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A Flexible Parametric GARCH Model

With An Application To Exchange Rates

Abstract: Many asset prices, including exchange rates, exhibit stable periods punctuated by

substantial, often one-sided adjustments.  Statistically, this generates empirical

distributions of exchange rate changes that often have high peaks, long tails and

are sometimes skewed.  Existing time series estimation methods do not account for

these characteristics satisfactorily.  This paper introduces a  more general GARCH

model, with a flexible parametric error distribution based on the exponential

generalized beta distribution.  Applied to daily U.S. dollar exchange rate data for

six major currencies, the GARCH-EGB2 model uniformly outperforms

conventional GARCH models of exchange rate volatility in sample and generates

superior near-term out-of-sample forecasts.

JEL Codes: C13, C22, F31, G15
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1 Bollerslev, Chou and Kroner (1992) offer a good survey.

2 While we do not develop a formal derivation of the statistical implications of exchange
rate determination models in this paper, it is nonetheless useful to consider this issue empirically.
Taylor (1995) and Obstfeld and Rogoff (1996) offer excellent, formal treatments of exchange rate
determination models. 

I. Introduction

Contemporary modeling of exchange rate time series makes widespread use of generalized

autoregressive conditional heteroskedastic (GARCH) models.1  Not only can GARCH models

capture the volatility clustering often found in exchange rate series, they also accommodate some

of the leptokurtosis (i.e., thick tails) commonly found in exchange rate series.  But GARCH

models with conditionally normal errors generally fail to capture sufficiently the leptokurtosis

evident in asset returns (Bollerslev 1987, Baillie and Bollerslev 1989, Hsieh 1989, Baillie and

DeGennaro 1990, Wang, Barrett, and Fawson 1996).  This has led to widespread adoption of

nonnormal conditional error distributions, most commonly the student-t (Bollerslev 1987,

Bollerslev et al. 1994).

What might cause the unconditional leptokurtosis commonly observed in exchange rate

series and thus motivate use of GARCH modeling?  Economic theories of exchange rate

determination offer two likely explanations.2  The first is the overshooting of floating nominal

exchange rates associated with monetary or fiscal shocks in the presence of sticky prices

(Dornbusch 1976).  The other is speculative attacks against fixed exchange rates (Krugman

1979).  Both models imply infrequent, extraordinarily sharp movements in exchange rates, i.e., the

sorts of movements that appear as long (i.e., fat) tails in a distribution of differenced exchange

rates.  Sharp exchange rate movements do not necessarily imply leptokurtosis, however; they
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3 An alternative way to view this, following Friedman (1953), is to recognize that profit-
maximizing speculators’ transactions stabilize transitory shocks to the exchange rate and
accelerate movement in response to permanent shocks.  If transitory shocks are far more common
than permanent shocks, this will yield an empirical distribution of exchange rate changes that is
high peaked and long tailed.

could imply high variance in the time series.  The key is that sticky prices in floating rate regimes,

and especially fixed exchange rates, also generate modal daily exchange rate changes near zero

(Obstfeld and Rogoff 1996).  The implication is that exchange rate changes are concentrated near

the mean but have long tails, and hence leptokurtosis.3  The choice of a conditional distribution

should accommodate both leptokurtosis and high peakedness in the exchange rate series.  While

the commonly used student-t is a leptokurtic distribution, it is also low-peaked, and perhaps

inappropriate to time-series analysis of exchange rates.

Moreover, skewness might also be important in exchange rate series that exhibit episodes

of sharp depreciation (appreciation) not offset by subsequent sharp appreciation (depreciation). 

There are two likely reasons for such phenomena.  First, permanent shocks that lead to changes in

the equilibrium exchange rate may be asymmetric; rapid improvements in Japanese productivity

over the past thirty years seem an excellent example.  Second, speculative attacks against a

currency tend to be one-sided (causing depreciation/devaluation).  The 1992-3 European,  1994

Mexican, and 1997-98 east Asian currency crises — including attacks against the British pound

and the Italian lira of particular relevance to this study — are good recent examples of such

episodes.  Since significant skewness is often observed in exchange rate series (Boothe and

Glassman 1987, Hsieh 1988, Peruga 1988), it seems advisable to employ estimation methods that
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4 Hansen’s (1994) method does this, but by using a modified student-t distribution, so that
he cannot simultaneously accommodate high peakedness.  Moreover, Hansen’s model depends on
appropriate ex ante lag selection.

accommodate skewness.4

GARCH estimation based on conditional student-t distributions can capture leptokurtosis

in exchange rate series, but fares less well in replicating their high peakedness and skewness.  As a

step toward resolving this deficiency, we introduce a GARCH model with a more flexible error

distribution based on the exponential generalized beta (EGB) family of distributions (McDonald

and Xu 1995).

The plan of the paper is as follows.  Section II introduces the EGB family of distributions,

including the specific variant used in this paper, the exponential generalized beta of the second

kind (EGB2), and then develops a GARCH-EGB2 model.  In section III we estimate time series

models of the U.S. dollar exchange rates for six major industrial economy currencies at daily

frequency.   These exchange rate series exhibit high peakedness,  leptokurtosis, and skeweness. 

The likelihood dominance criterion (for non-nested models), goodness of fit statistics and plots of

the standardized residuals all indicate that the GARCH-EGB2 model systematically outperforms

Gaussian GARCH and GARCH-t models in sample for each of the exchange rate series modeled. 

Section IV discusses the out-of-sample forecasting performance of the GARCH-EGB2 model. 

The concluding section summarizes our findings and highlights some implications for future

research.  

