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Is There Too Much History in Historical Yield Data

Abstract

County crop yield data from United States Department of Agriculture - National Agricultural Statistics
Service has and continues to be extensively used in the literature as well as practice. The most notable
practical example is crop insurance, as the Risk Management Agency uses the data to set guarantees, es-
timate premium rates, and calculate indemnities for their area programs. In many applications including
crop insurance, yield data are detrended and adjusted for possible heteroscedasticity and then assumed to
be independent and identically distributed. For most major crop-region combinations, county yield data
exist from the 1950s onwards and reflect very significant innovations in both seed and farm management
technologies; innovations that have likely moved mass all around the support of the yield distribution. De-
spite correcting for movements in the first two moments of the yield data generating process (dgp), these
innovations raise doubt regarding the identically distributed assumption. This manuscript considers the
question of how much historical yield data should be used in empirical analyses. The answer is obviously
dependent on the empirical application, crop-region combination, econometric methodology, and chosen loss
function. Nonetheless, we hope to provide some guidance by tackling this question in three ways. First,
we use distributional tests to assess if and when the adjusted yield data may result from different dgps.
Second, we consider the application to crop insurance by using an out-of-sample rating game -- commonly
employed in the literature -- to compare rates from the full versus historically restricted data sets. Third, we
estimate flexible time-varying dgps and then simulate to quantify the additional error when the identically
distributed assumption is erroneously imposed. Our findings suggest that despite accounting for time-varying
movements in the first two moments, using yield data more than 30 years past increases estimation error.
Given that discarding historical data is unappetizing, particularly so in applications with relatively small T,
we investigate three methodologies that re-incorporate the discarded data while explicitly acknowledging: (i)
the retained and discarded data are from different dgps; and (ii) the extent and form of those differences is
unknown. Our results suggest gains in efficiency may be realized by using these more flexible methodologies.
While our results are most applicable to the crop insurance literature, we suggest proceeding with caution
when using historical yield data in other applications as well.

Some key words: yield data, changing technology, borrowing information, crop insurance
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Introduction

United States Department of Agriculture - National Agricultural Statistics Service (USDA-NASS) county

crop yield data continues to be extensively used in the literature as well as practice. The Risk Management

Agency (RMA) uses this data to set guarantees, estimate premium rates, and calculate indemnities for their

area programs. Moreover, these county level rates are used in estimating farm level rates. Examples from

the literature include investigation of rating methodologies (Ramirez, Misra, and Field, 2003; Goodwin and

Hungerford, 2015; Ker, Tolhurst, and Liu, 2016; Yvette Zhang, 2017), issues related to reinsurance (Miranda

and Glauber, 1997; Ker and Ergun, 2007), issues related to land use (Wu et al., 2004; Claassen, Hellerstein,

and Kim, 2013), modeling the climate-yield relationship (Roberts, Schlenker, and Eyer, 2013; Tolhurst and

Ker, 2015; Miao, Khanna, and Huang, 2016; Cooper, Nam Tran, and Wallander, 2017), and supply analysis

(Hendricks, Smith, and Sumner, 2014). Since 1995, over 100 American Journal of Agricultural Economics

articles have made reference to NASS yield data and at least 30 have used the data in their empirical analyses.

In many cases, and certainly with respect to RMA and the crop insurance literature, yield data are often

detrended and adjusted for possible heteroscedasticity and then assumed to be independent and identically

distributed. Zhu, Goodwin, and Ghosh (2011) denote this the “two-stage method”. For most major crop-

region combinations, annual NASS county yield data exist from the 1950s onwards and reflect very significant

innovations in both seed and farm management technologies, which have likely moved mass all around the

support of the yield distribution. Despite correcting for movements in the first two moments of the yield

data generating process (dgp), the identically distributed assumption may not hold. This assumption is

employed in both the literature and RMA’s rating methodology for their area yield and revenue programs.

However, it is unlikely that yield losses in the 1950s and 1960s inform much about yield losses in 2019, let

alone be given equal weight to yield losses from recent years. Quite interestingly, and in contrast to their

area programs, RMA uses yield data starting in 1991 to rate the newer area-based shallow loss products.2

This highlights an underlying, but empirically undocumented notion, that the yield dgp has significantly

changed over the past half-century possibly rendering the more historical data useless or even harmful in

empirical analyses. Similarly, and presumably for the same reason, some in the recent literature have used

a markedly shorter historical yield series in their empirical analyses (Claassen, Hellerstein, and Kim, 2013;

Hendricks, Smith, and Sumner, 2014; Claassen, Langpap, and Wu, 2017).

Changes in seed and farm management technologies, and their effects on yields, have been well documented

in the agronomy literature. Notable examples include the introduction of biotech seeds and precision farming.

Many have shown that corn, soybean and wheat yields in the United States have more than doubled from

1950 to mid-1990s (Reilly and Fuglie, 1998; Fernandez-Cornejo, 2004; Duvick, 2005; Egli, 2008; Fernandez-

Cornejo et al., 2014; Assefa et al., 2017; Egli, 2017). They tend to suggest that roughly half of the yield

gain is attributed to genetic seed improvements while the other half is attributed to improved agronomic

2Our understanding is RMA aggregates their individual farm data to the county level to construct a county yield series rather

than use NASS yield data.
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practices. Although the agronomy literature has focused on changes in average yields, some have also

documented increasing volatility in yields (Naylor, Falcon, and Zavaleta, 1997; Kucharik and Ramankutty,

2005; Challinor et al., 2014; Leng, 2017). Conversely, there has been a relatively large body of work on the

changes in yield volatility by agricultural economists, primarily driven by issues related to crop insurance

(Ramirez, 1997; Harri et al., 2011; Claassen and Just, 2011; Tolhurst and Ker, 2015; Yvette Zhang, 2017).

With respect to changes in the higher moments (> 2) of the yield distribution, there has been markedly less

work. Zhu, Goodwin, and Ghosh (2011), using NASS county level yield data for corn, soybean and cotton,

find changes in higher moments through time. Tack, Harri, and Coble (2012) using county level cotton data

in Arkansas, Mississippi, and Texas, found that the third moment, or skewness, was changing with time

for Mississippi and Texas. Tolhurst and Ker (2015) using county level corn, soybean, winter wheat, and

cotton data, found that skewness and kurtosis was changing over time for the vast majority of county-crop

combinations. Finally, Ker and Tolhurst (2019) propose correcting heteroscedasticity differentially between

the upper and lower tails because of time-varying skewness. Note that changes in higher moments indicate

the common approach of correcting for changes in the first two moments is not sufficient for the identically

distributed assumption. However, while this assumption may not be statistically valid, this does not provide

guidance as to if, and to what extent, yield data should be truncated, and, whether it only matters statistically

and is of little economic consequence.

