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Superfund Cleanups and Children’s Lead Exposure 

 

Heather Klemick, Henry Mason, and Karen Sullivan 

 

 

Abstract:  This study evaluates the effect of EPA’s Superfund cleanup program on children’s 

lead exposure. We linked two decades of blood lead level (BLL) measurements from children in 

six states with data on Superfund sites and other lead risk factors. We used quasi-experimental 

methods to identify the causal effect of proximity to Superfund cleanups on rates of elevated 

BLL. We estimated a difference-in-difference model comparing the change in elevated BLL of 

children closer to versus farther from lead-contaminated sites before, during, and after cleanup. 

We also estimated a triple difference model including children near hazardous sites with minimal 

to no lead contamination as a comparison group. We used spatial fixed effects and matching to 

minimize potential bias from unobserved differences between the treatment and comparison 

groups. Results indicate that Superfund cleanups lowered the risk of elevated BLL for children 

living within 2 kilometers of lead-contaminated sites 8 to 18 percent.  
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Superfund Cleanups and Children’s Lead Exposure1 

Heather Klemick

, Henry Mason*, and Karen Sullivan** 

 

Blood lead levels in the United States have significantly declined over the last 40 years due to 

the phaseout of lead in gasoline, residential paint, food cans, plumbing, and pesticides. Yet, there 

is no known safe level of lead exposure, and hundreds of thousands of children are still affected 

by legacy contamination (CDCa). Lead is a neurotoxicant with well-established detrimental 

effects on children’s cognitive function and behavior. It also damages children’s and adults’ 

neurological, cardiovascular, kidney, developmental, and reproductive functions (U.S. EPA 

2013). Lead remains an ongoing multi-media children’s health problem, with continued exposure 

from deteriorated paint in older homes; water systems with leaded pipes; cosmetics, toys, and 

other consumer products; and legacy soil contamination.  

Lead also is one of the most prevalent contaminants at Superfund sites (ATSDR 2017a), 

affecting more than 700 sites across the nation. The federal Superfund program was established 

in 1980 to identify, fund, and oversee the cleanup of the most contaminated sites in the United 

States. The effects of the program nationally on childhood lead poisoning are unknown. Site-

specific studies of changes in blood lead levels (BLL) resulting from Superfund remediation 

have focused on a handful of the most severe cases of lead contamination, particularly at mining 

and smelter sites (Murgueytio et al. 1996, 1998; von Lindern et al. 2003; Lanphear et al. 2003; 

U.S. EPA “Lead at Superfund Sites: Examples of Superfund Site Cleanups”).  These studies 

showed that children’s BLL dropped substantially during remediation efforts. For example, at the 

                                                           
1 The data used in this study were acquired from the following institutions: Massachusetts Department of Public 

Health, Michigan Department of Health and Human Services, Missouri Department of Health and Senior Services, 

North Carolina Division of Public Health, Rhode Island Childhood Lead Poisoning Prevention Program, Wisconsin 

Division of Public Health, Zillow, Inc., EPA’s Office of Land and Emergency Management, and the Agency for 

Toxic Substances and Disease Registry. The contents of this document, including analysis, interpretation, and 

conclusions, are solely the responsibility of the authors and do not represent the official views of these institutions or 

of the Environmental Protection Agency. We thank John Burchette, Michelle Burgess, Ann Carroll, Stiven Foster, 

Keith Fusinski, Kevin Koporec, Larry Zaragoza, and Ron Shadbegian for their comments on a draft version of the 

manuscript.  

* U.S. Environmental Protection Agency, Office of Policy, National Center for Environmental Economics,  

Contact: klemick.heather@epa.gov  

** U.S. Environmental Protection Agency, Office of Land and Emergency Management, Office for 

Communications, Partnerships, and Analysis  

 

mailto:klemick.heather@epa.gov
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Bunker Hill Mining & Metallurgical Complex Superfund site in Smelterville, Idaho, average 

BLL concentrations among children living in nearby communities fell from approximately 64 

μg/dL to 2.7 μg/dL during 1974-2001. Such results may or may not be generalizable to the 

hundreds of other Superfund sites with varying exposure pathways and degrees of 

contamination. They also do not isolate the contribution of Superfund from other reductions in 

lead exposure sources (such as leaded gasoline) that may have occurred during the same time 

frame.    

Over the last decade, a robust literature has developed that has used quasi-experimental 

statistical techniques to examine the effects of Superfund and other contaminated site cleanups 

on property values, showing that homes located near contaminated sites rise in value after 

cleanup (Zabel and Guignet 2012; Guignet 2013; Gamper-Rabindran and Timmins 2013; 

Guignet et al. 2016; Haninger et al. 2017; Timmins 2017). Studies examining the impacts of 

cleanups on cognitive performance and health outcomes are more limited. A study on infant 

health in five states found that Superfund cleanups reduced the incidence of congenital 

anomalies by roughly 20-25 percent among children living within 2 kilometers (km) of a 

contaminated site relative to those living 2-5 km from a contaminated site at birth (Currie et al. 

2011). Research on Superfund sites in Florida showed significant positive effects on long-term 

cognitive and developmental outcomes after cleanup for children who lived within 2 miles (3.2 

km) of a site at birth (Persico et al. 2016). Using data from Chile, researchers found that 

attending a school 1 km farther away from a lead-contaminated hazardous waste site 

significantly increased math and language scores for students living within 4 km of the site (Rau 

et al. 2015). We used statistical approaches similar to these studies to examine the effect of 

Superfund cleanups on children’s BLL at sites spanning differing regions, lead contamination 

levels, and potential exposure pathways.  

We developed a unique dataset that links two decades of BLL measurements from 

children in six states with data on the location and characteristics of Superfund cleanups and 

other risk factors for lead exposure. We estimated a difference-in-difference model that 

compares the change in the probability of elevated BLL for children located closer to versus 

farther from lead-contaminated Superfund sites before, during, and after cleanup. We defined 

“close” to a site as living within 2 km, and “farther” as living between 2-5 km.  
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We also estimated a triple difference model that includes children who live closer to and 

farther from Superfund sites that have minimal to no lead contamination as an additional 

comparison group. The intent is to help control for the fact that low-income or disadvantaged 

households are more likely to live near Superfund sites and are also more likely to be exposed to 

lead through other means, such as deteriorated lead paint in older housing. We used spatial fixed 

effects and matching to further minimize the potential for bias due to unobserved differences 

between the treatment and comparison groups. These approaches allow us to control for other 

sources of lead exposure and identify the how much of the reduction in children’s BLLs near the 

sites were attributable to the Superfund program. Results indicate that Superfund cleanup 

lowered the risk of elevated BLL for children living within 2 km of a lead-contaminated site 

between 8 and 18 percent.  

 

The Superfund Program  

 

In the late 1970s, toxic waste dumps such as Love Canal and Valley of the Drums raised public 

concern over the risks to human health and the environment posed by contaminated sites. In 

response, Congress passed the Comprehensive Environmental Response, Compensation and 

Liability Act (CERCLA) in 1980. The law provided the U.S. Environmental Protection Agency 

(EPA) the authority to clean up contaminated sites and to compel parties responsible for the 

contamination to perform cleanups or reimburse the government for EPA-led cleanups. These 

sites include former manufacturing facilities, processing plants, landfills, and mining sites. The 

most common contaminants at these sites include lead, arsenic, and mercury. Contaminated 

media include sediments, soils, groundwater, and air. Under CERCLA, the most contaminated 

sites are assessed and then may be added to the National Priorities List (NPL)—a list of nation’s 

most contaminated and complex hazardous waste sites. As of 2017, there were 1,475 sites on the 

NPL (U.S. EPA 2017).  

There are four major milestones in the NPL cleanup process—proposal, listing, 

construction complete, and deletion. Once a hazardous waste site is identified, EPA conducts a 

preliminary assessment to understand the hazardous substances at the site and the severity of 

risks to human health and the environment. If there are excessive risks to public health due to site 

contamination, EPA may conduct a limited cleanup termed a time-critical removal action. EPA 
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proposes that the site be added to the NPL if the assessment finds severe contamination and the 

site meets certain other criteria. EPA notifies the public by publishing the proposal in the Federal 

Register and providing information to local media outlets and the affected community.  

After listing, a remedial investigation characterizes the extent of contamination, assesses 

all potential threats to human health and the environment, develops cleanup alternatives, and 

evaluates the performance and cost of those alternatives. It can take many years to develop and 

implement a permanent solution. These sites often require complex remedial actions, such as 

restoring contaminated groundwater or protecting wetlands. Construction complete is reached 

when the physical cleanup actions to address all immediate health threats and to bring all long-

term threats under control are finished (US EPA 2018b), although final cleanup levels may not 

have been reached yet. A site or a portion of a site is deleted from the NPL if all cleanup goals 

have been met, long-term monitoring plans are in place, and no further cleanup is required to 

protect human health and the environment. If contamination is managed in place, the Superfund 

Program conducts five-years reviews to ensure the remedy remains protective. Deletion requires 

notification in the Federal Register and solicitation of comments from the public. As of 2017, 

1,195 NPL sites had achieved construction complete, and 394 sites had been deleted from the 

NPL. 

 

Data  

 

The primary data for the study are blood test results for all children age six months to five years 

old screened for lead from the mid-1990s to the mid-2010s in six states: Massachusetts, 

Michigan, Missouri, North Carolina, Rhode Island, and Wisconsin. The concentration of lead in 

blood is the metric most commonly used to assess lead exposure. Blood lead level (BLL), 

measured in micrograms of lead per deciliter of blood (μg/dL), is a useful outcome variable for 

this analysis in part because it is sensitive to recent lead exposure.2   

                                                           
2 The half-life of lead in blood is roughly 30 days, and when exposure to lead drops, BLL typically falls to a new 

equilibrium within a few months. However, the relationship between lead exposure and blood lead is complicated by 

the fact that lead is also stored in bone and can be released from bone to blood over much longer time spans. The 

decline in BLL after a drop in exposure takes longer for highly exposed groups such as occupationally exposed 

workers (U.S. EPA 2013).  
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CDC recommends that states conduct widespread lead screening of children under age 

six. Federal law mandates testing of all children enrolled in Medicaid, though states vary in their 

screening policies, and not all states meet this goal (Safer Chemicals Healthy Families 2017). 