II. The GARCH-EGB2 Model



4

EGB(z;*,F,c,p,q) '
e

p(z&*)
F (1& (1&c)e

(z&*)
F )

q&1

|F|B(p,q) 1% ce
z&*
F

p%q

for & 4 <
z&*
F

< ln
1

1&c

EGB1(z;*,F,p,q) ' EGB(z;*,F,c'0,p,q)

'
e

p(z&*)
F 1& e

p(z&*)
F

q&1

|F|B(p,q)

McDonald and Xu (1995) introduced the five-parameter generalized beta (GB)

distribution and its logarithmic transform, the exponential generalized beta (EGB) distribution. 

The GB includes as special cases familiar distributions (e.g.,  lognormal, logistic, Pareto,

generalized gamma, Burr, and Weibull).  We use the EGB distribution because it can model both

positive and negative random variables, while the GB models just positive random variables. 

The EGB distribution is defined by the probability density function (pdf):

where * is a location parameter that affects the mean of the distribution, F reflects the peakedness

of the density function, p and q are shape parameters that together determine the skewness and

kurtosis of the distribution, and 0#c#1.  Of special interest are the exponential generalized beta

distributions of the first and second kind, EGB1 and EGB2, respectively, which correspond to the

limiting values of c=0 and c=1, respectively, and are alternative representations of the generalized

exponential and generalized logistic distributions, respectively (Johnson and Kotz 1970, Patil et al.

1984).  The associated probability density functions are
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Note that unlike the more general EGB distribution, EGB1 and EGB2 do not involve a

nonlinear inequality constraint for the random variable.  This feature makes numerical estimation

of the latter distributions simpler than for the EGB.  Furthermore, while the higher order moments

of the EGB involve a relatively complex, hypergeometric series, the variance, skewness and

kurtosis of EGB1 and EGB2 are relatively simple expressions.  Table 1 presents equations for the

variance, skewness and kurtosis of the EGB2 distribution employed in the empirical portion of

this paper.  Tractability therefore favors estimating four-parameter EGB1 or EGB2 distributions

over the more general EGB form as long as the c parameter lies near one or zero.  In this spirit

McDonald and Xu (1995, p. 134) find that, “[t]he exponential generalized beta of the second kind

(EGB2) provides the basis for partially adaptive estimation in regression and time series models to

accommodate possibly thick-tailed and skewed error distributions.”  Since the prevailing concern

about existing GARCH exchange rate models is unsatisfactory accommodation of leptokurtosis,

skewness and high peakedness, the EGB or one of its two limiting distributions seems a promising

conditional error distribution.  In order to have a probability density function without restricted

support and because preliminary results of estimating both the EGB and the EGB2 models

suggest c is close to the unit boundary of the parameter space for each exchange rate, with the

EGB2 specification uniformly favored over the EGB by likelihood ratio tests (Table 2), we use

the EGB2 in this study.



6

5 The GARCH(1,1) specification we employ is generally excellent for a wide range of
financial data (Bollerslev, Chou, and Kroner, 1992).  

An extensive literature finds time-varying conditional variance in asset prices, including

exchange rates.  GARCH models are commonly estimated under the assumption that the

standardized residuals are normally distributed.  Yet although the unconditional distribution of a

GARCH process with normal errors is leptokurtic (Engle 1982, Bollerslev 1986) — i.e., its

kurtosis is greater than 3.0, the benchmark value from the normal distribution — Gaussian

GARCH models regularly fail to account adequately for the fat tails found in unconditional asset

price distributions  (Hsieh 1989; Wang, Barrett and Fawson 1996).  As a consequence, many 

researchers now employ nonnormal conditional error distributions, particularly the student-t, in

GARCH modeling.  

Our concern about the GARCH modeling literature on exchange rates is that

accommodation of leptokurtosis but not of the high peakedness or asymmetry commonly found in

exchange rate series may lead to inappropriate choice of conditional error distributions.  Given the

problems associated with quasi-maximum likelihood GARCH estimation (Pagan and Sabau 1987,

Lee and Hansen 1994, Deb 1996), incomplete accommodation of the statistical characteristics of

exchange rates may yield inaccurate estimates of exchange rate dynamics.  We therefore develop a

GARCH model based on a more flexible EGB2 distribution.

We begin by adopting a general autoregressive moving average (ARMA) specification in

the conditional mean equation with GARCH(1,1) errors.5  With the right conditional distribution

to describe the standardized errors, zt, this specification can account for most of the

characteristics observed in empirical financial distributions, including time-varying variance,
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asymmetry, thick tails, and high peakedness.  Denoting a time series dependent variable as yt , the

general form of this model is given by

ARMA(m,n) Conditional Mean Equation:

Nm(L) yt  = µ + Nn(L) ,t  

GARCH(1,1) Conditional Variance Equation:

,t = ht
0.5 zt

E(,2
t | Rt-1) = ht  

= w + "1 ,
2

t-1 +$1ht-1

Conditional Distribution :

,t | Rt-1  - D(0, ht , 0t )  
 

where the N(L) are polynomials in the lag operator of order m and n, respectively, and w, "1, 

$1 > 0 to ensure strictly positive conditional variance. The errors follow the assumed zero mean

conditional density function described by the variance ht, and the parameter vector 0t. The latter

are "shape" parameters, 0t ={p, q} under EGB2, 0t ={L} under the Student-t distribution, and 0t is

the empty set under the normal distribution.  To achieve efficiency, we jointly estimate the

conditional mean and conditional variance equations with the conditional distribution by full

information maximum likelihood using the GAUSS constrained maximum likelihood module.