The purpose of this manuscript is to answer the question of how much historical yield data -- after

correcting for changes in the first two moments as per much of the literature and RMA -- should be used

in empirical analyses. The answer is dependent on the empirical application, crop-region combination,

econometric methodology, and chosen loss function. Using county-level NASS yield data for corn, soybean,

and winter wheat we take a three-prong approach to answer this question. First, we use nonparametric

distributional tests to assess if and when the adjusted yield data may result from different dgps; this highlights

the statistical significance. Second, we consider the application to crop insurance by using an out-of-sample

retain-cede rating game -- commonly employed in the literature -- to compare premium rates from the full

versus restricted data sets; this highlights the economic significance. Third, to get a sense of the magnitude of

the error when the identically distributed assumption is imposed, we undertake simulations using estimated

mixture models allowing for time-varying moments.

Given we find economic and statistical justification for restricting the historical yield data, a subsequent

purpose of this manuscript is to consider methodologies that can make use of the discarded data to increase

estimation efficiency while acknowledging the data are not from the same dgp. Specifically, we investigate

three approaches that explicitly acknowledge: (i) the unknown dgps are different; and (ii) the extent and

form of those differences are unknown. The first is a Bayesian Model Averaging (BMA) approach forwarded

by Ker and Liu (2017) and smooths between multiple dgps. The second approach is generally used for

smoothing across categories of independent variables (in our case different time periods) forwarded by Li

and Racine (2003), and Racine and Li (2004). The final approach forwarded by Ker (2016) reduces bias by
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combining data from multiple dgps to form a start estimate and then corrects that start according to the dgp

of interest. All three methodologies are purposely nonparametric and thus our findings are not conditional

on any parametric assumptions. We replicate our economic game and simulation analyses with these more

flexible methodologies and find gains in efficiency may be realized by incorporating the discarded historical

yield data back into the estimation process.

The remainder of this manuscript proceeds as follows. The next section details the NASS yield data, the

detrending methodologies, and the heteroscedasticity treatment. The third section presents the statistical

results from testing the identically distributed assumption. The fourth presents the economic results using

an out-of-sample retain-cede rating game. The fifth section summarizes the results with the simulated yield

data and known dgp. The sixth section outlines the methodologies that borrow information from other dgps.

The seventh section presents the economic game and statistical simulation results using these more flexible

methodologies. The final section summarizes our findings.

NASS Yield Data, Detrending Methodologies, and Heteroscedasticity Treatment

NASS Yield Data

The mission of NASS is to serve those “working in and depending upon U.S. agriculture.” To that end,

NASS collects, summarizes, analyzes, and publishes agricultural production and marketing data covering

various areas. NASS collects information mainly from farmers, ranchers, livestock feeders, slaughterhouse

managers, grain elevator operators, and other agribusinesses. NASS provides 49 categories of field crops

including beans, cotton, corn, grain, hay, peanuts, mint, rice, soybeans, and wheat. The data generally

date back to the 1950s. We use county level yield data for corn, soybean, and winter wheat for the period

1951–2017 (67 years). Our corn and soybean analysis focuses on states that account for the majority of

national corn and soybean production. We removed counties with one or more missing yield observations

as well as any state that does not have 25 or more counties. We also removed all states that reported more

than ten percent of their acreage as irrigated in the 2012 Census of Agriculture. After doing so, we are

left with seven states for corn: Illinois (IL), Indiana (IN), Iowa (IA), Minnesota (MN), Ohio (OH), South

Dakota (SD), and Wisconsin (WI). These states accounted for 57.8 percent of harvested acreage and 61.8

percent of national production in 2017. All corn states except South Dakota met the inclusion criteria for

soybean. These six states accounted for 50.5 and 53.9 percent of national harvested acreage and production,

respectively, in 2017. For winter wheat, we considered the top 15 states that had less than ten percent of

their acreage irrigated in 2012 Census of Agriculture, only two of which met the inclusion criteria: Kansas

(KS) and Michigan (MI). These two states accounted for 29.2 percent and 28.9 percent of national harvested

acreage and production, respectively, in 2017. In total, our data comprises 414 corn, 373 soybean, and 64

winter wheat counties.
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Detrending Methodologies

Premium rates are estimated using a two-step process in which a trend is first estimated and then residuals

are adjusted for possible heteroscedasticity. A two-step process is by far the most common in the literature

as noted by Zhu, Goodwin, and Ghosh (2011). Given any results are dependent on the choice of detrending

method, we consider four different methodologies to ensure robustness of our results. The four detrending

methods are: (i) the current RMA methodology (given the relevance of our results to crop insurance); (ii)

linear model estimated by L2; (iii) linear model estimated by L1; and (iv) nonparametric local lines using

out-of-sample cross validation for the smoothing parameter. The four methods span most of the functional

forms and error metrics used in the literature.

RMA estimates the temporal process of yields, denoted yt = (y1, ..., yT ), for each crop-county combination

using a robust two-knot linear spline:

(1) yt = θ1 + θ2t+ δ1d1(t− k1) + δ2d2(t− k2) + εt

with d1 = 1 if t ≥ k1 and d2 = 1 if t ≥ k2 for knots k1, k2 ∈ (1 + k̄, . . . , T − k̄) and k2−k1 ≥ k. The k, k̄ ≥ 10

are a prior imposed bounds which prevent the knots from locating too close together (k) or too close to

either endpoint (k̄). Knot locations ki are selected using a grid search (least-squares criterion). The model

is run with zero, one, and two knots and then the number of knots used is selected using AIC.3 Given the

number of knots, two robustness procedures are performed; the spline is iterated to convergence with Huber

weights and then twice through a bisquare function.4

Our second method assumes a linear model estimated by minimizing least squares. That is, yt = θ1 +

θ2t + εt where (θ̂1, θ̂2) = argmin(θ1,θ2)(ε
′ε). Our third method assumes the same linear model estimated

via minimizing least absolute deviations (median regression). That is, yt = θ1 + θ2t + εt where (θ̃1, θ̃2) =

argmin(θ1,θ2)(
∑

(|εi|).