While state screening policies have varied over time, Massachusetts and Rhode Island currently 

require universal BLL testing, and the remainder of the states in our study focus on Medicaid 

recipients and other at-risk children. Figure 1 indicates that screening rates were higher in 

Massachusetts and Rhode Island than the other four states during the study period. 

The state databases also included information about the child’s sex, date of birth, home 

address, month and year of the blood lead test, and blood sample type.3 Figure 1 reports the years 

of data obtained from each state.  

 

Figure 1: Study area and time period  

 

Children in the six states living within 5 km of at least one Superfund site that was added 

to the NPL or achieved construction complete during the study period comprise the sample for 

                                                           
3 Our protocol for linking, managing, and analyzing these confidential data was approved by Institutional Review 

Boards in all six states. The Massachusetts Department of Public Health did not release home addresses to us but 

instead performed all data linkages requiring home address and then transferred partially de-identified data, 

including Census tract, to us. North Carolina did not release month of the blood lead test to us.  



7 
 

our analysis. Our focus on children located within 2 km relative to a control group 2 to 5 km 

from contaminated sites is consistent with past literature, which has found Superfund program 

impacts to be highly localized (Currie et al. 2011; Gamper-Rabindran and Timmins 2013; 

Timmins 2017). We used construction complete rather than deletion as the milestone to define 

"cleaned up," as this is the point when we expect that cleanup efforts have addressed all 

immediate and long-term health threats, and the time between construction complete and 

deletion may be very long.4   

We constructed the key explanatory variables by determining the distance from each 

child's home address to each Superfund site boundary and identifying at what cleanup stage the 

child’s blood lead test occurred.5 The use of individual home addresses increases the precision of 

our distance measure compared to studies that used Census tract or zip code centroid to measure 

distance to environmental hazards (e.g., Persico et al. 2016; Zahran et al. 2017). Polygons 

representing approximate Superfund site boundaries were used for the location of the sites in the 

six study states, as well as sites in Illinois and Iowa that are located within 5 km of the study 

states.6 We generated a 5 km buffer around each polygon and calculated the distance from each 

home address in the blood lead data that fell within the buffer to all sites located within 5 km. 

The distance to the site was recorded as zero when the child’s address fell within Superfund site 

boundaries, which may occur at sites that include residential areas such as active military bases.  

We used data from EPA’s Superfund Enterprise Management System to identify cleanup 

milestone dates, whether lead was found as part of the remedial investigation, and whether lead 

was identified as a “contaminant of health concern” at each site (U.S. EPA 2017).7  A 

                                                           
4 As of 2017, nationally only 29% of NPL sites had been deleted, whereas 89% had reached construction complete. 

Of the sites that have achieved construction complete but have not yet been deleted, on average those sites achieved 

construction complete approximately 15 years ago. 
5 We obtained distances between each child’s home address and each Superfund site using ArcMap Geographical 

Information System software. We were unable to geocode 21% of home addresses across the Michigan, Missouri, 

North Carolina, Rhode Island, and Wisconsin lead screening databases. These addresses included incomplete or 

incorrect information or did not represent an accurate physical location (such as P.O. Boxes). These data were 

dropped from the analysis. The Massachusetts Department of Health geocoded all BLL data and determined 

distances between children’s home addresses and Superfund sites in Massachusetts using a similar process. They 

were unable to geocode about 10% of Massachusetts addresses.   
6 Site boundary polygons were acquired from EPA’s Office of Superfund Remediation and Technology Innovation 

(OSRTI). When site boundary polygons were not available from the existing OSRTI data, we used a combination of 

Agency for Toxic Substances and Disease Registry (ATSDR) Hazardous Waste Site Polygon Data and site-specific 

records containing attachments such as maps and satellite imagery from EPA’s Superfund Enterprise Management 

System (ATSDR 2014; US EPA 2018). 
7 The Superfund Enterprise Management System is the official Superfund tracking and reporting system (replacing 

the Comprehensive Environmental Response, Compensation, and Liability System in 2014).  
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contaminant is identified as a “contaminant of health concern” when a baseline human health 

risk assessment shows that contaminant levels pose a potential risk to human health. A chemical 

does not represent a potential risk when adverse health effects are unlikely, and the probability of 

cancer due to site exposure is very small. Cleanup efforts are designed to manage human health 

and ecological risks at the site at protective levels (U.S. EPA 1989).  

 

Figure 2: Superfund sites in study area where cleanup started or finished during study period 

 

 

The analysis included 87 Superfund sites where lead was identified as a contaminant of 

concern and either were added to the NPL or reached construction complete during the study 

period (Figure 2). This represents approximately 11 percent of NPL sites nationwide where lead 

is a health concern. We also identified 55 sites that were added to the NPL or reached 

construction complete during the study period  where lead was not found at levels that posed a 
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health or ecological concern.8 In the remainder of the paper, we refer to these as “non-lead” sites 

because the cleanup did not address lead, although there is a possibility that low levels of lead 

were present at these sites. The final dataset of all BLL measurements from children living 

within 5 km of at least one of these sites includes over 1.3 million observations (Table 1).  

 

Table 1: Number of BLL observations by Superfund site proximity and contamination status 

Superfund site  Cleanup status          Proximity to sites Total 

contamination  ≤ 2 km 2-5 km   

Lead is a health 

concern 

Before  39,645 74,028 113,673 

During  250,140 372,405 622,545 

After  147,729 363,474 511,203 

Minimal to no 

lead 

contamination  

Before 8,678 29,089 37,767 

During  17,844 67,528 85,372 

After 36,068 124,753 161,037 

Total  467,658 893,684 1,361,342 

*Note: Children may be located near multiple sites at different cleanup stages, so the sum of observations across 

cleanup status categories exceeds the total number of observations.  

 

Figure 3 plots EBLL (defined as BLL above 3.3 μg/dL) in our sample during 2000-2015, 

the period for which we have data from all six states. It compares children in the treatment group 

(located within 2 km of a lead-contaminated Superfund site) to children farther from lead sites, 

close to non-lead sites, and farther from non-lead sites. The figure shows a similar dramatic 

decline in EBLL across all four groups. Unsurprisingly, EBLL rates were highest for children 

closest to lead sites. Children farther from lead sites had slightly lower EBLL rates earlier in the 

study period, though the two groups converge later. Children living within 5 km of non-lead sites 

have lower rates of EBLL than those living within 5 km of a lead site throughout the study 

period. Children living within 2km of non-lead sites had higher EBLL rates than children 205 km 

from non-lead sites. 

                                                           
8 We excluded from our study 32 sites where lead was not classified as a contaminant of concern, but the Superfund 

Enterprise Management System indicated that lead was found and/or ATSDR data indicated that there was a 

completed exposure pathway for lead because we do not know whether cleanup reduced lead contamination at these 

sites. In addition, there were 89 sites in our study area that did not cross a Superfund milestone during the study 

period and so do not help identify the effect of the program (ATSDR 2017b).  
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Figure 3: EBLL over time among children in treatment and control groups

 

The home address at the time of the blood lead test was also used to link BLL 

observations to neighborhood characteristics and other geospatial data such as the location of 

other potential sources of lead exposure. While the most contaminated sites are generally under 

the Superfund program, lead is also a common contaminant at Resource Conservation and 

Recovery Act (RCRA) Corrective Action facilities. EPA develops guidance to assist RCRA 

Corrective Action facilities to conduct cleanups. We obtained data on the location of RCRA 

Corrective Action facilities’ locations and whether lead was removed using RCRA Info, EPA’s 

information system for cradle-to-grave waste tracking for RCRA hazardous waste handlers. 

In contrast to other higher risk contaminated sites, a brownfield is a property for which a 

planned expansion, redevelopment, or reuse may be complicated by the presence or potential 

presence of a hazardous substance, pollutants, or contaminants. EPA’s Brownfields Program has 

provided grants and technical assistance to communities, states, tribes, and other stakeholders to 

prevent, assess, safely clean up, and sustainably reuse brownfields. The presence of brownfields 

could serve as a proxy for an area of general decline and disinvestment with multiple community 

risk factors for lead exposure. We obtained data on the location and lead contamination status of 

federal Brownfields from the Assessment, Cleanup and Redevelopment Exchange System 
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(ACRES), a database for Brownfields grantees to submit data to EPA. Brownfield lead 

contamination status is based on information provided by EPA grantees and does not indicate the 

severity of contamination.9  

For 35% of our sample, we obtained and linked individual property assessment data from 

Zillow, Inc. that included the age of the home.10 Older housing is more likely to contain leaded 

paint and plumbing (Jacobs et al. 2002; Cornwell et al. 2016).11 Exposure to lead in dust from 

deteriorated paint is currently the most common source of lead exposure for children in the U.S. 

(CDCb).  