For the standardized EGB2 distribution with the shape parameters p and q, the log-

likelihood function of GARCH-EGB2 model is 

where 

) =  R(p)   - R(q)
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and R(p) and R'(p) represent digamma and trigamma functions, respectively.  We show the

detailed parameterization of the GARCH-EGB2 model in the technical appendix.  For the

Student-t distribution with < degrees of freedom, the log-likelihood function of GARCH-t model

is, as presented by Bollerslev (1987):

where ' denotes the gamma function.  

By adding just one extra parameter to be estimated, the GARCH-EGB2 model is able to

account not only for the first, second and fourth moments of the conditional distribution of the

variable of interest, as do popular Gaussian GARCH and GARCH-t models, it is also able to

accommodate the third moment and high peakedness.  Although economic theory suggests

skewness and high peakedness should be common to exchange rates, they have been largely

ignored in empirical work to date.  EGB2 incorporates the normal distribution as a limiting case

when p=q approaches infinity.  It is symmetric for p=q and is positively (negatively) skewed for p

> q ( p < q) for F > 0; the skewness results reverse for F < 0.  The EGB2 can accommodate

coefficient of skewness values between -2 and 2 and coefficient of kurtosis values up to 9

(McDonald 1991), which will suffice for most data series, in particular the exchange rate data we

study in this paper.

III. An Empirical Application to Six Daily Exchange Rates

The data are the daily noon spot U.S dollar exchange rate ($/local currency) for the
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6 Unit root test results demonstrating each series is I(1) are available from the authors. 

7 There is no adjustment is made for the weekend or holiday effects, so R indicates the
exchange rate changes between two successive trading days. 

8 E(Rt - F)3/F3, where F is the mean and F is the standard deviation. 

9 E(Rt - F)4/F4, where F is the mean and F is the standard deviation. 

German deutsche mark (DM), British pound(£), Japanese yen(¥), French franc (FF), Belgian franc

(BF) and Italian lira (IL) over the period January 1, 1985, to November 21, 1996 (3016

observations per series), as reported by  the Exchange Rate Service of the Pacific Data Center at

the University of British Columbia (http://pacific.commerce.ubc.ca/xr/).  To achieve stationarity,

we use first-differenced exchange rate series.6  With R > 0 (R < 0) indicating currency

appreciation (depreciation), the data are of the form7

Ri t = ln[Si, t /Si, t-1]* 100

where   Ri t = percentage change in the U.S.$/LC exchange rate of currency i at period t.
Si t = foreign exchange rate of currency i at period t, expressed as U.S.$/LC. 

Table 3 presents descriptive statistics for each exchange rate series, including the

coefficients of skewness8 and kurtosis9, inter-percentile ranges (f0.75-f0.25 and f0.6-f0.4), the Jarque-

Bera asymptotic normality test statistics, and Ljung-Box-Pierce portmanteau test statistics. The

yen, pound and lira all show significant skewness.  The former is likely attributable to permanent

structural shocks that led to the yen’s dramatic appreciation over the sample period.  The negative

skewness in the pound and lira series probably reflect the autumn 1992 speculative attacks that

knocked those currencies out of the European monetary system’s exchange rate mechanism

(ERM). As we will see in section IV, the GARCH-EGB2 model is especially appealing for
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10 These characteristics are evident as well in a graphical appendix available by request
from the authors.

currencies such as these, which exhibit significantly skewed percentage change distributions.  The

higher the coefficient of kurtosis (KUR), the less probability is concentrated around the mean,

meaning that the distribution are more fat-tailed than normal distribution.  For all currencies, the

coefficients of kurtosis are greater than five and significantly different from the reference value of

three drawn from the normal distribution.  The high peakedness of each unconditional distribution

is confirmed by inter-percentile ranges (e.g., f"1 - f"2 indicates the range between the cumulative

probabilities "1 and "2 ).  Given "1 and "2, the lower the value of  f"1 - f"2, the higher the

peakedness of the distribution.  Across all six exchange rates, the value f0.75-f0.25 is uniformly less

than 1.36, the reference range corresponding to the normal distribution. The unconditional

distributions of these exchange rates have higher peaks than does a normal distribution around the

central 50% of probability mass.  The high peakedness is corroborated over the narrower interval 

f0.6 - f0.4, for which all exchange rates’ ranges are less than 0.5, the inter-percentile value of the

standard normal over its central 20% of probability mass.  Given skewness, leptokurtosis and high

peakedness, it is not surprising that the null hypothesis of normality is strongly rejected by the

Jarque-Bera (JB) asymptotic test for each exchange rate.  Table 3 also presents the Ljung-Box

test statistics for autocorrelation in Rit at a lag of 30 trading days (Q(30)), and in squared

exchange rates changes (Q2(30)), the latter serving as a test for GARCH effects.  All the series

exhibit GARCH effects.  In summary, the descriptive statistics of Table 3 suggest the

unconditional distributions of daily exchange rate changes are generally far from the traditional

Gaussian assumption and also exhibit heteroskedasticity of the GARCH form.10  These results are
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consistent with previous empirical findings and economic theory (Boothe and Glassman 1987,

Hsieh 1988, Wang, Barrett and Fawson 1996).

We began estimation by identifying and estimating a common ARMA process for the

stationary Rit.  First, Box-Jenkins techniques were used to reduce the set of prospective ARMA

specifications.  Next, we further narrowed the pool of possible models to those having a p-value

for the Ljung-Box portmanteau Q(30) statistic of greater than 0.3, a significance level clearly

supporting the assumption of white noise.  Finally, we chose the ARMA specification having the

lowest Schwarz Bayesian criterion (SBC)  value from among the candidate models having passed

the Box-Jenkins and Q(30) screens.  In other words, the Ljung-Box Q statistic was used to

identify a few possible models and then the information criterion (SBC) selected the final ARMA

specification for the conditional mean equation.  