Finally, our fourth method estimates g(t) by nonparametric local lines. The underlying notion in non-

parametric regression is continuity; local data is relatively more informative than non-local data. The fitted

yield at some point of interest (t0), denoted ĝ(t0), is derived from a weighted average of neighboring yields

where the weights are defined by the distance in the time space. Specifically, let zi = (ti − t0)/h denote the

scaled, signed distance between the ti and the point t0. The scale factor h, called bandwidth, controls the

relative weights. The general choice of K(z) is the Gaussian or normal kernel. Define a T × T diagonal

matrix W0 where W0[i, i] = K((ti − t0)/h). The estimated coefficients are derived from the locally weighted

least squares regression

(2) β̂0 = (X′W0X)−1X′W0y

3We do not impose the spatial and temporal priors on knots used by the RMA.
4Let ε̃t be the estimated residuals from the robust spline with the chosen number of knots and η̃t = ε̃t/

√
T−1

∑
ε̃2t . The

Huber function assigns weight one to observations if |η̃t| < c and weight c/|η̃t| otherwise with a default c = 1.345. Similarly,

the bisquare function weights observations (1− (η̃t/c)2)2 if |η̃t| < c and zero otherwise with default c = 4.685.
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where y is the vector of yields, and X is a T × 2 matrix with the first column being a vector of ones and

the second column a sequence from 1 to T . The fitted value, denoted ŷ0 = X0β̂0 where X0 = (1, t0), can

be calculated for any point t0 ∈ R. As is commonly done, we undertake at points t = 1, ..., T to recover

ŷ1, ..., ŷT , a set of fitted annual yield values. The bandwidth h is chosen by minimizing an out-of-sample

cross-validation one-step ahead prediction error squared metric.

Heteroscedasticity Treatment

Denote the residuals from any of the above detrending process as ε̂t and the fitted values as ĝ(t) = ŷt.

The heteroscedasticity adjustment via the Harri et al. (2011) estimates5

(3) ln(ε̂2t ) = α+ γ ln (ŷt) + vt.

Note, constant and proportional variance in the underlying yield data correspond to γ = 0 and γ = 2,

respectively. Yields are adjusted based on a one-step ahead forecast (ŷT+1) and the heteroscedasticity

coefficient (γ̂):6

(4) ŷ∗t = ŷT+1 + ε̂t

(
ŷT+1

ŷt

) γ̂
2

The adjusted yields are then used to generate the empirical premium rate for period T + 1

(5) π∗T+1 =
1

T

T∑
t=1

max
{

0, λŷ∗T+1 − ŷ∗t
}

where λ is the coverage level such that λŷ∗T+1 is the yield guarantee.

Testing the Identically Distributed Assumption

When testing for structural change, generally a Chow-type test is used where the sample is split into

different sub-populations and residuals from regression equations within the sub-populations are combined

with the residuals from a regression equation spanning the two samples to form a Wald type test statistic.

The Bai-Perron test is a sup-type test of the Chow test in that it does not assume the breakpoint is known

or the number of breakpoints. These tests have power only against changes in the conditional mean function

(first moment) and thus, unsurprisingly, resulted in very little rejections on the adjusted yields across the

crop-county combinations.7 We are interested in structural changes in the higher moments of the dgp,

beyond the conditional mean or variance. Therefore, we necessarily use a Kolmogorov-Smirnov (KS) test

which considers the maximum difference between two empirical distribution functions and thus has power

against differences in all moments. Note, the test is nonparametric in that the test statistic is a function

of the empirical distribution functions. Also, the KS test has been shown to have relatively low power

5See Ker and Tolhurst (2019) for an alternative methodology. Our findings are robust to either heteroscedasticity treatment.
6RMA uses a two-step ahead forecast because of data availability/timing issues. We choose a one-step ahead forecast for our

analysis simply to gain an additional degree of freedom given we are truncating an already very short time series.
7Given we have corrected for the time-varying changes in the first moment in our detrending process, any rejections reflect the

inappropriateness of the underlying functional form in that detrending process.
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in comparison to Chow or Bai-Perron tests as these tests have an infinitely smaller space of alternatives

(Wilcox, 1997). Moreover, the difference between two empirical distribution functions is most pronounced

for differences in the location, followed by differences in scale, and then higher moments in sequential order.

Recall we will only be testing differences in the higher moments and thus the power of the KS test is further

weakened in that the two samples we are comparing have near identical first two moments. The KS test

statistic is denoted Dn,m and defined as:

(6) Dn,m = sup
x
| F1,n(x)− F2,m(x) |,

where F1,n and F2,m are the empirical distribution functions of the first and the second sample respectively.

Specifically, the raw yield data are detrended (using one of the four methods) and corrected for heteroscedas-

ticity. The adjusted yield data are subsequently divided into two samples. Given the breakpoint is unknown

and we have no prior we consider every fifth year between 1968 and 2003 as possible breakpoints (8 possible

breakpoints).8 Unfortunately, there is not an analogous Bai-Perron generalization of the Chow test for the

KS test; multiple testing upward biases the level of our tests. The null of the KS test is rejected at level α

when

(7) Dn,m > c(α)

√
n+m

nm
,

where c(α) is calculated from the Kolmogorov distribution. All tests were conducted at the 10% and 5%

significance level given our relatively small sample and low power of the test.

A histogram of the test results from different detrending methodologies are shown in Figures 1-3 for

each of the three crops. The results are fairly consistent across the different detrending methodologies. For

example, when the critical value of the test is 10% (blue), in corn with 414 counties, the number of rejections

tend to be just over 50% clustering around late 1960s and late 1980s. With respect to soybean with 373

counties, the number of rejections tend to be around 30% clustering toward the late 1960s and early 1970s.

With respect to winter wheat with just 64 counties, the number of rejections tend to be 70% with again

clustering around the late 1960s. When the size of the test is reduced to 0.05 approximately one third of the

rejections disappear for corn, one half for soybean, and one quarter for wheat. In response to the multiple

testing problem, if we use the excessively conservative Holm-Bonferroni method (assumes independence) for

multiple testing (Holm, 1979), all rejections for all three crops disappear. Nonetheless, given the downward

bias in the size of the test in small samples, we find the results bring into question the identically distributed

assumption.9

8As is customary, we do not test close to the boundaries of the sample.
9Maps of the test results per county are available from the authors. The results did not illustrate any significant spatial

clustering in the rejections.
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Figure 1. KS Test Rejections for Corn by Detrending Method.

Note: For counties with multiple rejections, only the year with maximum KS test statistic is

shown. Given 414 total counties, the number of rejections with size of the test 0.10(0.05) is

244(162) using RMA detrending, is 264(188) using L2, is 228(148) using L1, and is 194(110)

using nonparametric is 194.



10

0

10

20

30

1968 1973 1978 1983 1988 1993 1998 2003
Year

N
um

be
r 

of
 R

ej
ec

tio
n

Critical Value
0.1
0.05

(a) RMA Detrending

0

10

20

30

1968 1973 1978 1983 1988 1993 1998 2003
Year

N
um

be
r 

of
 R

ej
ec

tio
n

Critical Value
0.1
0.05

(b) L2 Detrending

0

10

20

30

1968 1973 1978 1983 1988 1993 1998 2003
Year

N
um

be
r 

of
 R

ej
ec

tio
n

Critical Value
0.1
0.05

(c) L1 Detrending

0

10

20

30

1968 1973 1978 1983 1988 1993 1998 2003
Year

N
um

be
r 

of
 R

ej
ec

tio
n

Critical Value
0.1
0.05

(d) NP Detrending

Figure 2. KS Test Rejections for Soybean by Detrending Method.