We obtained data on neighborhood characteristics at the tract level for each child in the 

dataset from the 1990, 2000, and 2010 decennial Censuses and the American Community Survey 

via the Geolytics Neighborhood Change Database, which accounted for the changes in Census 

tract boundaries over time by providing historical data in terms of 2010 boundaries. We also 

used Census data on the population of children age 0-4 along with the state blood lead data to 

estimate the BLL screening rate in each tract.12 We used data on the concentration of lead in 

ambient air, also at the tract level, from EPA’s National Air Toxics Assessment. We used data 

from the Department of Transportation13 to construct a measure of traffic density in 1980 in the 

tract as a proxy for legacy contamination caused by leaded gasoline emissions, which was the 

                                                           
9 Information on brownfield contamination status should be interpreted with caution. The U.S. EPA does not receive 

the results of site assessment or cleanup activities conducted by grantees or oversee their activities; oversight occurs 

under state law. Grantees provide no details on the number or distribution of sampling results or exceedances of risk 

threshold. Therefore, inferences about lead exposures at brownfield sites reported in ACRES are speculative. 
10 Data provided by Zillow through the Zillow Transaction and Assessment Dataset (ZTRAX). More information on 

accessing the data can be found at http://www.zillow.com/ztrax. The results and opinions are those of the authors 

and do not reflect the position of Zillow Group. When possible, we merged Zillow assessment data with BLL data 

based on an exact match of cleaned street address, city, and zip code. We then merged remaining unmatched BLL 

observations to Zillow assessment data using a spatial join in ArcMap, merging BLL addresses to the nearest Zillow 

property within 100 meters. Along with the other data sources, ZTRAX data were used to produce the results shown 

in Tables 2-5, A2-A6, Figure 3, and Figure A1.  
11 The sale of lead paint for residential use was banned in 1978, but it was used most frequently in homes built 

before 1940. Leaded water pipes and fixtures were banned for residential and public use in 1986 and were also more 

common in older housing.  
12 For Michigan, Missouri, North Carolina, Rhode Island, and Wisconsin, we summed the total number of 

successfully geocoded blood lead tests for each child age 0-4 in each Census tract over a multi-year period (typically 

5-8 years) after eliminating repeat tests. We then divided this total by the estimated population of children age 0-4 in 

the Census tract for the corresponding time period. The Massachusetts Department of Health estimated the screening 

rates using a similar process.  
13 We use geospatial data on the lengths of different roadway types in each Census tract from the National Highway 

Planning Network, along with data on 1980 vehicle-miles traveled (VMT) per lane-mile by functional class from the 

Bureau of Transportation Statistics. We multiply road length by VMT per lane-mile for each roadway type and sum 

this product across roadway types within each Census tract to estimate 1980 traffic density.  

http://www.zillow.com/ztrax
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largest source of lead exposure in the 20th century (U.S. EPA 2013). We incorporated data on 

average monthly temperatures by state from NOAA CIRES Climate Diagnostics Center, as 

warmer temperatures are associated with higher lead uptake in children (U.S. EPA 2013).  

Table 2 presents summary statistics for the variables in our analysis. The first two 

columns compare means for the treatment group (observations within 2 km of lead-contaminated 

Superfund sites) and the control group (observations within 2-5 km of lead-contaminated sites 

and within 5 km of non-lead sites). In the next section, we discuss the matching procedure that 

we used in some of our analyses to restrict the sample to the common support in key control 

variables across the treatment and control groups. The remaining columns in Table 2 present 

means for the treatment and control groups from the matched sample, as well as L1 statistics 

measuring imbalance across the two groups for the full and matched samples.  

 

Table 2: Summary statistics for treatment (within 2 km of a lead site) and control (within 2-5 km 

of a lead site or 0-5 km of a non-lead site) groups across full and matched samples  

 Full sample Matched sample with weights 

 ≤ 2 km 

Pb 

Mean  

(SD) 

2-5 km Pb 

or 0-5 km 

non-Pb  

Mean 

(SD) 

L1* ≤ 2 km 

Pb 

Mean   

(SD) 

2-5 km Pb 

or 0-5 km 

non-Pb  

Mean     

(SD) 

L1 

Individual level variables      

Blood lead ≥ 3.3 μg/dL (%) 0.27 

(0.45) 

0.25 

(0.43) 

0.02 0.24 

(0.43) 

0.23 

(0.42) 

<0.01 

Blood lead ≥ 5 μg/dL (%) 0.18 

(0.39) 

0.17 

(0.37) 

<0.01 0.16 

(0.37) 

0.15 

(0.36) 

<0.01 

Male (%) 0.51 

(0.50) 

0.51 

(0.50) 

<0.01 0.51 

(0.50) 

0.51 

(0.50) 

<0.01 

Age (years) 2.04 

(1.41) 

1.97 

(1.39) 

0.02 1.97 

(1.37) 

1.92 

(1.34) 

0.02 

Capillary blood sample (vs. 

venous sample) (%) 

0.63 

(0.48) 

0.55 

(0.50) 

0.11 0.60 

(0.49) 

0.62 

(0.49) 

0.02 

Sample year 2006.7 

(5.75) 

2006.4 

(6.05) 

0.04 2006.6 

(5.90) 

2006.6 

(6.01) 

0.03 

Average monthly temperature 

at time of BLL test** (degrees) 

48.53 

(17.39) 

47.56 

(17.00) 

0.14 48.61 

(17.38) 

47.63 

(17.18) 

0.08 

Number of brownfields sites 

with grantee-reported lead 

contamination ≤ 2 km 

2.08 

(3.68) 

2.28 

(4.57) 

0.26 1.50 

(3.52) 

1.46 

(3.46) 

0.08 

RCRA site with lead ≤ 2 km 

(%) 

0.23 

(0.42) 

0.13 

(0.33) 

0.12 0.18 

(0.38) 

0.15 

(0.35) 

0.05 
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Property built pre-1940*** 

(%) 

0.35 

(0.48) 

0.39 

(0.49) 

0.08 0.30 

(0.46) 

0.29 

(0.45) 

0.03 

Property built 1940-1959***  

(%) 

0.16 

(0.36) 

0.16 

(0.37) 

<0.01 0.15 

(0.40) 

0.16 

(0.37) 

0.02 

Property built 1960-1978***  

(%) 

0.21 

(0.41) 

0.18 

(0.38) 

0.05 0.23 

(0.42) 

0.23 

(0.42) 

<0.01 

Census tract variables      

Housing stock built pre-1940 

(%) 

0.31 

(0.26) 

0.30 

(0.25) 

0.18 0.22 

(0.21) 

0.24 

(0.21) 

0.13 

Housing stock built 1940-1959 

(%) 

0.20 

(0.11) 

0.20 

(0.12) 

0.18 0.20 

(0.12) 

0.21 

(0.11) 

0.14 

Housing stock built 1960-1979 

(%) 

0.23 

(0.13) 

0.24 

(0.14) 

0.16 0.27 

(0.12) 

0.26 

(0.12) 

0.13 

Population receiving public 

assistance (%) 

0.08 

(0.08) 

0.06 

(0.07) 

0.19 0.06 

(0.07) 

0.05 

(0.06) 

0.10 

Population African American 

(%) 

0.12 

(0.20) 

0.14 

(0.19) 

0.20 0.13 

(0.21) 

0.12 

(0.18) 

0.11 

Population Hispanic (%) 0.10 

(0.13) 

0.10 

(0.14) 

0.23 0.08 

(0.12) 

0.09 

(0.15) 

0.10 

Housing stock rental occupied 

(%) 

0.42 

(0.23) 

0.43 

(0.23) 

0.21 0.35 

(0.21) 

0.35 

(0.20) 

0.15 

Adults less than high school 

education (%) 

0.14 

(0.07) 

0.11 

(0.08) 

0.30 0.12 

(0.07) 

0.11 

(0.07) 

0.15 

BLL screening rate (%) 0.45 

(0.28) 

0.46 

(0.25) 

0.33 0.39 

(0.25) 

0.40 

(0.24) 

0.16 

Lead air concentration (μg/m3) 0.002 

(0.02) 

0.001 

(0.003) 

0.08 0.002 

(0.008) 

0.001 

(0.002) 

0.07 

1980 traffic density (miles/ m2) 0.002 

(0.016) 

0.003 

(0.024) 

0.11 0.002 

(0.013) 

0.003 

(0.027) 

0.06 

Observations 405,068 956,274  215,014 382,955  
Observations are weighted by the inverse of the number of blood samples per child. 

*The L1 statistic is a measure of imbalance across the entire distribution of a variable between the treatment and 

control groups. An L1 of 0 indicates that histograms of the variable among the treatment and control groups overlap 

perfectly, while an L1 of 1 indicates that the histograms do not overlap at all.  

**Variable only available for 91% of sample. 

***Source: ZTRAX; Variable only available for 35% of sample. 

 

Econometric Approach 

 

We relied on a difference-in-difference (DiD) quasi-experimental approach to identify the effect 

of Superfund cleanups on children’s lead exposure. Quasi-experiments attempt to mimic the 

design of a randomized controlled trial by comparing a “treatment” group that receives a 

particular intervention (cleanup of a lead-contaminated Superfund site) with a “control” or 

comparison group that does not receive the intervention but is otherwise similar to the treatment 
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group. This approach helps to isolate the impact of the treatment on the outcome of interest 

(children’s BLL).  

Identifying a valid control group when analyzing the effects of environmental programs 

in real-world settings can be challenging. As the environmental justice literature has shown, 

exposure to environmental hazards is rarely random; low-income and minority communities are 

disproportionately affected. This situation holds true in many communities containing Superfund 

sites (Ringquist 2005). Several studies have addressed this challenge by examining 

neighborhoods slightly farther away from contaminated sites as a control group for 

neighborhoods closer or adjacent to these sites (Currie et al. 2011; Gamper-Rabindran and 

Timmins 2013; Guignet 2013; Zabel and Guignet 2012; Guignet et al. 2016).  

In our first model, we used this same approach, comparing the change in the probability 

of EBLL for children located closer to versus farther from lead-contaminated Superfund sites 

before, during, and after cleanup. The DiD sample is comprised of lead test results from children 

who lived within 5 km of a lead-contaminated Superfund site that either started or ended cleanup 

during the study period. (Sites that did not change cleanup status during the study period do not 

help identify the program’s impact.) We estimated an equation explaining the probability that an 

individual child’s BLL was elevated as a function of several measurable characteristics related to 

the child and the child’s neighborhood at the time of measurement. The following equation 

describes this relationship, where 
ijstEBLL  is a dichotomous variable indicating whether child i 

in neighborhood j in state s at time t had an elevated BLL:  

 

0 1 2 3 4

5

ijst it it it it

it s s t ijt

EBLL PBduring PBafter closePBbefore closePBduring

closePBafter

    

 

     

    
6 it 7 jt t j j
β X β Z γ state *Y α FE

        (1) 

 

ijtPBduring  and 
ijtPBafter are indicators that were set equal to one if the child lived within 5 

km of a lead-contaminated site during or after cleanup, respectively, at the time of the blood lead 

test.14 The omitted category captures children living within 5 km of a site before cleanup started. 