 Table 4 reports Ljung-Box portmanteau statistics for the squared standardized residual

(zt) for all currencies under homoskedastic (HOMO), Gaussian GARCH (GARCH), Student-t

GARCH (GARCH-t) and GARCH-EGB2 specifications.  The p-values of the test statistics

(reported in brackets) clearly suggest that each of the GARCH specifications satisfactorily

eliminates the serial correlation in conditional variance found in the homoskedastic model. 

Accommodating volatility clustering is not difficult in these exchange rate data. 

While all the GARCH models appear to accommodate second-order serial correlation

successfully, the issue of nonnormality remains.  Skewness and excess kurtosis of the standardized

residuals persist in all the Gaussian models (m3
GARCH and  m4

GARCH in Table 5), although the

leptokurtic characteristics (m4
GARCH) have generally been muted somewhat relative to the
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11  MilhNj (1987), Hsieh (1989), and MaCurdy and Morgan (1987) found similar results. 

12 The Gaussian GARCH models are uniformly preferable to a homoskedastic null. 

homoskedastic model ( m4
HOMO).11   As discussed in section II, Gaussian GARCH models

inherently capture some unconditional leptokurtosis, but not always enough to represent exchange

rate series accurately. 

As a result, many applied econometricians have turned to using the student-t conditional

error distribution to account for leptokurtosis.  As measured by maximal log-likelihood values or

likelihood ratio test statistics, the GARCH-t and GARCH-EGB2 models appear uniformly

superior to the Gaussian GARCH model in fitting these exchange rate series (Table 6).12   There

are considerable gains to be had from capturing GARCH effects; our point is that there are

considerable further gains to be had from accommodating nonnormal innovations.  Note also the

low estimated values in Table 5 for the degree of freedom parameter, L, in each of the GARCH-t

models ( L$30 indicates asymptotic normality).  Moreover, Table 5 shows that the conditional

kurtosis values predicted by the estimated values for the shape parameters (< in the case of

GARCH-t, p and q for GARCH-EGB2), N4
t and N4

EGB2 under GARCH-t and GARCH-EGB2

assumptions, respectively, are reasonably close to the kurtosis of the standardized residuals (m4
t

and m4
EGB2) for all series except the Japanese yen, where the GARCH-EGB2 model still performs

very well (far better than the GARCH-t).  This suggests that both the conditional Student-t and

EGB2 distributions satisfactorily capture the leptokurtosis of exchange rate movements,

permitting the applied econometrician significant gains in estimation accuracy. 

  The most important weaknesses remaining in the GARCH-t specification, however, are

the apparent asymmetry of the standardized residuals (m3
t…0 in Table 5) and the high peakedness
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observed in the data (Table 3), which the Student-t distribution will systematically fail to capture.

By contrast, the estimated coefficients of skewness in the standardized residuals of the GARCH-

EGB2 model (m3
EGB2) are reasonably close to the predicted coefficients implied by the estimated

distribution parameters p and q (N3
EGB2).  Unlike the conditional distributions commonly assumed

in GARCH modeling — the normal and the Student-t — the more flexible EGB2 distribution

appears to capture well all of the higher-order moments (skewness and kurtosis) observed in

exchange rate series.

The superiority of the GARCH-EGB2 model in capturing the high peakedness inherent to

most exchange rate series is most evident graphically.  Figures 1-6 show paired plots of the

densities of the observed standardized residuals and the corresponding predictions derived from

the estimated shape parameters of GARCH-t (the top of each pair) and GARCH-EGB2 (the

bottom of each pair) models.  These figures clearly show that the observed standardized residuals

generated by the GARCH-t model vary considerably from their assumed distribution, in particular

exhibiting high peakedness, asymmetry, or both.  The empirical density plots for the standardized

residuals of the GARCH-EGB2 model, by contrast, are in remarkable agreement with the

estimated EGB2 probability density functions for each exchange rate.  While the GARCH-t model

is only able to account for the fat tails dimension of nonnormality, the more flexible GARCH-

EGB2 model can also accommodate skewness and high peakedness, which economic theory

suggests are likely important features of exchange rate series, and perhaps other asset and

commodity price series as well.

While both the Student-t and the EGB2 nest within them the normal distribution, enabling

the likelihood ratio tests used in Table 6, GARCH-t and GARCH-EGB2 are not nested within
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each other, so some other criterion must be used to test formally the null hypothesis that the two

models are equivalent in these data.  An appropriate option is the likelihood dominance criterion

(LDC) proposed by Pollak and Wales (1991), which offers an approach to nonnested model

selection consistent with the conventional inferential approach to hypothesis testing.  The idea of

LDC is to nest two nonnested competing models — H1 and H2 — within a fictive composite and

then consider a set of admissible composite parametric sizes.  In most applications, the largest

interesting sizes of the composite should range from one parameter more than the larger

hypothesis (n2+1) to one parameter more than  the sum of the number of parameters in two

hypothesis (n1+n2+1).  In this sense, the LDC model selections rules are as follows:

(i)  LDC prefers H1 to H2 if L2 - L1 < [ C(n2 + 1) - C(n1 + 1) ] /2.
(ii) LDC is indecisive between H1 and H2 if [ C(n2 - n1 + 1) - C(1) ] /2  > L2 - L1 > [ C(n2 + 1) 

- C(n1 + 1) ] /2. 
(iii) LDC prefers H2 to H1 if L2 - L1 > [ C(n2 - n1 + 1) - C(1) ] /2.

where L1, L2 denote the maximum log likelihood values corresponding to the two models, and n1

and n2 are the numbers of parameters in H1 and H2, respectively. LDC also assumes that n1 < n2. 