Note: For counties with multiple rejections, only the year with maximum KS test statistic is

shown. Given 373 total counties, the number of rejections with size of the test 0.10(0.05) is

123(60) using RMA detrending, is 140(75) using L2, is 107(55) using L1, and is 99(36) using

nonparametric is 194.
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Figure 3. KS Test Rejections for Winter Wheat by Detrending Method.

Note:

For counties with multiple rejections, only the year with maximum KS test statistic is shown.

Given 64 total counties, the number of rejections with size of the test 0.10(0.05) is 28(19) using

RMA detrending, is 46(40) using L2, is 46(33) using L1, and is 25(12) using nonparametric is

194.
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Crop Insurance Application

Results from the previous section call into question the identically distributed assumption from a statistical

perspective, but provide no information regarding economic importance. We consider an application to rating

crop insurance contracts consistent with the literature. Specifically, we conduct an out-of-sample retain-

cede rating game, where two players using different methodologies estimate premium rates and averse select

against one another. The game was first proposed by Ker and McGowan (2000) and has since been employed

by Ker and Coble (2003), Racine and Ker (2006), Harri et al. (2011), Annan et al. (2013), Tack and Ubilava

(2015), Tolhurst and Ker (2015), Yvette Zhang (2017), and Shen, Odening, and Okhrin (2018) to justify

alternative rating methodologies. The game was modified with an additional test of rating efficiency in Ker,

Tolhurst, and Liu (2016). Park, Brorsen, and Harri (2018) utilized both tests in proposing an alternative

rating methodology which exploits spatial closeness. The game was inspired by the retain-cede decision of

private insurance companies in regards to the crop insurance contracts they sell. Some salient features of

the U.S. crop insurance program are relevant to the game. First, RMA rather than private insurers set

the rates for all policies. Second, the private insurer must sell all policies in a state that it operates in

(even if it deems the policy to be under-priced). Third, the private insurer shares, asymmetrically, in the

underwriting gains and losses of all policies it sells. Fourth, there is a mechanism in which private insurers

can significantly reduce their exposure on policies they deem unwanted.10 Given these salient features,

private insurers determine which policies to retain and which to cede; that is, policies insurers believe over-

priced and expect an underwriting gain (retain) versus policies insurers believe under-priced and expect

an underwriting loss (cede). As a result, private insurers necessarily develop their own rates in attempts to

strategically averse select against RMA and recover excess rents. Mimicking this allows one to hypothetically

compare two sets of premium rates. In contrast to the past literature that employs the retain-cede game

to evaluate alternative rating methodologies using the same data, we evaluate alternative data sets -- full

versus historically restricted -- using the same rating methodology.

More specifically, we assume RMA uses the full historical yield data from 1951-2002 on a county-crop basis

to estimate the RMA premium rates for 2003. Conversely, the private insurer estimates their rates using

a restricted data set (truncation rules are defined below). Both the RMA and the private insurer use the

RMA rating methodology and as such the only difference in the two sets of rates is the result of truncating

the historical yield data. Based on the two sets of rates, the private insurer identifies which contracts to

retain and which to cede. The underwriting gains or losses for the set of retained and ceded contracts are

calculated using the actual yields in 2003. This process is repeated for 15 years and the loss ratios (defined

as the ratio of total underwriting losses to total premiums) for both the retained and ceded sets of contracts

are calculated. We conduct the game for each crop at the 70%, 80%, and 90% coverage levels. We consider

two truncation rules for the private insurer: (i) a fixed 30-year cut-off; and (ii) calculate the KS test statistic

at five-year intervals and truncate at the maximum test statistic.

10Specific details are outlined in the USDA-RMA Standard Reinsurance Agreement with approved private insurers.
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As in the above cited literature, we undertake two hypothesis tests. The first tests whether the loss ratio

from the retained contracts is less than the loss ratio from retaining contracts randomly (choosing which

contracts to retain randomly is equivalent to the private insurer being indifferent between the two sets of

competing rates). Randomization methods are used to recover the p-value. Game 1 mimics the current

reality of the US crop insurance program. However, the private insurer has an advantage because they react

to the RMA premium rates. As such, whichever of the two competing rates the private insurer uses has an

inherent competitive advantage in game 1. This advantage is nullified in game 2 by contrasting the changes

in loss ratios under both sets of the competing rates (see Ker, Tolhurst, and Liu, 2016, for details). The

number of contracts considered is the number of counties multiplied by 15 years; 6,210 contracts for corn,

5,595 contracts for soybean, and 960 contracts for winter wheat. The results, which include percent retained

by the private insurer, the government or ceded contracts loss ratio, the insurer or retained loss ratio, p-value

of game 1, and p-value of game 2, are presented in Table 1.

Under a 30-year fixed cut-off decision rule, we find the private insurer’s loss ratio is less than the RMA

loss ratio for all nine cases; that is, for all three crops at all three coverage levels. The private insurer loss

ratio ranges from 38% to 77% of the RMA loss ratio. We find the differences statistically significant in six of

the nine cases at the 5% level; all three coverage levels for corn, the 70% coverage level for soybean, and the

70% and 90% coverage levels for wheat. Even under the excessively conservative Holm-Bonferroni method

for multiple testing (by crop across coverage levels at 5% significance), all six remain significant. These

results strongly suggest that private insurers can recover statistically and economically significant rents by

averse selecting against the RMA via simply restricting the length of the historical yield data to 30 years

in the rating process. With respect to game 2, the historically restricted rates are more accurate than the

unrestricted rates in all nine cases but the difference is only significant for soybeans at the 70% coverage

level.

Under a more sophisticated decision rule using the KS test, the results are very similar. We again find the

loss ratio for the retained contracts is less than the loss ratio for the ceded contracts in all nine cases. The

private insurer loss ratio ranges from 44% to 89% of the RMA loss ratio; slightly above that with the fixed

truncation rule. We find the differences statistically significant in seven of the nine cases at the 5% level; all

three coverage levels for corn, the 70% and 90% coverage level for soybean, and the 70% and 80% coverage

levels for wheat. If we consider the Holm-Bonferroni method for multiple testing, all seven remain significant.