The indicators 
ijtclosePBbefore , 

ijtclosePBduring , and 
ijtclosePBafter were set equal to one if the child 

                                                           
14 We use the notation “PB” to indicate lead-contaminated sites following the chemical symbol for lead (Pb).  
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lived within 2 km of a lead-contaminated site before, during, or after cleanup at the time of the 

lead test.15 The before, during, and after cleanup variables are not mutually exclusive if a child lived near 

multiple sites at different stages of cleanup. We also conducted sensitivity analysis regarding the use 

of 2 km to define “close” by examining other distance buffers.  

The vector itX  contains child-specific control variables, including sex, age at the time of 

the blood lead test, state average monthly temperature at the time of the test, blood sample type 

(capillary or venous), and an indicator for whether the lead test was affected by a 2017 Food and 

Drug Administration alert.16 Boys tend to have higher BLL than girls, and BLL varies 

systematically during early childhood due to changes in exposure and absorption, typically 

peaking around age two when children are most likely to exhibit hand-to-mouth behavior 

(National Toxicology Program 2012). Childhood BLL also shows a seasonal pattern, rising in 

the summer due to increased outdoor soil lead exposure (U.S. EPA 2013).  

We included proxies for a few other potential sources of lead exposure measured at the 

individual level in itX . These include a dummy variable for presence of a RCRA Corrective 

Action site with lead and a variable measuring the number of properties with grantee-reported 

lead contamination receiving federal Brownfields grants within 2 km of the child’s address. It is 

important to control for proximity to these sites if they tend to be located near lead-contaminated 

Superfund sites due to past industrial development. We included dummy variables indicating that 

the child lived in older housing constructed before the ban on leaded paint (before 1940, 1940-

1959, and 1960-1978) generated using the ZTRAX individual property assessment data, when 

available. 

Neighborhood characteristics, defined at the level of the Census tract, were included in 

jt
Z . Socioeconomic characteristics that may help predict EBLL include the percent of the 

population receiving welfare assistance, percent African American population, percent Hispanic 

population, percent adult population with less than a high school education, and percent housing 

                                                           
15 Twenty-nine percent of the data are BLL measurements from children who lived within 5 km of more than one 

Superfund site. Our results are robust to the exclusion of these observations.  
16 Capillary (“finger prick”) samples are easier to collect, but they are more susceptible to contamination during 

collection (U.S. EPA 2013; Parsons, Reilly, and Esernio-Jenssen 1997). However, in 2017, the Food and Drug 

Administration issued a warning that blood lead tests performed on venous samples with a Magellan Diagnostics 

Inc. LeadCare Testing System yielded false negatives (FDA 2017 

https://www.fda.gov/medicaldevices/safety/alertsandnotices/ucm558733.htm). One half of one percent of our 

sample is affected by this alert.  

https://www.fda.gov/medicaldevices/safety/alertsandnotices/ucm558733.htm


16 
 

stock that is renter-occupied. We also included percent of the housing stock constructed before 

1940, during 1940-1959, and during 1960-1979 to help control for lead exposure from dust and 

water in the home since we were unable to obtain individual housing age data for our full 

sample. Other variables include concentration of lead in ambient air, the blood lead screening 

rate, and 1980 traffic density. We also included an interaction between 1980 traffic density and 

years since 1980 to account for the potential decline in importance over time of this source of 

legacy contamination. Recent literature has shown similar characteristics to be predictive of 

children’s blood lead levels measured by state surveillance data (Zahran et al. 2017; Schultz et 

al. 2017; Aizer and Currie 2017). We included these control variables to help mitigate the 

potential for omitted variable bias that would result if the location of lead-contaminated 

Superfund sites and timing of cleanup are correlated with other determinants of lead exposure.  

We included two alternative sets of spatial fixed effects to control for time invariant 

neighborhood characteristics that affected lead exposure. The first set of fixed effects represents 

the nearest Superfund site or site group. For 71% of the dataset, this vector captures the nearest 

single Superfund site. The remaining 29% of the dataset represents children living within 5 km 

of two or more Superfund sites. We grouped such sites together when constructing the fixed 

effects because children living near co-located sites may have shared other common 

neighborhood characteristics affecting lead exposure. Our alternative approach was to define the 

fixed effects at the level of the Census tract, which is a much finer spatial resolution than 

Superfund sites. While Census tract characteristics discussed above mostly vary cross-

sectionally, they also vary over time (except for 1980 traffic density) and so are still identified in 

the Census tract fixed effects model. In the Appendix, we discuss results from a model that used 

individual address-level fixed effects. This model controls for all time-invariant property 

characteristics (such as the presence of leaded paint or plumbing) but has much less power to 

detect the effects of Superfund cleanup.  

Finally, all models included state by year fixed effects. As already noted, lead exposure 

trended steadily downward in the U.S. during the study period. The state by year fixed effects 

capture flexible trends that can vary geographically. 

The coefficients to be estimated are  ,  , and  , and 
ijt  is a normally distributed 

error term. The change from before to after cleanup for those living close to the site (i.e., the first 
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difference) is given by 2 5 3    , while the change from before to after cleanup for those 

living farther away is represented by 2 . The treatment effect—the impact of cleaning up a lead-

contaminated site on EBLL for those living nearest the site, after netting out the trend 

experienced by the control group—is given by 5 3  . 

As already noted, we attempted to isolate the effect of Superfund site proximity and 

cleanup status from other determinants of lead exposure in the DiD model through an extensive 

set of control variables, as well as a treatment group that is likely to experience common trends 

in lead exposure sources as the control group, except for proximity to the Superfund site. 

However, it is still possible that there are unobserved factors that drive lead exposure patterns 

near Superfund sites due to their location in neighborhoods that are often economically 

disadvantaged—and that may experience gentrification or sorting as cleanup occurs (Currie 

2011)—that are not adequately captured in this model.  

Therefore, we extended the DiD analysis to include BLL measurements from children 

who lived within 5 km of Superfund sites where lead was not listed by EPA as a contaminant 

(though it may have been present at low levels). This technique is called difference-in-

difference-in-differences, or triple difference (Wooldridge 2007). The triple difference model we 

estimated is:  

 

0 1 2 3 4 5
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EBLL during after PBbefore PBduring PBafter
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   6 it 7 jt t jβ X β Z γ state *Y α FE ijtj

    (2) 

 

The model included the indicators itduring and itafter to denote living near any Superfund 

site (with or without lead contamination) while cleanup is occurring and once it is complete, 

respectively. It also included indicators for living within 2 km of any Superfund site before, 

during or after cleanup ( itclosebefore , itcloseduring , and itcloseafter , respectively). The triple 

difference estimate of the effect of cleaning up lead-contaminated sites on the probability of 

elevated BLL is given by 11 9  . In addition, 8 6   gives the change in the probability of 

elevated BLL for children living near non-lead Superfund sites. This effect will be non-zero if 
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changing neighborhood demographics, redevelopment patterns, or other factors associated with 

Superfund cleanups systematically affect children’s BLL at sites with minimal to no lead 

contamination.  

We estimated equations (1) and (2) using a linear probability model due to the large 

number of fixed effects. We weighted the regressions by the inverse of the number of blood lead 

tests per child so that the estimates give equal weight to each child in the sample, rather than 

giving more weight to children with repeat tests.17 We clustered standard errors by Superfund 

site group to account for heteroskadasticity across communities. 

We relied on covariate matching as an additional approach to mitigate the potential for 

omitted variable bias. We used coarsened exact matching (CEM) to focus the analysis on BLL 

measurements from children who were similar in terms of key characteristics that are likely to be 

correlated with both lead exposure and proximity to Superfund sites. CEM provides a non-

parametric approach to control for these characteristics by limiting the analysis to observations 

with a common support across the treatment and control groups.  

Using CEM, the researcher “coarsens” continuous covariates into discrete bins. We 

matched on three Census characteristics—percent of housing stock built prior to 1940, percent of 

the population receiving welfare assistance, and percent African American. Housing age, 

poverty, and race are important predictors of children’s BLL and are have been used to target at-

risk communities for BLL screening (Roberts and English 2016; Schultz et al. 2017; Safer 

Chemicals Health Families 2017). We also matched on the number of Brownfields sites with 

grantee-reported land contamination within 2 km, the year of the BLL test, and the closest 

Superfund site.18  

                                                           
17 The mean number of BLL tests per child in the dataset is 2.6. Repeat universal testing was more frequent in 

Rhode Island and Massachusetts than in in Michigan, Missouri, North Carolina, and Wisconsin. Children with BLL 

above the CDC level for public health intervention (10 μg/dL until 2012, 5 μg/dL after 2012) were more likely to 

have repeat tests. 
18 Coarsening involves a tradeoff between sample size and balance (King et al. 2015). We coarsened each Census 

variable using 15 equally spaced cutpoints. Cutpoints for these variables were determined automatically by the CEM 

algorithm, which we ran separately for each state. We coarsened the Brownfields variable using three to four 

cutpoints and the sample year variable using four to nine cutpoints, with more cutpoints used in states with larger 

datasets. We selected the cutpoints for the Brownfields and sample year variables to achieve a similar number of 

observations in each bin. For the DiD model, we used an exact match (no coarsening) for the closest Superfund site 

due to the discrete nature of this variable. For the triple difference model, we implemented a two-step matching 

procedure to ensure similar characteristics across children at lead and non-lead sites within each state in addition to 

similar characteristics across children close to and farther from each individual Superfund site. First, we used the 

procedure described above to match on housing age, welfare, African American, Brownfields, and sample year 
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The procedure allows us to compare observations that are similar along all of these 

dimensions simultaneously. For example, if the matched sample includes a BLL result taken 

during 2002-2003 from a child who lived in a Census tract with a lot of pre-1940 housing and 

welfare recipients and few African Americans, near no Brownfields, and within 2 km of a lead-

contaminated Superfund site in Massachusetts, it must also include a BLL result from a child 

with these same characteristics but located 2 to 5 km from the same Superfund site.  