C(() is the critical values of the chi-square distribution with ( degree of freedom at the pre-

specified significance level.  In most practical situations the LDC proves decisive for model

selection. 

Because GARCH-EGB2 always involves one more parameter than the GARCH-t model,

the value of the criterion ( [ C(n2 - n1 + 1) - C(1) ] /2 ) is fixed at 1.29 for the 1% significance level.

For all six exchange rates, GARCH-EGB2 dominates GARCH-t in the LDC sense (Table 7).  The

superiority of the GARCH-EGB2 specification is especially evident in modeling the pound,  yen

and lira, each of which has a significantly skewed unconditional distribution.  The returns to
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13 The goodness-of-fit test has an asymptotic chi-squared distribution. For each estimated
GARCH-EGB2 model, the test statistics support rejecting the hypothesis that the residuals are
drawn from the assumed distribution at conventional levels of significance. However, this is
common in large sample sizes, where this is a low power test.    

employing a more flexible conditional distribution appear greatest for asymmetric distributions.

The superiority of the GARCH-EGB2 model  is further confirmed by goodness-of-fit test

statistics (Table 8).  These test statistics compare the frequency distribution of the residuals from

the estimated models with the distribution predicted by the estimated distribution shape

parameters, 0t. For each exchange rate, the test statistics for the GARCH-EGB2 model is far less

than that from the GARCH-t model.13

Finally, Table 9 reports the parameter estimates and associated standard errors of the

GARCH-EGB2 models fit to each exchange rate series.  We report two standard errors for each

estimated parameter: a conventional standard error and a White robust standard errors (White

1982). White showed that if the model is correctly specified, the different methods to compute the

covariance matrix of the parameter will be (stochastically) the same.  Our results routinely yield

nearly identical standard error estimates by either method, providing informal evidence that the

GARCH-EGB2 model is correctly specified.

IV.  Out-of-Sample Forecast Performance

In addition to in-sample validation of the superior performance of the GARCH-EGB2

model, we compare its out-of-sample forecast performance against the GARCH-t model.  One,

seven, fourteen and thirty day ahead forecasts were constructed for both models. The choice of

multiple forecast horizons facilitates a comparative assessment of forecast performance across
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14 This forecast methodology is consistent with the idea that agents update forecasts as
new observations become available.

15 Stekler’s (1987) rank-based test was also used to compare the forecast performance
across all horizons. The results were qualitatively similar to the DM test results.

models which potentially have different intertemporal characteristics.  In particular, since the

GARCH-EGB2 better captures the high peakedness of the series’ distribution but longer forecast

horizons increase the probability of drift, we expected the GARCH-EGB2 model’s in-sample

dominance to carry only to short horizons out-of-sample.  At longer horizons, the GARCH-t

model may forecast better precisely because of its inability to capture high peakedness leaves

greater mass on its tails.  Given that most empirical asset price forecasting applications are over

short-run horizons, however, daily forecasts hold the greatest interest to practitioners.

For each currency, both the GARCH-EGB2 and GARCH-t models were estimated over

the in-sample period (January 1, 1985, to November 21, 1996).  Then a forecast was generated 

for each forecast horizon. The next day’s observation was then added to the sample and the

models were reestimated to generate the next set of forecasts.  This sequential updating process

was repeated for 130 new observations (November 22, 1996, to May 29, 1997), generating a

sample of 130 forecasts for the one day horizon, 123 forecasts for the seven day horizon, 116 for

the fourteen day, and 100 for the thirty day horizon..14 

Our assessment of out-of-sample forecast performance is based on four statistics: the

mean absolute error (ABSE), the root mean square error (RMSE), and the Diebold-Mariano

(1995) test statistics (DM) for both the absolute error (DMA) and squared error (DMS) loss

functions (Table 10).15  A positive (negative) value of the DM statistic indicates better (worse)

forecast performance by the GARCH-EGB2 model, as compared against the GARCH-t.  While
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the evidence is clearly mixed and the statistical significance of the forecast differences is weak — 

as reflected in the bracketed p-values for the DM statistics — GARCH-EGB2 outperforms

GARCH-t in four of the six currencies (German mark, British pound, French franc, and Italian

lira) at the one-day forecast horizon by every measure.  Comparative forecast ability is of greatest

interest over short time horizons, particularly given that a forecaster would generally want to

regularly update predictions based on model with a flexible error distribution.  Longer run

forecasts would be of lesser interest.  At seven, fourteen, and thirty-day horizons, the GARCH-t

forecast of the German mark and French franc outperforms the GARCH-EGB2 forecast. Like the

German mark and the French franc, the Japanese yen forecast performance switches dominant

models, but in the opposite direction, with the GARCH-t forecast dominating at the one and

seven-day horizon, mixed results (based on the choice of loss function) at the fourteen day

horizon, and GARCH-EGB2 dominating at the thirty-day horizon. The currencies which provide

reasonably consistent results across forecast horizons are the British pound and Italian lira

(GARCH-EGB2 dominant) and the Belgian franc (GARCH-t dominant).  In summary, the

GARCH-EGB2 is marginally better at out-of-sample forecasting at the one-day horizon, the

GARCH-t is marginally better at the seven and fourteen-day horizon, and mixed results are

evident at the thirty-day horizon. 