These results also suggest that private insurers can recover statistically and economically significant rents by

averse selecting against the RMA via simply restricting the length of the historical yield data. With respect

to game 2, the historically restricted rates are as or more accurate than the unrestricted rates in seven of

the nine cases and those differences are significant for both soybean and wheat at the 70% coverage level;

slightly greater significance than with the 30 year fixed truncation rule. In no cases are the unrestricted

rates shown to be statistically significantly more accurate than the unrestricted rates.



14

Table 1. Out-Of-Sample Retain-Cede Rating Game

Retained by Loss Ratio Loss Ratio Game 1 Game 2
Crop-Coverage Private (%) RMA Private p-value p-value

Truncated by 30-Year Cutoff:

Corn

70% Coverage 54.0 0.398 0.272 0.0037 0.1509
80% Coverage 58.8 0.521 0.300 0.0176 0.1509
90% Coverage 66.0 0.672 0.386 0.0037 0.3036

Soybean

70% Coverage 62.5 0.538 0.272 0.0037 0.0176
80% Coverage 61.2 0.918 0.347 0.1509 0.5000
90% Coverage 64.9 1.122 0.476 0.1509 0.1509

Winter Wheat

70% Coverage 29.2 1.135 0.721 0.0176 0.3036
80% Coverage 28.4 1.008 0.773 0.0592 0.1509
90% Coverage 39.5 1.088 0.760 0.0037 0.1509

Truncated by Maximum KS Test Statistic:

Corn

70% Coverage 56.9 0.338 0.301 0.0037 0.3036
80% Coverage 60.7 0.436 0.338 0.0176 0.6964
90% Coverage 66.3 0.525 0.436 0.0176 0.3036

Soybean

70% Coverage 64.9 0.478 0.295 0.0176 0.0037
80% Coverage 64.5 0.862 0.375 0.1509 0.5000
90% Coverage 67.8 1.043 0.508 0.0592 0.3036

Winter Wheat

70% Coverage 39.6 1.351 0.614 0.0037 0.0176
80% Coverage 41.8 1.131 0.698 0.0176 0.5000
90% Coverage 49.2 1.023 0.844 0.1509 0.6964

Note: Games conducted over 15 years (2003–2017). Game 1 is the adverse selection game of Ker and McGowan

(2000) and game 2 is the efficiency game of Ker, Tolhurst, and Liu (2016). Reported p-values for both are

binomial and based on annual Bernoulli trial with number of trials equal to 15 and binomial parameter equal

to 0.5 (under null).

Estimating and Simulating Yield DGPs

Ideally, we would know the dgp of yields and be able to quantify the error from using too much historical

yield data in the estimation process. Our third of the three-prong approach attempts to quantify the unknown

error by assuming a known dgp. For each county-crop combination, we estimate the yield dgp as a mixture

of normals with time-varying mixing, location, and variance parameters; an exceedingly flexible form meant

to capture movement in the higher moments of the yield dgp. Second, assuming these estimates to be true,
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we sample various lengths of historical yields and quantify the estimation error from correcting only the first

two moments. Specifically, we estimate

(8) yt ∼
K∑
k=1

λtkN(αk + βkt, γk + δkt),

where yt is the yield in year t, K is the number of mixtures, λtk is weight given to the kth mixture in

year t satisfying
∑K
k=1 λtk = 1 ∀ t; αk + βkt are the mean parameters for mixture k; and, γk + δkt are the

time-varying variance parameters for mixture k. We estimate the mixture model using the Expectation-

Maximization (EM) algorithm with multiple starting values and BIC to choose the number of mixtures. For

illustrative purposes, the original yield data and a sample from the corresponding estimated time-varying

mixture model are shown in Figure 4. The original yield data and the sampled yield data appear drawn

from near -identical dgps.

To quantify the estimation error associated with using various lengths of historical yield data, we draw 500

time-dependent samples of size 67 years (1951-2017) from each estimated time-varying mixture model. We

do this for each county-crop combination; 414 corn counties; 373 soybean counties; and 64 wheat counties.

We truncate the sampled historical yield data to the most recent 10, 15, 20, ..., 55, and 67 years. As done

in the literature, we detrend and correct for heteroscedasticity to recover 500 sets of adjusted yield data per

county-crop combination. With the adjusted yield data, we estimate the conditional yield density at year

2018 and the associated premium rates at 70%, 80%, and 90% coverage levels. We detrend the data using the

four previously described methodologies: RMA two-knot robust linear spline; linear line estimated by L2;

linear line estimated by L1; and nonparameteric local lines. We correct for heteroscedasticity using method

from Harri et al. (2011). Given we know the true dgp, we can calculate the estimation error according to

any metric. With respect to the conditional density estimates, we necessarily use a function space metric;

we use mean integrated squared error (MISE) which is the function space analogy to mean squared error.

With respect to the estimated premium rates, we choose root mean squared error (RMSE). Figure 5 presents

the average (across counties) of the MISE and RMSE for the 80% coverage level premium rates by crop and

sample size. The results for the 70% and 90% are presented in the appendix.

The results are consistent with the findings from the distributional tests and the out-of-sample retain-cede

rating games. As one uses more historical yield data, estimation error decreases to a point and then begins to

increase. Estimation error for both the conditional yield density and premium rates increases after roughly

30 years of historical yield data. The pattern emerges for all crops and is not dependent on detrending

methodology.

Incorporating Data from Like dgps

Collectively, the above findings suggest that historical yield data beyond 30 years should be discarded.

While this is not surprising given the significant advances in technology and farm management, discarding
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Figure 4. Actual & Simulated Crop Yields of Randomly Selected Counties
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Figure 5. MISE & RMSE by Crop under Different Detrending Methods
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50% or more of the historical yield data when T = 67 is already small is unappealing. Therefore, we consider

three approaches that can incorporate the discarded data back into the estimation process while recognizing

that the discarded data come from a different dgp. The first is a Bayesian Model Averaging (BMA) approach

forwarded by Ker and Liu (2017) and smooths between multiple dgps. The second approach is generally used

for smoothing across categories of independent variables forwarded by Li and Racine (2003), and Racine and

Li (2004). The final approach forwarded by Ker (2016) reduces bias by combining data from multiple dgps to

form a start estimate and then corrects that start according to the dgp of interest. All three methodologies

are purposely nonparametric and thus our findings are not conditional on any parametric assumptions. We

replicate our economic game and simulation analyses with these more flexible methodologies to determine if

gains in efficiency may be realized by incorporating the discarded historical yield data in alternative ways.