We implemented the matching procedure using the CEM command in Stata, allowing 

many-to-one matching (Blackwell et al. 2010; Iacus et al. 2012). CEM assigns each observation 

to a stratum defined by a unique value of each of the coarsened covariates simultaneously. It 

drops all observations that fall into strata that do not contain observations from both the 

treatment and control groups. It then generates weights that balance the number of observations 

in each stratum across the treatment and control groups. Observations without a match are 

assigned a weight of zero. We ran the matched regressions using these weights. 

The right half of Table 2 shows summary statistics for the treatment and control groups 

using the matched sample. The matching procedure pruned 56% of observations. Means of most 

covariates are closer across the treatment and control groups using the matched sample compared 

to the full sample. In the full sample, L1 statistics range from < 0.01 to 0.33, indicating moderate 

imbalance in some covariates. After matching, the L1 statistics declined substantially for most 

variables (not just those used in the matching algorithm), with a maximum imbalance of 0.16.19 

In addition, the multivariate L1 statistic representing joint imbalance across the four 

environmental and socioeconomic covariates used for matching (pre-1940 housing, welfare 

recipients, African American population, and Brownfields) fell from 0.84 to 0.45.20  

Measurement error is another potential concern that could bias the estimates of interest. 

Most laboratories report the accuracy of their blood lead tests to be ±2 ug/dL, which is large 

considering that the current population mean is below 1 ug/dL (Caldwell et al. 2017). Because 

our dependent variable is binary, measurement error can lead to inconsistent estimates (as well as 

                                                           
within each state but did not match on the closest Superfund site. After dropping all observations without a match in 

the first step, we re-ran the same matching algorithm, this time including the closest Superfund site as an exact 

match variable.  
19 L1 statistics provide a measure of imbalance across the entire distribution of a variable between the treatment and 

control groups (Blackwell et al. 2010). An L1 of 0 indicates that histograms of the variable among the treatment and 

control groups overlap perfectly, while an L1 of 1 indicates that the histograms do not overlap at all. 
20 Multivariate imbalance is lower in the DiD sample (limited to observations located within 5 km of a lead-

contaminated Superfund site), falling from 0.81 to 0.38 after matching. 
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reduced precision). Measurement error in a binary dependent variable is negatively correlated 

with the error term, so it typically leads to attenuation, biasing the coefficient estimates towards 

the null (Hausman et al. 1998; Meyer and Mittag 2017).  

We also expect error in our measure of exposure to lead from Superfund sites. 

Measurement error in an independent variable also biases the coefficient estimate of that variable 

towards the null (and biases coefficient estimates of colinear variables, though the direction of 

bias depends on the sign of the correlation with the mismeasured variable; Hausman 2001). We 

defined our treatment and control groups using buffers that extend an equal amount in all 

directions from the boundaries of each Superfund site, even though there is likely to be 

heterogeneity in the spatial extent of exposure across sites. Due to data limitations, the Superfund 

exposure variables in our study also fail to account for variation across sites in the type of 

contaminated media or the severity of lead concentration, though we limited our analysis of lead 

sites to those where EPA determined that lead was a contaminant of human health concern. In 

addition, the dates we used to distinguish the periods before, during, and after cleanup may not 

correspond exactly to remediation efforts at the site. Cleanup actions can occur even before sites 

are added to the NPL, especially if severe contamination warrants an emergency response. 

Finally, there may be error in the geocoding of home addresses that we use to measure distance 

to Superfund sites.21 We do not take any formal measures to address attenuation bias in our 

analysis, but it is an important caveat to keep in mind when interpreting our results.  

Selection bias could also affect our results if either blood lead screening or residence at 

an address that could not be geocoded are correlated with exposure to lead-contaminated 

Superfund sites. Our screening rate variable captures both effects. As already noted, 

Massachusetts and Rhode Island are the only states in our study area that currently require 

universal BLL screening, and rates still fall short of 100% in these states. Guidelines in 

Michigan, Missouri, North Carolina, and Wisconsin require screening for all children receiving 

Medicaid and recommend screening for other at-risk children (Safer Chemicals Healthy Families 

2017). Thus, screening was neither comprehensive nor random, but rather was directed towards 

children most likely to have elevated BLL, such as those living in poverty and in older housing.  

                                                           
21 Because our dataset excluded children over age five and most children were tested at age one or two, we do not 

expect the location of schools to drive lead exposure in our sample.  
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To address the potential for bias due to nonrandom screening and/or geocoding success, 

we included the estimated Census tract screening rate as a control variable in the EBLL 

regressions. Our matching procedure also helps to mitigate this issue, since we matched on the 

same types of variables that are used to target at-risk households and neighborhoods. The L1 

statistic for screening rate confirms that matching reduced imbalance in this variable by more 

than fifty percent. Finally, we found that screening rate is uncorrelated with location within 2 km 

of a lead-contaminated Superfund site after conditioning on the other individual and Census tract 

control variables included in equations (1) and (2) (coefficient = -0.0008, p = 0.92). 

 

Results  

 

Table 3 presents the key coefficients estimates from the difference-in-difference model. 

Estimates in columns (1) and (3) use Superfund site fixed effects, and estimates in (2) and (4) use 

Census tract fixed effects. Columns (1) and (2) include the full sample of children living within 5 

km of a lead-contaminated Superfund site, while columns (3) and (4) use the pruned sample and 

weights derived from coarsened exact matching. All four variants of the model yield similar 

results: They show that, prior to the start of cleanup, children living within 2 km of a lead-

contaminated Superfund site had significantly higher rates of EBLL than children living 2-5 km 

away, by 3 to 4 percentage points. During cleanup, the difference between the two groups fell 

and was no longer statistically significant. After cleanup, rates of EBLL among children closest 

to the site were slightly lower than those in the control group, though this effect is only 

statistically significant in column (1). Subtracting the “before cleanup” coefficient from the 

“after cleanup” coefficient to derive the net treatment effect shows that EBLL declined by 3.4 to 

5.1 percentage points relative to the control group.  

Appendix Table A.3 presents the same set of model estimates using a higher value of 5 

μg/dL as the cutoff for EBLL. The results are very similar to those using a 3.3 μg/dL cutoff, 

yielding a net 3.6 to 4.2 percentage point drop in EBLL in the treatment group as a result of 

cleanup.  
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Table 3: Difference-in-difference estimates of the effect of Superfund cleanup on elevated blood 

lead level (≥ 3.3 μg/dL)  
 (1) (2) (3) (4) 

Fixed effects 
Superfund 

site 
Census tract 

Superfund 

site 
Census tract 

Matching No No Yes Yes 

Close Pb before 
0.037** 

(0.013) 

0.044*** 

(0.011) 

0.036*** 

(0.013) 

0.030* 

(0.016) 

Close Pb 

during 

0.007 

(0.005) 

0.009 

(0.007) 

0.003 

(0.006) 

-0.001 

(0.009) 

Close Pb after 
-0.014** 

(0.005) 

-0.003 

(0.006) 

-0.005 

(0.008) 

-0.004 

(0.010) 

R2 0.29 0.30 0.27 0.28 

N 1,046,392 1,046,392 494,473 494,473 

# of groups 68 994 62 683 

All standard errors are clustered at the Superfund site group level. *** p<0.01, ** p<0.05, * p<0.1 

Observations are weighted by the inverse of the number of blood samples per child. 

 

Coefficient estimates for the full set of individual and neighborhood control variables 

highlight other drivers of children’s lead exposure. In fact, many other risk factors have a larger 

effect on EBLL than proximity to a lead-contaminated Superfund site. Appendix Table A.2 

presents these estimates for the Superfund site fixed effects model using the unmatched sample, 

corresponding to column (1) in Table 3. Results are consistent with past literature predicting 

children’s lead exposure patterns (Miranda, Anthopolos, and Hastings 2011; Schwartz et al. 

2017; Zahran et al. 2017; Wheeler et al. 2019). Rates of EBLL were significantly higher among 

boys and children tested at 2 to 3 years old, during warmer months, and using capillary blood 

samples. Housing age was a critical determinant of lead exposure. Children living in pre-1940 

housing were 10 percent more likely to have EBLL than those living in post-1978 housing. 

Housing built during 1940-1978 posed a smaller but still statistically significant risk. Children 

living in housing where the year built is missing from assessment records were also at higher 

risk, which makes sense if these properties tend to be older. Similarly, children living in a 

Census tract where all housing was built before 1940 were 17% more likely to have EBLL, 

though the percent of 1940-1979 housing is not statistically significant relative to the percent of 

housing built after 1979.  
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The Census tract screening rate is also highly predictive of EBLL, confirming that 

screening efforts targeted at-risk children. Children in Census tracts with a higher concentration 

of welfare recipients, African Americans, rental housing, and less educated adults, and a lower 

concentration of Hispanics were at significantly higher risk, even though the coefficients of some 

of these variables may be attenuated by inclusion of the screening rate variable since these 

characteristics were used for targeting. Census tracts with more traffic density in 1980 also had 

higher rates of EBLL, though the effect declined in importance over time since the phase out of 

leaded gasoline, consistent with Aizer and Currie’s (2017) results. Proximity to Brownfields sites 

with grantee-reported lead contamination is another statistically significant risk factor. Ambient 

air lead concentration and location near a RCRA Corrective Action site with lead are not 

significantly predictive of EBLL. While not presented, the spatial fixed effects are highly 

significant, as are state by year fixed effects. All states showed a downward trend in EBLL over 

time, with EBLL dropping by 35 percentage points on average from 2000-2015 after controlling 

for all other covariates.  