V. Conclusions

Although GARCH modeling based on normal or student-t conditional distributions has

proved useful in capturing the volatility clustering and leptokurtosis commonly present in asset

price series, it cannot accommodate other commonly observed stylized effects in high frequency
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exchange rate data, notably high peakedness and skewness.  Since economic theory suggests these

are important statistical characteristics of the underlying series, we propose a GARCH model

based on the more flexible EGB2 distribution.  The GARCH-EGB2 specification can model either

mesokurtic or leptokurtic data and  can accommodate asymmetry, high peakedness, or both.  An

application to daily log changes in six major exchange rates over ten years reveals the GARCH-

EGB2 model significantly outperforms commonly employed specifications in sample and is

marginally better out-of-sample at the one-day forecast horizon.  Since the improvements enjoyed

due to employing a conditional EGB2 distribution are especially pronounced for unconditionally

skewed data series, application to storable commodity price series appear especially promising.  
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Table 1. The moments of the EGB2 distribution
Mean * +F[R(p)-R(q)]
Variance F2[R'(p)+R'(p)]
Skewness (R''(p) - R''(q) )/ (Rr(p) + Rr(q))1.5

Kurtosis [(R'''(p) + R'''(q)) + 3(Rr(p) + Rr(q))2]/ (Rr(p) + Rr(q))2

Note: where R( ),R'( ), R''( ), and R'''( ) are digamma, trigamma, tetragamma, pentagamma
functions, respectively (Davis, 1935). 
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Table 2.  Comparison of EGB and EGB2 Estimation Results

DM £ ¥ FF BF IL

c 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000

LLHEGB 3244.41 3122.94 3087.57 3114.19 3225.66 3109.09

LLHEGB2 3235.40 3078.89 3047.50 3097.70 3210.02 3090.04

LR 18.02* 88.10* 80.14* 32.98* 31.28* 38.10*

c is the parameter estimated from EGB distribution.
LLHEGB and LLHEGB2 represent the negative of the maximal log-likelihood value of the models under the

EGB and EGB2 distributions, respectively.    
LR represents the likelihood ratio test statistic of GARCH-EGB2 model against the
corresponding GARCH-EGB model. 
* denotes statistical significance at the 1% level.
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Table 3. Descriptive Statistics

SK Kur f0.75-f0.25 f0.6-f0.4 JB Q(30) Q2(30)

DM -0.037 5.1 1.13 0.41 566.73* 30.03 391.36
(0.045) (0.09) [0.46] [0.00]

£ -0.12 5.2 1.08 0.40 604.92* 37.98 451.30
(0.045) (0.09) [0.15] [0.00]

¥ 0.286 6.1 1.02 0.38 1282.9* 37.80 233.98
(0.045) (0.09) [0.16] [0.00]

FF 0.02 6.0 1.14 0.39 511.89* 41.16 391.67
(0.045) (0.09) [0.08] 0.00]

BF 0.024 5.0 1.12 0.41 521.53* 41.69 370.85
(0.045) (0.09) [0.08] [0.00]

IL -0.616 8.8 1.14 0.41 4377.65* 33.39 641.75
(0.045) (0.09) [0.31] [0.00]

SK = coefficient of skewness. 
KUR = coefficient of kurtosis (the value for the normal distribution is 3.0)
The asymptotic standard errors of SK and KUR are reported in parentheses and computed as (6/T)0.5 and

(24/T)0.5, respectively. 
JB = Jarque-Bera normality test statistic. 
Q and Q2 represent the Ljung-Box test statistics for up to 30th order serial correlation for each exchange

rate series. Similar results obtain at different orders.  P-values against the null hypothesis of white
noise are reported in brackets.

* denotes statistical significance at the 1% level. 
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   Table 4. Tests for Serially Correlated Conditional Variance

DM £ ¥ FF BF IL

HOMO 403.20 447.50 239.53 404.10 370.75 620.03
[0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

GARCH 29.28 24.36 28.72 25.50 35.82 23.67
[0.50] [0.76] [0.53] [0.70] [0.21] [0.79]

GARCH-t 28.71 24.46 29.06 25.41 34.73 26.22
[0.53] [0.75] [0.52] [0.71] [0.25] [0.66]

GARCH-EGB2 28.96 24.64 29.52 25.50 35.01 25.03
[0.52] [0.74] [0.49] [0.70] [0.24] [0.72]

The figure in brackets is the p-value of the Ljung-Box Q(30) test against the null hypothesis of
no serial correlation. 
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Table 5. Skewness and kurtosis of sample standardized residuals and predicted values 

DM ¥ ¥ FF BF IL

HOMO
m3

HOMO -0.034 -0.100 0.281 0.026 0.036 -0.586

m4
HOMO 5.054 5.053 6.099 4.943 4.966 8.550

GARCH
m3

GARCH 0.075 -0.110 0.464 0.094 0.114 -0.118

m4
GARCH 4.419 4.365 6.154 4.350 4.402 4.745

GARCH-t
m3

t 0.083 -0.108 0.502 0.103 0.127 -0.160

m4
t 4.451 4.345 6.373 4.398 4.462 5.172

N4
t 4.433 4.652 15.49 4.361 4.445 4.680

< 6.093 5.816 4.240 6.210 6.075 5.785

GARCH-EGB2

m3
EGB2 0.083 -0.115 0.502 0.102 0.125 -0.148

N3
EGB2 0.088 -0.071 0.326 0.087 0.076 -0.025

m4
EGB2 4.451 4.395 6.355 4.394 4.457 5.065

N4
EGB2 4.584 4.778 5.356 4.541 4.601 4.909

m3 is the coefficient of skewness of the standardized residuals from the estimated model.
m4 is the coefficient of kurtosis of the standardized residuals from the estimated model.
For each model, the asymptotic standard error of the coefficients of skewness and kurtosis are 0.045 and