For all three methods define the set of yields as (y1, . . . , yT ), the truncation point as t1, the discarded

historical yields as (y1, . . . , yt1−1), and the recent yields as (yt1 , . . . , yT ). Note, the discarded and recent yield

sets partition the overall set of yields. The Nadaraya-Watson (NW) or the standard kernel estimator is the

basis of all three estimators presented below. It is defined as:

(9) f̂(y) = (1/Th)

T∑
t=1

K((y − yt)/h),

where K is kernel function assumed to be a square integrable symmetric probability density function with

a finite second moment, h is the bandwidth or smoothing parameter chosen by likelihood cross-validation,

and the summation is over set of interest.11

Bayesian Model Averaging Estimator (BMA)

Bayesian Model Averaging (BMA) has been widely used in the literature to deal with model uncertainty.

For a comprehensive introduction, we refer to Hoeting et al. (1999). In this manuscript, we follow the

estimator proposed in Ker and Liu (2017). In our application, the BMA estimator has the form

(10) f̃(y) = ωrf̂r(y) + (1− ωc)f̂d(y),

where f̂r and f̂d are density estimates from recent and discarded yield data sets respectively and ωr is weight

on recent yields. This weight is defined as

(11) ωc =
exp

{
− 1

2BICr

}
exp

{
− 1

2BICr

}
+ exp

{
− 1

2BICd

} ,
where BICr is the Bayesian information criterion (BIC) of model f̂r with the recent yield data and BICd

is the BIC of model f̂d also with the recent yield data. Note, f̂d is estimated with the historical yield data

11Kernel estimators essentially take a given point and spread the mass, via the kernel, around that point thereby adding
variation. As a result, kernel estimators that use second order kernels (standard normal) have variance greater than the

unbiased sample variance with that bias being of O(T 7/5) (Ker and Goodwin, 2000). This is non-trivial in samples of our
size and can greatly increase the estimated premium rates. We rectify this bias by using a fourth-order kernel that yields an

unbiased second moment in the estimated density.
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but for the BIC the estimate is evaluated using the recent yield data. When uniform priors are assigned

to both models f̂r and f̂d, the weight ωr assigned to the recent yields is determined by likelihood that the

current data (yt1 , . . . , yT ) comes from the estimated model f̂r and f̂d respectively, where the likelihood is

represented by the BICr and BICd. We obtain BIC values by interpreting the standard kernel estimator as

a mixture of normals with means equal to the sample points, variances equal to the smoothing parameter

squared, and equal mixing weights. For a specific normal mixture model Mi, the likelihood that it generates

the yield data D with sample size T (d1, . . . , dT ) can be expressed as

(12) pr(D |Mi) = Li =

T∏
t=1

(1/Th)
∑

φ((dt − yi)/h),

which is the likelihood function of data D under the model assumption Mi that is specified by sample yi

and corresponding bandwidth h. Note, i takes on only two values in our case; the kernel estimate based on

the discarded yields and the kernel estimate based on the recent yields. The advantage of this estimator

is that it converges to the kernel estimate based on the recent yields as T grows, and, it does not require

assumptions about the form or extent of similarity between the recent and discarded yield dgps. That is, the

estimator does not require any assumptions on how similar the discarded yield data is to the more recent

yield data.

Li-Racine Estimator (LR)

The Li-Racine (LR) estimator smooths across mixed data-types; both continuous and discrete. The

continuous component is the random variable of interest, in our case yields, and the discrete component is

the two different time periods (recent and discarded). The LR estimator essentially controls for the relative

weights between the data from within a unit (recent yield data) versus outside the unit (discarded historical

yield data) via a discrete smoothing parameter. The LR estimator has the following form

(13) f̂(y) = (Th)−1


t1−1∑
t=1

(1− λ)K

(
y − yt
h

)
︸ ︷︷ ︸

discarded data

+

T∑
t=t1

λK

(
y − yt
h

)
︸ ︷︷ ︸

recent data

 .
Asymptotic normality of the estimator was established by Racine and Li (2004). They also showed that the

convergence rate of the estimator is the same as the case when there are only continuous random variables.

They show it outperforms the conventional frequency or bin estimator that was previously used to handle

mixed data types. The frequency or bin estimator would correspond to the standard kernel using only the

recent yield data in our case. The key to the LR estimator is that it uses cross-validation to choose the

amount of smoothing between bins. As a result, if the data are very different between bins, LR smooths

very little between bins, and the LR estimator behaves like the bin estimator. Conversely, if the data are
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similar between bins, LR smooths between bins, and gains in efficiency are realized. The estimator has been

widely employed in the literature, including empirical analyses of firm distributions (Huynh et al., 2011),

business formation (Vliamos and Tzeremes, 2012), economic growth (Anderson and Hachem, 2013), risk

analysis (Hernandez and Torero, 2014), health care (Koch and Racine, 2016), and rating crop insurance

contracts (Racine and Ker, 2006). The LR estimator also requires no assumptions about the form or extent

of similarity between dgps. More details about Li-Racine estimator can be obtained from Li and Racine

(2003); Racine and Li (2004); Li, Simar, and Zelenyuk (2016).

Possibly Similar Estimator (PS)

The PS estimator introduced by Ker (2016) is based on the standard kernel estimator but uses extraneous

data to reduce bias. Bias is a function of global curvature and the estimator attempts to reduce the curvature

of the underlying density to be estimated. This is done by first estimating a start density using all available

data, in our case both the discarded and recent yield data, and then nonparametrically correct that start by

only using the recent yield data. The PS estimator has the form:

(14) f̃(y) = ĝ(y)r̂(y) =

T∑
t=t1

1

h(T − t1 + 1)
K

(
y − yt
h

)
ĝ(y)

ĝ(yt)
,

where ĝ is the start estimate with smoothing parameter hp. Note that the summation is only over the recent

yield series although as previously stated ĝ is the kernel estimate based on the entire yield series. Ker (2016)

found the PS estimator to perform very well in small samples. The asymptotic mean integrated squared

error (AMISE) of the PS estimator is less than the standard kernel estimator within the neighborhood is:

(15)

1/4h4(R(g(f/g)′′)−R(f ′′)) + 2(Nhp)
−1
[∫

(K2(u)−K(u)(K ∗K(u))du

]
+(Nhp)

−1
[∫

(K(u)−K ∗K(u))2du

]
< 0,

where u2(K) =
∫
u2K(u)du and R(K) =

∫
K(u)2du.

Games and Simulations Revisited

Retain-Cede Rating Game

We consider possible efficiency gains from using BMA, LR, and PS. We repeat both the retain-cede rating

games and the simulations from known dgps. The basis for comparison is the historically restricted estimates

(densities and premium rates) as our earlier findings suggest truncating the data versus not is more efficient.

That is, for the rating games we assume the RMA uses the premium rates based on the truncated yield

data while the private insurer used BMA, LR, and PS estimators to derive their rates. The game results are

shown in Tables 2 to 5. We maintained both 30-year fixed and maximum KS test statistic truncation rules.