Table 4 presents results from the triple difference model. The four sets of estimates again 

correspond to differences in fixed effects and the use of matching. We contrast the rates of EBLL 

for children living near a site with little to no lead contamination (in regular text) with those for 

children near a lead-contaminated site (emphasized in bold text), relative to children farther away 

from each type of site, respectively. The results show that children living near non-lead sites had 

significantly higher rates of EBLL than children living farther from these sites, suggesting that 

risk near Superfund sites may not have been entirely due to contaminants from the site itself. 

Rather, other unobserved risk factors for lead exposure may have been co-located with 

contaminated sites. Once the triple difference model nets out this effect, children within 2 km of 

lead-contaminated sites before cleanup did not have significantly higher rates of EBLL.  

However, EBLL rates diverged between the two groups after cleanup was complete: The 

risk for children located near lead-contaminated sites declined significantly more than for those 

near non-lead sites. This result suggests that Superfund program interventions did result in 

reduced lead exposure, even if the site itself it was not entirely responsible for elevated risk prior 

to cleanup. The net effect is a drop in EBLL of 2.0 to 4.9 percentage points for those close to 

lead sites, depending on the model. The results using an EBLL cutoff value of 5 μg/dL, shown in 

Table A.4, are similar. 
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Table 4: Triple difference estimates of the effect of Superfund cleanup on elevated blood lead 

level (≥ 3.3 μg/dL)  
 (1) (2) (3) (4) 

Fixed effects 
Superfund 

site 
Census tract 

Superfund 

site 
Census tract 

Matching No No Yes Yes 

Close before 
0.020 

(0.013) 

0.036** 

(0.018) 

0.037** 

(0.016) 

0.032* 

(0.017) 

Close during 
0.004 

(0.010) 

0.002 

(0.009) 

-0.004 

(0.006) 

-0.002 

(0.006) 

Close after 
0.021*** 

(0.003) 

0.012** 

(0.005) 

0.024*** 

(0.006) 

0.024*** 

(0.008) 

Close Pb before 
0.015 

(0.019) 

0.021 

(0.021) 

-0.009 

(0.020) 

-0.006 

(0.02) 

Close Pb during 
0.004 

(0.010) 

0.006 

(0.011) 

0.010 

(0.009) 

0.003 

(0.012) 

Close Pb after 
-0.034*** 

(0.006) 

-0.016** 

(0.007) 

-0.029*** 

(0.007) 

-0.027*** 

(0.008) 

R2 0.28 0.29 0.27 0.28 

N 1,327,943 1,327,943 581,412 581,412 

# of groups 98 1355 92 886 

All standard errors are clustered at the Superfund site group level. *** p<0.01, ** p<0.05, * p<0.1 

Observations are weighted by the inverse of the number of blood samples per child. 

 

The triple difference estimates of the net benefits of cleanup are slightly lower but 

generally similar to the estimates from the DiD model. The biggest difference between the two 

sets of estimates is the timing of the effect. The DiD model estimates suggest that EBLL fell 

relative to the control group during cleanup. The triple difference model instead finds that EBLL 

rates did not fall significantly relative to the control group until after cleanup.  

It is not clear which set of estimates is preferable, since each model has advantages. The 

DiD model directly compares children living close to and slightly farther from the same lead-

contaminated sites who are also likely to share other common exposure sources. The triple 

difference estimates help control for systematic drivers of EBLL across Superfund sites broadly, 

since they are based on comparisons to children living near non-lead sites located in other 

communities, which may have other differences in lead exposure. However, at least some of 
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these sites have had low levels of lead present. Using the entire range of estimates from the DiD 

and triple difference models and given an average rate of EBLL of 23.7% among children in the 

treatment group after cleanup, the results imply that EBLL among children in the treatment 

group fell by 8 to 18 percent as a result of Superfund cleanup. 

We present the results graphically to gain insights about the timing of the drop in EBLL 

resulting from cleanup.  Figure 4 plots the mean residuals of a series of EBLL regressions binned 

by time since the cleanup milestones. The regressions were estimated separately for children near 

lead-contaminated sites and for children near non-lead sites and included all control variables in 

itX  and itZ , as well as Superfund site fixed effects, but excluded the Superfund site exposure 

variables. Number of years was calculated as the difference between the blood lead test year and 

the cleanup milestone year. Panel A shows the listing milestone, while Panel B presents 

construction complete. We considered these milestones separately because most sites in our 

sample crossed just one of these milestones during our study period.  

Panel A confirms that EBLL rates among children within 2 km of lead-contaminated sites 

fell relative to those of children 2-5 km away when sites were added to the NPL, but the same 

pattern did not hold at sites with minimal to no lead contamination. It also illustrates that there 

were common trends between children closest to and farther from lead-contaminated sites in all 

unobserved factors affecting EBLL, particularly in the years leading up to the listing of sites on 

the NPL. Panel B shows that EBLL among children within 2 km of lead-contaminated sites was 

also lower relative to children 2-5 km away after construction complete. The drop occurred a few 

years before the construction complete milestone was reached, which makes sense because lead 

would have been removed or contained to limit exposure during cleanup. There was no notable 

change in relative EBLL between children located closer to and farther from non-lead Superfund 

sites when construction complete was reached (though EBLL rates among the two groups 

temporarily converged 5-7 years after construction complete). 
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Figure 4. Probability of EBLL at lead-contaminated and non-lead Superfund sites before and 

after “listing” and “construction complete” cleanup milestones  

 

In the primary analysis, we used 2 km as the cutoff for defining “close” to a Superfund 

site. This definition is somewhat arbitrary, since we do not expect a discrete change in exposure 

at any given distance from the site boundaries, especially when estimating an average effect 

across multiple sites. Research on Superfund in Florida found increases in children’s school 

performance up to 2 miles (3.2 km) away from contaminated sites after cleanup (Persico et al. 
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Note: After regressing the probability of EBLL on characteristics related to the child, the child’s neighborhood, 

state*year dummies, and Superfund site fixed effects, we plotted mean residuals binned by the time from NPL 

milestones and smoothed using lpoly (kernel=epanechnikov, degree=0, bandwidth=1.5). Number of years was 

calculated as the difference between the blood lead test year and the relevant cleanup milestone year (listing 

in Panel A and construction complete in Panel B). The solid line represents observations within 2 km of a site. 

The dashed line represents those within 2-5 km of a site. The left shows results for lead sites, and the right for 

non-lead sites. Observations were weighted by the inverse of the number of blood samples per child. 
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2016). We investigated the robustness of the results by examining 1 km and 3 km as alternative 

cutoffs for defining the treatment and control groups using the DiD model. Table 5 presents these 

results. As expected, the net effect of cleanup is larger using a 1 km cutoff for the treatment 

group compared to a 2 km cutoff; the probability of EBLL fell by 3.7 to 6.7 percentage points. 

When defining 3 km as the treatment group cutoff, the effect is smaller, and the two estimates 

from the matched sample (shown in columns (7) and (8)) suggest that there was no improvement 

in EBLL resulting from cleanup. These results confirm that 2 km is a reasonable cutoff point to 

identify those most affected by Superfund cleanups.  

 

Table 5: Difference-in-difference estimates of the effect of Superfund cleanup on elevated blood 

lead level (≥ 3.3 μg/dL) using alternative distance cutoffs 
 (1) (2) (3) (4) (5) (6) (7) (8) 

“Close” cutoff  1 km    3km   

Fixed effects 
Superfund 

site 

Census 

tract 

Superfund 

site 

Census 

tract 

Superfund 

site 

Census 

tract 

Superfund 

site 

Census 

tract 

Matching No No Yes Yes No No Yes Yes 

Close Pb before  
0.040*** 

(0.007) 

0.046*** 

(0.013) 

0.031*** 

(0.011) 

0.053*** 

(0.011) 

0.016 

(0.015) 

0.013 

(0.014) 

0.008 

(0.015) 

-0.001 

(0.015) 

Close Pb during  
0.011** 

(0.005) 

0.007 

(0.006) 

0.021* 

(0.011) 

0.025* 

(0.013) 

-0.001 

(0.007) 

-0.002 

(0.008) 

0.004 

(0.008) 

0.006 

(0.009) 

Close Pb after  
-0.026*** 

(0.009) 

-0.021*** 

(0.005) 

-0.006 

(0.009) 

-0.010 

(0.010) 

-0.013** 

(0.005) 

-0.006 

(0.005) 

0.010** 

(0.004) 

0.010* 

(0.006) 

R2 0.29 0.30 0.26 0.27 0.29 0.30 0.27 0.28 

N 1,046,392 1,046,392 313,651 313,651 1,046,392 1,046,392 548,506 548,506 

# of groups 68 994 60 533 68 994 65 732 

All standard errors are clustered at the Superfund site group level. *** p<0.01, ** p<0.05, * p<0.1 

Observations are weighted by the inverse of the number of blood samples per child. 

 

We also conducted a sensitivity analysis estimating the DiD and triple difference models 

using property fixed effects, shown in Appendix Tables A.5 and A.6, respectively.22 These 

models compare BLL results from children living at the same address at different points in time. 

The coefficients of interest are only identified at properties where children (usually not the same 

                                                           
22 The net effect in these models is given by the coefficient on the “after cleanup” variable alone, since before 

cleanup is the omitted category.  
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child) were tested for lead before and during, or during and after, cleanup. Thus, the subsample 

used to estimate these models overrepresents children living in multifamily housing, properties 

that change occupancy more frequently, and households with siblings spaced far apart, and it 

may not be representative of all children living near Superfunds sites. These models have much 

less power to precisely estimate effects, since they used only 31% of the sample, and there are 

only six children per address in this subsample (falling to five children in the matched sample). 

The results are qualitatively similar to those from the primary models, though the drop in EBLL 

from cleanup is not always statistically significant. 

