the assumption that  and (c) the fact that the

 are independent Poisson random variables. The independence suggests that the

form of the stationary probabilities should be multiplicative. As such, let the relevant stationar y

probabilities be given by

(9)

where the set  has to be determined.  To determine these constants, I now show that 

is time reversible.  For  given by (9), to show time reversibility, I have to show that 

(10)

and

(11)

hold.  Simple algebra tells us that (10) requires that 

(12)
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Note that this is a steady state result.  It does not mean that there will never be any interaction effects. 9

hold and (11) requires that

  
(13)

hold.  In writing (13), I have cancelled all the common terms.  Solving (13) for  I get 

Solving (13) for  recursively by using  I get 

(14)

I have now shown that  is time reversible.  Since the stationary probabilities given by (9)

do, in fact, solve the reversibility equations, (9) doe s indeed give us the requisite stationary probabilities.

Remark:  The time reversibility of the above described CTMC can also be demonstrated by solving th e

equation 

I have now answered the first of my three questi ons.  That is, I have determined the characteristics

of the forest under study in steady state.  Equation (9) should be of considerable help to a forest manager

for planning purposes.  First, inspecting (9), the manager will know that in the kind of forest under study,

the limiting number of species with k trees are independent Poisson random variables.  In other words ,

there are no interaction effects between the var ious limiting number of species.   Second, the manager will9

be able to infer directly, the mean number of species with k trees.  This information is given by th e

individual   This information should be of considerable use in planning logging policies, particularly

those policies which are designed to selectively log certain species but not others. 

The second management question that I have posed concerns the determination of the stochastic

process which governs the demise of species.  I have already argued th at a key aspect of large forests is that

trees die out due to a variety of reasons in an uncertain manner.  Before embarking on a specific planting

and/or logging policy, clearly, the forest manager would like to know the nature of the stochastic process
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Also see the discussion at the beginning of section 2. 10

governing species death.  Access to this information will enable the forest manager to decide, inter alia,

at what rate he/she should plant new trees and at what rate he/she should log presently standing trees.  I

now answer this question.  Let F(t) be the number of species which die out in the interval ( 0, t).  What kind

of stochastic process is { F(t): t  0}? The answer is contained in 

Theorem 2:  If {F(t): t  0} is stationary at time t = 0, then {F(t): t  0} is a homogeneous Poisson process

with mean .  If the forest is bare at t = 0, then {F(t): t  0} is a nonhomogeneous Poisson process with

intensity function (t). 

Proof:  To prove the theorem, I shall exploit the similarities between my CTMC model and the M/G/

model of queuing theory.  The key step lies in recognizing that my task is equivalent to determining the

stochastic process followed by the output process of an infinite server queue with Poisson arrivals.   The10

solution to this problem is well known in queuing theory—see Ross (1985, p. 224)—and, hence, th e

claimed result follows.

Theorem 2 tells us that the stochastic process governing the demise of species depend s

fundamentally on whether the forest under study is in steady state at time t = 0 or not.  If the forest is in

steady state, then F(t) is a homogeneous Poisson process.  The more interesting case is when the forest is

nonstationary at t = 0.  In this case, the theorem tells us that F(t) is still a Poisson process, but a

nonhomogeneous one.  The nonhomogenity tells us that because this stochastic process does not possess

stationary increments, deaths are more likely to occur at certain times than at others.  Intuitively, this is

what one would expect in this latter situation. 

I shall now answer the third question that I posed in section 1.  This question concerns th e

probabilistic determination of the age of the various species.  Specifically, I am interested in determining

the likelihood that a given species with k trees is the oldest species in the forest.  The answer to thi s

question is contained in 
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Moore (1990) has also addressed an aspect of this conservation issue, albeit in a very different way.  His11

approach is to maximize the mean time to local extinction for the relevant vulnerable species. 

Theorem 3:  If in a stationary forest there  exists  species with k trees, then the probability that

a given species with k trees is the oldest—in the sense that it originated earliest—species in the forest is 

Proof:  This result follows from Corollary 5.6.7 of Ross (1983, p. 164).  

Remark:  The technique involved in demonstrating the above theorem involves first truncating th e

countable state space of the CTMC to a finite state space.  It is important to note that this truncatio n

involves keeping track of the various species as time progresses.  In other words, keeping track of the age

of the various species is an important part of the proof.  For a similar application in another context, see

Batabyal (1994). 

The significance of Theorem 3 lies in the fact that it provides a probabilistic method of datin g

species.  This provides the forest manager with information on the basis of which he/she can mak e

conservation decisions.   The provision of such information would appear to be particularly necessary in11

resolving “What to preserve?” debates that are ongoing in many parts of the developing world. 

4. Conclusions

In contrast with previous stochastic models of the forest management problem, in this paper I have

focused on three biological aspects of the proble m which have not been addressed previously by ecologists

or economists.  I showed how to model a stochastically developing forest with many species of trees as a

multidimensional CTMC.  Further, I posed and answered three questions concerninga:  (a) the long-run

characteristics of a stationary forest, (b) the stochastic process followed by dying species, and (c) the age

of an arbitrary species in a stationary forest. 

As noted by Horn (1975), Markov models have considerable predictive power.  As such, th e

questions addressed and the answers provided in this paper have a direct bearing on the general fores t
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management problem.  In combination with the economic aspects—on which research is ongoing—th e

answers provided here should offer the forest manager substantial policy guidance regarding som e

important but hitherto unanswered questions. 
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