Using BMA, we find the private insurer loss ratio is less than the RMA loss ratio in all nine cases with

the fixed truncation rule and seven of the nine cases with the maximum KS test statistic truncation rule
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(see Table 2). The private insurer loss ratio ranges from 62% to 90% under fixed truncation, and 44% to

106% under KS truncation, of the RMA loss ratio. We find the differences statistically significant in eight

of the 18 cases at the 5% significance level. Under the Holm-Bonferroni method for multiple testing (by

crop across coverage levels at 5% significance), two of five remain significant for corn, three of three remain

significant for soybean, and two of three remain significant for wheat. These results strongly suggest that

private insurers using BMA can recover statistically and economically significant rents by averse selecting

against the RMA. With respect to game 2, BMA rates are more accurate than the restricted rates in 16 of

18 cases of which eight are statistically significant. Interestingly, of the two cases that are not more accurate

using the BMA, one is statistically significant. In Table 5, the mean and median weights assigned by the

BMA estimation method to the recent yield data are given. In general, most of the weight is given to the

recent yield data and very little to the discarded yield data. In fact, for corn and soybean the median weight

is almost zero on the discarded yield data.

Using LR, we find the private insurer loss ratio is less than the RMA loss ratio in six of the nine cases

with both the fixed and flexible truncation rules (see Table 3). The private insurer loss ratio ranges from

53% to 113% under fixed truncation, and 44% to 126% under KS truncation, of the RMA loss ratio. We find

the differences statistically significant in 11 of the 18 cases at the 5% significance level. Under the Holm-

Bonferroni method for multiple testing, all remain significant save one with wheat. These results, consistent

with the BMA results, suggest private insurers using LR can recover statistically and economically significant

rents by averse selecting against the RMA. With respect to game 2, LR rates are more accurate than the

restricted rates in 15 of 18 cases of which eight are statistically significant. None of the three cases where

rates are less accurate are statistically significant. In Table 5, the mean and median weights assigned by the

LR estimation method to the recent yield data are also given. In general, most of the weight is given to the

recent yield data but markedly less so than with the BMA.

Finally, using PS, we find the private insurer loss ratio is less than the RMA loss ratio in six of the nine

cases with the fixed truncation rule and eight of the nine cases with the KS truncation rule. The private

insurer loss ratio ranges from 54% to 112% under fixed truncation, and, 31% to 127% under KS truncation,

relative to the RMA loss ratio. We find the differences statistically significant in eight of the 18 cases at the

5% significance level. Under the Holm-Bonferroni method for multiple testing, all remain significant for corn

and soybean, none for wheat. These results, consistent with both the BMA and LR results, suggest private

insurers using PS can recover statistically and economically significant rents by averse selecting against the

RMA. With respect to game 2, PS rates are more accurate than the restricted rates in 12 of 18 cases of which

seven are statistically significant. None of the six cases where PS rates are less accurate are statistically

significant. Given the construction of the PS estimator, the weight put on the recent versus discarded yield

data cannot be recovered.
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Table 2. Out-Of-Sample Retain-Cede Rating Game, BMA Method

Retained by Loss Ratio Loss Ratio Game 1 Game 2
Crop-Coverage Private (%) RMA Private p-value p-value

Truncated by 30-Year Cutoff:

Corn

70% Coverage 79.8 0.549 0.346 0.0000 0.0037
80% Coverage 74.3 0.495 0.405 0.1509 0.1509
90% Coverage 31.4 0.548 0.493 0.0176 0.1509

Soybean

70% Coverage 66.0 0.670 0.419 0.0000 0.0000
80% Coverage 70.1 0.712 0.571 0.0037 0.0037
90% Coverage 39.2 0.746 0.741 0.0592 0.0592

Winter Wheat

70% Coverage 63.9 1.141 0.752 0.0005 0.0037
80% Coverage 35.9 0.964 0.656 0.0176 0.0592
90% Coverage 8.6 0.937 0.721 0.3036 0.9408

Truncated by Maximum KS Test Statistic:

Corn

70% Coverage 79.0 0.792 0.348 0.0037 0.0000
80% Coverage 73.1 0.601 0.414 0.0176 0.0176
90% Coverage 33.2 0.579 0.539 0.0176 0.1509

Soybean

70% Coverage 69.0 0.776 0.436 0.0000 0.0000
80% Coverage 69.1 0.573 0.679 0.0592 0.0592
90% Coverage 38.4 0.793 0.752 0.1509 0.3036

Winter Wheat

70% Coverage 60.3 1.005 0.917 0.0037 0.0037
80% Coverage 39.1 0.971 0.795 0.0592 0.1509
90% Coverage 10.3 0.976 1.035 0.5000 0.9824

Note: Games conducted over 15 years (2003–2017). Game 1 is the adverse selection game of Ker and McGowan

(2000) and game 2 is the efficiency game of Ker, Tolhurst, and Liu (2016). Reported p-values for both are

binomial and based on annual Bernoulli trial with number of trials equal to 15 and binomial parameter equal

to 0.5 (under null).

Simulations

Recall, we previously estimated the county-crop yield dgps using a time-varying mixture model outlined in

equation 8. In this subsection, we again recover 500 simulated yield series for each county-crop combination

and quantify the estimation error (MISE and RMSE) by sample size (or truncation point). We compare the

bin estimator (standard kernel based on the recent yield only), the BMA estimator, the LR estimator, and

the PS estimator. The results are presented in Figure 6 (70% and 90% coverage levels are in the appendix).

As expected, the errors (MISE and RMSE at all three coverage levels) for all three methods, BMA, LR,
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Table 3. Out-Of-Sample Retain-Cede Rating Game, Li-Racine Method

Retained by Loss Ratio Loss Ratio Game 1 Game 2
Crop-Coverage Private (%) RMA Private p-value p-value

Truncated by 30-Year Cutoff:

Corn

70% Coverage 81.6 0.529 0.354 0.0000 0.0037
80% Coverage 71.0 0.421 0.432 0.5000 0.1509
90% Coverage 27.1 0.512 0.580 0.3036 0.5000

Soybean

70% Coverage 67.4 0.756 0.403 0.0000 0.0000
80% Coverage 69.3 0.667 0.587 0.0037 0.0005
90% Coverage 35.6 0.732 0.769 0.0592 0.1509

Winter Wheat

70% Coverage 68.9 1.336 0.709 0.0005 0.0005
80% Coverage 46.8 0.942 0.778 0.0176 0.1509
90% Coverage 15.7 0.937 0.831 0.0592 0.8491

Truncated by Maximum KS Test Statistic:

Corn

70% Coverage 78.3 0.730 0.355 0.0000 0.0000
80% Coverage 67.7 0.574 0.412 0.1509 0.1509
90% Coverage 26.1 0.580 0.530 0.5000 0.6964