 

Estimating National Superfund Benefits 

 

We apply our regression results to quantify partial benefits of the estimated decrease in EBLL 

from Superfund cleanups nationally. Our approach focuses on one outcome, children’s cognitive 

function, that EPA has quantified and monetized in past regulations (e.g., U.S. EPA 2018a). 

There are many other negative child and adult health outcomes associated with lead exposure 

(U.S. EPA 2013) that are not quantified in this analysis. We calculated the increase in the net 

present value of lifetime earnings accruing to one cohort of children living within 2 km of 

Superfund sites where lead was a contaminant of concern and where construction is complete.  

For this exercise, we focus on the Census tract fixed effects triple difference CEM model 

estimate (column (4) in Table 4), since this estimate represents our most comprehensive attempt 

to address potential omitted variable bias. This estimate corresponds to an 8.1% drop in the rate 

of EBLL relative to a baseline without site cleanup.  

To estimate the link between lead exposure and cognitive function, we relied on a 

reanalysis of international pooled data linking BLL and IQ (Crump et al. 2013).23 In order to 

apply this estimate, we converted our estimated change in EBLL rate to a change in mean BLL 

using nationally representative historic data from the National Health and Nutrition Examination 

Survey (NHANES).24  We then estimated the gain in lifetime earnings per child associated with 

                                                           
23 Crump estimated the relationship between BLL and IQ as: IQ = -3.315*ln(BLL+1).  
24 We used NHANES data on children age 1-5 from 1988-2016 to regress geometric mean (GM) BLL on the natural 

log of percent of BLL above 3.3 μg/dL. We estimated that GM BLL = -0.054 + 0.753*ln(EBLL) (N = 11, R2 = 

0.88).  
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the predicted change in IQ using an approach developed by Salkever et al. (1995) and updated by 

U.S. EPA (2018a).25 Assuming that the average child living within 2 km of a lead-contaminated 

Superfund site during 2015-2016 had a BLL equal to the national average level of 0.76 μg/dL, 

we estimated that the child’s BLL would have been 0.063 μg/dL higher and his or her IQ would 

have been 0.12 points lower if cleanup had not occurred.  

There are 581 Superfund sites nationwide where lead was classified as a contaminant of 

concern and that had reached construction complete as of September 31, 2017. We estimated that 

there were 382,061 children age 0-4 living within 2 km of these sites using data from the 2011-

2015 American Community Survey.26  Dividing the number of children by five to represent a 

single year cohort, we estimated a benefit to these children of $173 million, assuming a 3% 

discount rate. The lifetime earnings benefit is only experienced once by each child, but because a 

new cohort of children is affected each year, this value can serve as a rough proxy for the partial 

annual benefits from cleanup. The 581 NPL sites nationally include a similar distribution of site 

types (manufacturing, waste management, mining, etc.) as the 87 lead-contaminated sites 

included in our analysis. Nevertheless, we acknowledge the uncertainty inherent in applying 

estimates based on data from six states to other states with potentially different NPL site 

characteristics and other lead exposure sources.    

We also estimate the range of benefits using all eight econometric models (Figure A1).  

The estimated benefits across these models range from $165 million to $389 million, assuming a 

3% discount rate. These estimates are conservative because they do not account for the decline in 

EBLL during cleanup found in the DiD models. There are more than 380,000 additional children 

living near sites with lead as a contaminant of concern where cleanup is in progress, but 

construction is not yet complete. About 90% of the drop in EBLL occurred during cleanup 

according to the DiD estimates, so accounting for benefits to these children would almost double 

the partial benefit estimates from Superfund cleanup. 

To provide context, we compare these partial benefit estimates to annual Superfund 

expenditures at these sites. From 1980 to 2017, EPA expenditures at these 581 sites totaled $9.62 

                                                           
25 Salkever (1995) estimated that 1-point increase in IQ is associated with a 2.38% gain in lifetime earnings on 

average across males and females. U.S. EPA (2018a) estimated that this gain is equivalent to $19,359 at a 3% 

discount rate for a child age 3 in 2016. 
26 Child counts surrounding these sets of Superfund sites were calculated using Census block group population 

centroids within 2 km of site boundaries. 
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billion, yielding an average annual expenditure of $253 million (authors’ calculations using data 

from EPA OSRTI).27 While estimated annual EPA expenditures fall within the range of the 

estimated annual benefits, we have only quantified one benefit category. Other health benefits 

from reduced lead exposure include improved neurobehavioral, cardiovascular, renal, and 

immunological health in adults and children. Furthermore, cleanup at many of these sites also 

addressed other contaminants such as arsenic, mercury, or polychlorinated biphenyls. Ideally, we 

would have identified the portion of cleanup costs allocated to lead versus other contaminants 

but were unable to do so due to data constraints.  

 

Discussion  

 

Our results provide strong evidence that Superfund cleanups led to reductions in children’s blood 

lead levels near a broad sample of lead-contaminated sites, complementing previous site-specific 

studies (Murgueytio et al. 1996, 1998; von Lindern et al. 2003; Lanphear et al. 2003; U.S. EPA 

“Examples of Superfund Site Cleanups”).  A limitation of our approach is that it does not 

identify which types of interventions were responsible for these benefits. EPA supplements 

engineering approaches that remove or stabilize contaminants with community outreach and 

health education, particularly at sites with lead-contaminated residential areas (U.S. EPA 2003). 

At such sites, EPA works with local public health agencies to educate communities about the 

risks of children’s lead exposure and to identify lead hazards, including sources like deteriorated 

paint and plumbing in the home (U.S. EPA 2003). Therefore, the remediation process has the 

potential to spur reductions in lead exposure from multiple sources. Our estimates of reduced 

blood lead levels represent the combined effect of all interventions related to the Superfund 

program.  

                                                           
27 The EPA expenditure total does not include funds spent by potentially responsible parties (PRPs) at sites where 

the PRP conducts the cleanup. The agency has limited cost data on these sites because PRPs are not generally 

required to maintain or disclose their cleanup costs to the EPA, and they typically consider such cost information to 

be confidential. EPA expenditures from 1980-2017 were adjusted for inflation using the ENR Construction Cost 

Index (CCI) (ENR 2018). All sites did not have expenditure in all 38 years, however, the average total annual 

expenditure at these 581 sites was calculated by dividing the total expenditure at all sites from 1980-2017 by 581 

sites, and then dividing by 38 years. An annual average based on the number of years of actual expenditures at each 

specific site could not be calculated because expenditure data from 1980-1989 were only available as a total for the 

10-year period. To adjust expenditure data from 1980-1989, we used the average annual CCI over the 10-year 

period. 
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Another caveat is that the results represent an average effect across Superfund sites in six 

states. We focused on Massachusetts, Michigan, Missouri, North Carolina, Rhode Island and 

Wisconsin in part due to the availability of blood lead data extending back decades. States with 

longer-running blood lead screening and data collection programs may differ in terms of lead 

exposure patterns from those with less robust screening.28 We also lack sufficient data to assess 

whether these six states differ systematically from other states in terms of NPL site lead 

concentrations or exposure pathways, although we found that the site types in our study area are 

broadly similar to the types of lead sites targeted by Superfund nationally in terms of previous 

use.   

In addition, soil lead contamination—the most common form of contamination at lead 

sites—is subject to different cleanup standards across states. Levels of lead in soil in non-urban 

areas of the US generally range from below 10 parts per million (ppm) to 95 ppm (U.S. EPA 

2013). Federal Superfund program guidance from our study period suggested a preliminary 

remediation goal (PRG) of 400 ppm and recommended using the Integrated Exposure Uptake 

Biokinetic (IEUBK) Model for Lead in Children for setting site-specific risk-based PRGs (U.S. 

EPA 1998). Michigan, North Carolina, and Wisconsin use 400 ppm as a recommended cleanup 

level, while Missouri, Massachusetts, and Rhode Island use more stringent levels, varying from 

150 to 260 ppm. We could not evaluate heterogeneity in soil lead reduction since we lacked data 

on soil lead concentration prior to cleanup and on site-specific cleanup levels. In addition, as 

already noted, blood lead screening varied across states, though we found no evidence that 

screening varied systematically with proximity to Superfund sites after controlling for 

neighborhood sociodemographic characteristics. 

If impacts of cleanup on elevated BLL extended to 5 km or beyond, then our results 

underestimate the benefits of cleanup. While we tested alternative approaches to defining the 

treatment group and found no evidence of effects beyond 2 km relative to children living within 

5 km of Superfund sites, we did not examine the change in elevated BLL rates for children living 

beyond 5 km. We also underestimate benefits in the triple difference model if our comparison 

group included sites with low levels of lead where lead contamination fell as an incidental 

benefit of cleanup—a possibility that we cannot rule out due to data constraints.   

                                                           
28 In recent years, blood lead levels have been lower in the South and West than the Northeast and Midwest after 

controlling for race, poverty, and housing age (Roberts and English 2016). 
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Finally, our identification strategy is designed to isolate the causal effect of Superfund 

program interventions at lead-contaminated sites, but we cannot eliminate the potential for bias 

due to unobserved differences between the treatment and control groups. There is always the 

possibility that other lead policies or sociodemographic trends were responsible for differing 

rates of decline in elevated blood lead levels. However, the fact that lead levels fell more sharply 

near lead-contaminated sites than sites with minimal to no lead suggests that the results are not 

solely attributable to gentrification or other systematic trends in neighborhoods experiencing 

cleanup. Our results also may underestimate the effect of Superfund cleanups given the potential 

for attenuation bias, since our analysis likely measures both EBLL and exposure to Superfund 

sites with error, and the EBLL outcome variable is binary.  

 

Conclusions 

 

We assembled a unique dataset pairing over one million blood lead measurements with data on 

the location and cleanup status of Superfund sites and other lead risk factors in six states to study 

the impacts of the Superfund program on children’s lead exposure. We showed that Superfund 

cleanups at lead-contaminated sites had a measurable impact on children’s blood lead levels. 