0.089, respectively. 
< is the degree of freedom estimate from GARCH-t model.
N4

t is the predicted kurtosis coefficient of student-t distribution = 3 (L -2) / (L - 4 ),  L > 4.
N3

EGB2 is predicted skewness coefficient of EGB2 distribution = [R''(p) - R''(q) ]/ [Rr(p) + Rr(q)]1.5

N4
EGB2 is predicted skewness coefficient of EGB2 distribution = {[R'''(p) + R'''(q)] + 3[Rr(p) + Rr(q)]2}/

(Rr(p) + Rr(q))2
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Table 6.  Comparisons of Alternative Specifications

HOMO GARCH GARCH-t GARCH-EGB2

LLHHOMO LLHGARCH LRGARCH LLHt LRt LLHEGB2 LREGB2

DM -3342.19 -3228.52 227.34* -3163.46 130.12* -3161.31 134.42*

£ -3200.57 -3059.32 282.50* -2991.03 136.58* -2987.83 142.98*

¥ -3236.48 -3121.97 229.02* -2970.24 303.46* -2963.68 316.58*

FF -3197.86 -3085.85 224.02* -3024.20 123.30* -3022.09 127.52*

BF -3309.58 -3201.02 217.12* -3137.07 127.90* -3134.82 132.40*

IL -3251.40 -3078.24 346.32* -3005.76 144.96* -3002.04 152.40*
LLHHOMO, LLHGARCH, LLHt and LLHEGB2 represent the maximal log-likelihood value of HOMO, Gaussian

GARCH, GARCH-t and GARCH-EGB2 models, respectively.  
LRGARCH indicates the likelihood ratio test statistic for the Gaussian GARCH models against the HOMO

model.
The LRt and LREGB2  statistics are for the GARCH-t and GARCH-EGB2 against the corresponding

Gaussian GARCH models, respectively.
* denotes statistical significance at the 1% level (using the P2(3), P2(1) and P2(2) distributions for the

LRGARCH, LRt, and LREGB2,  respectively ).
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Table 7.  Comparisons of GARCH-t and GARCH-EGB2 Models by LDC

nt nEGB2 LLHEGB2 - LLHt [ C(n2 + 1) - C(n1 + 1) ]
/2

[ C(n2 - n1 + 1) - C(1) ] /2

DM 6 7 2.15 0.81 1.29

£ 6 7 3.20 0.81 1.29

¥ 6 7 6.56 0.81 1.29

FF 6 7 2.11 0.81 1.29

BF 8 9 2.26 0.77 1.29

IL 8 9 3.72 0.77 1.29
nt and nEGB2 are the number of parameters in the GARCH-t and GARCH-EGB2 models, respectively.
LLHEGB2 - LLHt is the difference of log-likelihood value between the GARCH-EGB2 and GARCH-t

models. 
[C(n2 + 1) - C(n1 + 1)]/2 is the critical value to determine if GARCH-t is preferred to GARCH-EGB2 when

LLHt is greater than LLHEGB2; whereas [C(n2 - n1 + 1) - C(1)] /2 is used to determine if GARCH-EGB2
is preferred to GARCH-t when LLHEGB2 is greater than LLHt. The critical values are derived from the
P2 distribution evaluated at the 1% significance level.



29

Table 8.  Chi-Square Goodness of Fit Test Statistics 

Currency GARCH-t  GARCH-EGB2
test statistic test statistic

DM 194.41 102.79
£ 197.00 83.45
¥ 364.63 87.04
FF 179.64 81.32
BF 194.76 99.88
IL 239.28 99.82
The test statistics are obtained by evaluating 3(fi-Fi)

2 / Fi , where fi is the observed count frequency of the
standardized residuals, Fi is the predicted count frequency, and i=1,...,40.  The P2 critical value at the 1%
level is 63.69.
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Table 9. Parameter Estimates from GARCH-EGB2 Models 

DM £ ¥ FF BF IL

Conditional  mean equation parameters

C  0.021
(0.012)SE

(0.012)RSE

 0.020
(0.012)SE

(0.011)RSE

 0.023
(0.012)SE

(0.012)RSE

 0.020
(0.012)SE

(0.012)RSE

 0.024
(0.013)SE

(0.013)RSE

 0.014
(0.012)SE

(0.012)RSE

AR(1)  0.378
(0.183)SE

(0.186)RSE

 0.345
(0.183)SE

(0.191)RSE

 0.040
(0.178)SE

(0.189)RSE

 0.392
(0.184)SE

(0.186)RSE

 