Soybean

70% Coverage 69.7 0.784 0.433 0.0000 0.0000
80% Coverage 67.3 0.551 0.694 0.0592 0.0037
90% Coverage 33.0 0.772 0.794 0.1509 0.1509

Winter Wheat

70% Coverage 63.2 1.034 0.902 0.0005 0.0005
80% Coverage 43.9 0.990 0.813 0.0592 0.0592
90% Coverage 15.2 0.981 0.982 0.3036 0.9408

Note: Games conducted over 15 years (2003–2017). Game 1 is the adverse selection game of Ker and McGowan

(2000) and game 2 is the efficiency game of Ker, Tolhurst, and Liu (2016). Reported p-values for both are

binomial and based on annual Bernoulli trial with number of trials equal to 15 and binomial parameter equal

to 0.5 (under null).

and PS, are bounded above by the bin estimator. Unlike the retain-cede rating game results which suggest

that all three methods perform somewhat similarly, PS appears to perform markedly better than BMA and

LR under this constructed example. Note, the PS estimator is a bias reduction method while the LR and

BMA are variance reduction methods. Also quite interestingly, the minimum appears to be around 1990 or

30 years for the truncation point across all three crops for all three estimators.
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Figure 6. MISE & RMSE by Crop and Smoothing Methodology
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Table 4. Out-Of-Sample Retain-Cede Rating Game, Possibly Similar Method

Retained by Loss Ratio Loss Ratio Game 1 Game 2
Crop-Coverage Private (%) RMA Private p-value p-value

Truncated by 30-Year Cutoff:

Corn

70% Coverage 81.5 0.626 0.341 0.0000 0.0037
80% Coverage 70.1 0.456 0.417 0.5000 0.8491
90% Coverage 29.2 0.540 0.509 0.5000 0.9408

Soybean

70% Coverage 64.6 0.737 0.415 0.0000 0.0000
80% Coverage 69.6 0.562 0.631 0.0592 0.0037
90% Coverage 40.5 0.727 0.769 0.6964 0.9408

Winter Wheat

70% Coverage 71.8 1.239 0.778 0.0176 0.0005
80% Coverage 51.1 0.894 0.839 0.0592 0.0592
90% Coverage 20.1 0.897 0.995 0.5000 0.9408

Truncated by Maximum KS Test Statistic:

Corn

70% Coverage 79.2 1.063 0.325 0.0000 0.0000
80% Coverage 70.1 0.560 0.425 0.0037 0.3036
90% Coverage 31.9 0.588 0.520 0.5000 0.3036

Soybean

70% Coverage 67.1 0.813 0.437 0.0000 0.0000
80% Coverage 67.6 0.546 0.691 0.0592 0.0592
90% Coverage 41.5 0.793 0.758 0.3036 0.8491

Winter Wheat

70% Coverage 70.5 1.092 0.895 0.0176 0.0037
80% Coverage 55.1 1.012 0.838 0.0037 0.0592
90% Coverage 24.1 1.039 0.835 0.5000 0.9408

Note: Games conducted over 15 years (2003–2017). Game 1 is the adverse selection game of Ker and McGowan

(2000) and game 2 is the efficiency game of Ker, Tolhurst, and Liu (2016). Reported p-values for both are

binomial and based on annual Bernoulli trial with number of trials equal to 15 and binomial parameter equal

to 0.5 (under null).

Conclusions

Historical yield data has been utilized in many empirical applications, most notably, applications related

to crop insurance. In general, yield data is adjusted for time-varying lower moments and assumed to have

time-constant upper moments. However, there has been significant innovations in farm management and seed

technologies such that mass has likely moved all around the yield distribution. Not surprisingly, many have

found changes in the upper moments of the yield dgps thus nullifying the standard two-step procedure which

simply corrects for changes in the first two moments. In this manuscript, we attempt to answer the question
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Table 5. Weight Table of BMA and LR Methods

BMA LR
(ωr) (λ)

Crop Mean Median Mean Median

Truncated by 30-Year Cutoff

Corn 0.8376 0.9970 0.8020 0.8959
Soybean 0.8661 0.9932 0.7577 0.8071
Winter Wheat 0.8273 0.9661 0.6805 0.5000

Truncated by Maximum KS Test Statistic:

Corn 0.8867 0.9995 0.8677 0.9744
Soybean 0.8924 0.9982 0.8242 0.9239
Winter Wheat 0.9092 0.9961 0.7617 0.8051

how much historical yield data should be used in empirical analysis. While the answer is dependent on the

crop-region combination, empirical question at hand, loss function, and econometric methodology, we used

a three-prong approach to provide some insight. First, we found statistical evidence, albeit weak, for non-

identical dgps using KS tests; not overly surprising given the test is known to under reject in small samples.

Second, we undertook an out-of-sample retain-cede rating game commonly employed in the literature. We

compared the same rating methodology using the full versus historically truncated yield data. We find strong

evidence the private insurers can gain statistically significant excess rents averse selecting against RMA by

simply restricting the amount of historical yield data in the rating process. While we find less statistical

evidence that truncating produces more accurate rates, we find no evidence that truncating produces less

accurate rates. Third, we simulated yield data from time-varying dgps and recovered the error in estimating

premium rates as well as the conditional yield densities. Recognizing this is a constructed exercise, we find

that error begins to increase after approximately 30 years of historical yield data.

The notion of discarding data in any situation is unappealing. As a result, we considered three flexible

methodologies (BMA, LR, and PS) that allow one to borrow information from like dgps without assuming

the extent or form to which those dgps are alike. We compare these estimators to the results using the

truncated yield series. We find fairly strong evidence the private insurers can gain statistically significant

excess rents averse selecting against RMA by incorporating the historical yield data back into the rating

process in alternative ways. We also find statistical evidence that incorporating the historical yield data

produces rates that are more accurate. Quite interestingly, the estimators significantly downweight the

historical yield data relative to the current yield data. Our simulations from known dgps are also consistent

in that we find efficiency gains may be realized using the BMA, LR, or PS estimators.

Our findings may help clarify for RMA the inconsistency in their rating methodologies. Recall, RMA

uses the yields dating back to the 1950s to rate their area-yield and revenue products but uses only yields

dating back to 1991 to rate their newer shallow loss products. Our results suggest that the latter rating
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methodology appears to be the preferred approach. Finally, our findings support the more recent literature

that chooses to restrict the amount of historical yield data used in their empirical analyses.
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Figure 7. RMSE of Empirical Rate by Crop and Detrending Methodology
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Figure 8. RMSE by Crop, Coverage Level, and Smoothing Methodology