Cleanups yielded a 2 to 5 percentage point drop in the probability of elevated BLL for children 

living with 2 km of these sites, which is equivalent to a decline of 8 to 18 percent compared to 

what rates would have been without cleanup. This result is robust to different definitions the 

control group (children farther from lead-contaminated sites or those close to non-lead sites), the 

spatial scale of fixed effects (Superfund site or Census tract), the cutoff for elevated blood lead 

level, and matching on observable characteristics that are strongly predictive of lead exposure.  

Our estimates suggest that partial annual benefits, measured by increased lifetime 

earnings for young children living within 2 km of remediated sites, range from $165 million to $ 

$389 million (assuming a 3% discount rate). This is by no means a comprehensive estimate of 

the benefits of the Superfund program, or even a complete estimate of the benefits from reduced 

lead exposure at Superfund sites, since lead has numerous adverse health effects on children and 

adults (U.S. EPA 2013). While this study finds that proximity to a Superfund site was not as 

large a contributor to elevated BLL as other risk factors like older housing and poverty, it 
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underscores the importance of addressing legacy contamination to continue the progress made in 

reducing children’s lead exposure in recent decades.  
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Appendix 

 

Table A1: Number of observations by state and Superfund exposure status 
Superfund site 

contamination 

Cleanup 

status 

Massachusetts Michigan Missouri North 

Carolina 

Rhode 

Island 

Wisconsin 

Lead is a 

health concern 

Before 33,152 0 28,467 2,350 48,839 865 

During 316,539 52,288 45,257 38,565 130,371 39,525 

After 201,389 174,328 10,680 60,030 32,159 32,530 

No lead 

contamination  

Before 26,108 0 1,017 10,024 0 618 

During  62,641 1,553 7,661 9,441 1,573 2,505 

After 132,159 11,491 5,773 8,042 470 3,096 

Total  658,838 205,874 95,680 125,005 203,202 72,743 

 

. 
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Table A2: Difference-in-difference estimates of the determinants of elevated blood lead level (≥ 

3.3 μg/dL), full set of estimated coefficients (corresponding to Table 3, column (1)) 

Fixed effects Superfund site 

Matching No 

During cleanup -0.007 

 (0.009) 

After cleanup 0.027*** 

 (0.009) 

2 km Pb before cleanup 0.037*** 

 (0.013) 

2 km Pb during cleanup 0.007 

  (0.005) 

2 km Pb after cleanup -0.014** 

  (0.005) 

Male 0.018*** 

 (0.001) 

Sex unknown 0.007 

 (0.011) 

Less than 1 year old -0.074*** 

 (0.011) 

1 year old -0.003 

 (0.008) 

2 year old 0.040*** 

 (0.009) 

3 year old 0.024*** 

 (0.008) 

4 year old 0.014** 

 (0.006) 

Capillary blood sample 0.061*** 

 (0.013) 

Blood sample type unknown -0.057 

 (0.042) 

Test affected by FDA LeadCare alert 0.084*** 

 (0.017) 

Average state temperature in month of blood lead test 0.001*** 

 (0.000) 

Lived within 2 km of lead-contaminated RCRA Corrective Action site  0.003 

 (0.007) 

Number of Brownfields with grantee-reported lead contamination within 2 km 0.003*** 

 (0.001) 

Property not matched to assessment data -0.035*** 

 (0.011) 

Property year built missing  0.068*** 

 (0.012) 

Property built before 1940 0.103*** 

 (0.011) 

Property built 1940-1959 0.025** 

 (0.009) 
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Property built 1960-1978* 0.020*** 

 (0.003) 

Census tract blood lead screening rate 0.227*** 

 (0.043) 

Census tract air lead concentration 0.075 

 (0.163) 

Census tract % population African American 0.063** 

 (0.029) 

Census tract % population Hispanic -0.068** 

 (0.034) 

Census tract % population less than high school education 0.146** 

 (0.071) 

Census tract % receiving public assistance 0.244** 

 (0.095) 

Census tract % rental housing 0.024* 

 (0.013) 

Census tract % housing stock built before 1940 0.165*** 

 (0.016) 

Census tract % housing stock built 1940-1959 0.002 

 (0.015) 

Census tract % housing stock built 1960-1979 0.019 

 (0.018) 

Census tract 1980 vehicle miles traveled density 4.735** 

 (2.235) 

Census tract 1980 vehicle miles traveled density x years since 1980 -0.253** 

 (0.124) 

Constant 0.224*** 

 (0.026) 

State x year fixed effects Included  

N 1,046,392 

R2 0.290 
All standard errors are clustered at the NPL cluster level. *** p<0.01, ** p<0.05, * p<0.1 

Observations are weighted by the inverse of the number of blood samples per child. 

Omitted categories are before cleanup 2-5 km from lead-contaminated site, female, age 5, venous blood sample, and 

property built after 1978. 
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Table A3: Difference-in-difference estimates of the effect of Superfund cleanup on elevated 

blood lead levels (≥ 5 μg/dL cutoff)  
 (1) (2) (3) (4) 

Fixed effects Superfund site Census tract Superfund site Census tract 

Matching No No Yes Yes 

2 km Pb before 

cleanup 

0.029* 

(0.015) 

0.038** 

(0.014) 

0.034** 

(0.013) 

0.030** 

(0.013) 

2 km Pb during 

cleanup 

0.007 

(0.005) 

0.009* 

(0.005) 

0.005 

(0.007) 

0.003 

(0.010) 

2 km Pb after 

cleanup 

-0.013*** 

(0.004) 

-0.002 

(0.004) 

-0.006 

(0.006) 

-0.006 

(0.008) 

R2 0.24 0.25 0.21 0.22 

N 1,077,382 1,077,382 509,643 509,643 

# of groups 68 995 62 684 

All standard errors are clustered at the Superfund site group level. *** p<0.01, ** p<0.05, * p<0.1 

Observations are weighted by the inverse of the number of blood samples per child. 

 

Table A4: Triple difference estimates of the effect of Superfund cleanup on elevated blood lead 

level (≥ 5 μg/dL cutoff)  
 (1) (2) (3) (4) 

Fixed effects Superfund site Census tract Superfund site Census tract 

Matching No No Yes Yes 

2 km before 

cleanup 

0.024 

(0.016) 

0.038** 

(0.019) 

0.027** 

(0.012) 

0.019* 

(0.011) 

2 km during 

cleanup 

-0.001 

(0.015) 

-0.007 

(0.013) 

-0.016 

(0.014) 

-0.015 

(0.014) 

2 km after 

cleanup  

0.022*** 

(0.003) 

0.013*** 

(0.005) 

0.023*** 

(0.005) 

0.023*** 

(0.006) 

2 km Pb before 

cleanup 

0.001 

(0.024) 

0.005 

(0.024) 

-0.001 

(0.017) 

0.008 

(0.019) 

2 km Pb during 

cleanup 

0.010 

(0.015) 

0.015 

(0.013) 

0.022 

(0.015) 

0.018 

(0.016) 

2 km Pb after  

cleanup  

-0.033*** 

(0.005) 

-0.015** 

(0.007) 

-0.029*** 

(0.007) 

-0.029*** 

(0.007) 

R2 0.24 0.25 0.21 0.22 

N 1,361,341 1,361,341 597,969 597,969 

# of groups 98 1358 92 889 

All standard errors are clustered at the Superfund site group level. *** p<0.01, ** p<0.05, * p<0.1 

Observations are weighted by the inverse of the number of blood samples per child. 
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Table A5: Difference-in-difference estimates of the effect of Superfund cleanup on elevated 

blood lead levels using address fixed effects 
 (1) (2) (3) (4) 

EBLL cutoff 3.3 μg/dL 3.3 μg/dL 5 μg/dL 5 μg/dL 

Matching No Yes No Yes 

2 km Pb during 

cleanup 

-0.032* 

(0.018) 

-0.050** 

(0.019) 

-0.025 

(0.028) 

-0.049*** 

(0.016) 

2 km Pb after 

cleanup  

-0.037* 

(0.021) 

-0.072*** 

(0.027) 

-0.030 

(0.026) 

-0.076*** 

(0.025) 

R2 0.53 0.54 0.50 0.50 

N 323,581 137,311 339,456 146,356 

# of groups 50,568 28,389 50,898 28,755 

All standard errors are clustered at the Superfund site group level. *** p<0.01, ** p<0.05, * p<0.1 

Observations are weighted by the inverse of the number of blood samples per child. 

 

Table A6: Triple difference estimates of the effect of Superfund cleanup on elevated blood lead 

levels using address fixed effects 
 (1) (2) (3) (4) 

EBLL cutoff 3.3 μg/dL 3.3 μg/dL 5 μg/dL 5 μg/dL 

Matching No Yes No Yes 

2 km during 

cleanup 

-0.029 

(0.022) 

-0.038 

(0.026) 

-0.020 

(0.025) 

-0.027 

(0.019) 

2 km cleanup 

complete 

-0.027 

(0.025) 

-0.019 

(0.039) 

-0.007 

(0.025) 

-0.004 

(0.020) 

2 km Pb during 

cleanup 

-0.001 

(0.030) 

-0.010 

(0.033) 

-0.004 

(0.039) 

-0.020 

(0.026) 

2 km Pb after  

cleanup  

-0.007 

(0.032) 

-0.046 

(0.055) 

-0.022 

(0.037) 

-0.066* 

(0.036) 

R2 0.51 0.54 0.49 0.51 

N 407,899 162,929 424,336 172,228 

# of groups 64,809 34,519 65,183 34,903 

All standard errors are clustered at the Superfund site group level. *** p<0.01, ** p<0.05, * p<0.1 

Observations are weighted by the inverse of the number of blood samples per child. 
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Figure A1: Partial benefits from cleanup of lead-contaminated Superfund sites: Full ranges of 

estimates  

 
Note: The Difference-in-difference estimates correspond to Table 3, columns (1)-(4). The triple difference estimates 

correspond to Table 4, columns (1)-(4).   
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