AR(3)  0.218
(0.179)SE

(0.180)RSE

AR(6) -0.248
(0.179)SE

(0.183)RSE

 -0.189
(0.174)SE

(0.171)RSE

AR(8) -0.319
(0.177)SE

(0.179)RSE

MA(1)  0.033
(0.019)SE

(0.019)RSE

 0.006
(0.019)SE

(0.019)RSE

Conditional variance equation parameters

w  0.015
(0.005)SE

(0.006)RSE

 0.01
 ( .  )SE

 ( . )RSE

 0.011
(0.004)SE

(0.006)RSE

 0.016
(0.006)SE

(0.007)RSE

 0.015
(0.006)SE

(0.007)RSE

 0.022
(0.007)SE

(0.008)RSE

"1  0.908
(0.018)SE

(0.020)RSE

 0.920
(0.008)SE

(0.009)RSE

 0.922
(0.018)SE

(0.026)RSE

 0.897
(0.021)SE

(0.024)RSE

 0.908
(0.020)SE

(0.024)RSE

 0.876
(0.025)SE

(0.030)RSE

$1 0.065
(0.012)SE

(0.013)RSE

 0.061
(0.010)SE

(0.010)RSE

 0.058
(0.013)SE

(0.017)RSE

 0.071
(0.014)SE

(0.015)RSE

 0.065
(0.013)SE

(0.014)RSE

 0.081
(0.016)SE

(0.019)RSE

Distribution parameters

p  0.746
(0.122)SE

(0.118)RSE

 0.596
(0.099)SE

(0.097)RSE

 0.425
(0.077)SE

(0.077)RSE

 0.775
(0.128)SE

(0.123)RSE

 0.730
(0.122)SE

(0.118)RSE

 0.538
(0.108)SE

(0.131)RSE

q  0.698
(0.112)SE

(0.109)RSE

 0.625
(0.106)SE

(0.103)RSE

 0.351
(0.061)SE

(0.061)RSE

 0.724
(0.117)SE

(0.112)RSE

 0.690
(0.113)SE

(0.110)RSE

 0.548
(0.112)SE

(0.135)RSE

Standard errors reported in parentheses. ( )SE indicate the conventional standard error, while ( )RSE is the
White robust standard error.

(.) indicates the standard error cannot be estimated because the parameter estimate lies on the boundary of
the feasible parameter space.
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Table 10.Comparisons of GARCH-t and GARCH-EGB2 Models for Multiperiod Ahead
Forecasts

1-day horizon 7-day horizon 14-day horizon 30-day horizon

Student-t EGB2 Student-t EGB2 Student-t EGB2 Student-t EGB2

Mark ABSE 0.554 0.552 0.529 0.530 0.517 0.518 0.517 0.519

DMA 1.28   [0.22] -1.29   [0.20] -1.30 [0.20] -1.31 [0.19]

RMSE 0.714 0.711 0.676 0.677 0.663 0.663 0.660 0.661

DMS 1.33   [0.19] -1.12   [0.26] -1.13  [0.26] -1.15 [0.25]

£ ABSE 0.525 0.515 0.482 0.481 0.469 0.469 0.454 0.453

DMA 1.35   [0.18] 0.74   [0.46] 0.88   [0.38]   1.03 [0.30]

RMSE 0.674 0.660 0.624 0.623 0.576 0.575 0.550 0.549

DMS 1.36   [0.18] 0.75  [0.45] 0.68   [0.50] 0.92 [0.36]

¥ ABSE 0.346 0.348 0.496 0.498 0.507 0.509 0.527 0.529

DMA -0.88  [0.38] -1.23   [0.22] -1.19  [0.23] 0.18 [0.86]

RMSE 0.475 0.477 0.700 0.700 0.715 0.715 0.745 0.744

DMS -1.04  [0.30] -0.09   [0.92] 0.16  [0.87] 0.49 [0.63]

FF ABSE 0.534 0.532 0.505 0.507 0.499 0.500 0.494 0.495

DMA 1.31   [0.19] -1.24   [0.21] -1.27  [0.21] -1.29 [0.20]

RMSE 0.682 0.679 0.646 0.647 0.640 0.641 0.628 0.629

DMS 1.33   [0.19] -1.12   [0.26] -1.15  [0.25] -1.18 [0.24]

BF ABSE 0.574 0.578 0.566 0.567 0.535 0.535 0.542 0.543

DMA -1.34  [0.18] -0.27   [0.79] -0.52  [0.6] -1.05 [0.30]

RMSE 0.766 0.770 0.754 0.754 0.706 0.707 0.550 0.549

DMS -1.33   [0.19] -0.39   [0.70] -0.90  [0.37] -0.88 [0.38]

IL ABSE 0.510 0.509 0.470 0.471 0.444 0.442 0.459 0.457

DMA 1.00   [0.32] -1.22  [0.22] 1.36   [0.18] 1.40  [0.16]

RMSE 0.701 0.700 0.682 0.682 0.670 0.669 0.675 0.674

DMS 0.12   [0.90] 0.811 [0.42] 0.988  [0.33] 1.09 [0.28]

Student-t and EGB2 represent the GARCH-t and GARCH-EGB2 models, respectively.  
DMA and DMS represent the Diebold and Mariano statistics for the absolute error and squared error loss functions, respectively

A positive value indicatesGARCH-EGB2 outperforms GARCH-t.  The bracketed statistics are p-values (the null
hypothesis is equal forecast accuracy for both models).

Statistics in bold have p-values# 0.2
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Figures 1-6: Empirical and predicted
distributions of standardized residuals

from alternative GARCH models

Figure 1a: GARCH-t model for German DM
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Figure 1b: GARCH-EGB2 model for German DM



33

0

0.2

0.4

0.6

F
re

q
u

en
cy

S.R.

T

Figure 2a: GARCH-t model for British Pound
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Figure 2b: GARCH-EGB2 model for British Pound
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 Figure 3a: GARCH-t model for Japanese Yen
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 Figure 3b: GARCH-EGB2 model for Japanese Yen
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Figure 4a: GARCH-t model for French Franc
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Figure 4b: GARCH-EGB2 model for French Franc
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Figure 5a: GARCH-t model for Belgian Franc
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Figure 5b: GARCH-EGB2 model for Belgian Franc
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Figure 6a: GARCH-t model for Italian Lira
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Figure 6b: GARCH-EGB2 model for Italian Lira
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Technical Appendix

Following the traditional definition of a GARCH process, suppose that 

,t = ht
0.5 zt (A1)

where {,t } is the error term sequence from the conditional mean equation and {zt} is an i.i.d.
sequence with zero mean and unit variance. Let ht  evolve according to a GARCH(1,1) process

ht = "0 + "1 ht-1 + $1 ,t
2

(A2)
If zt is drawn from a EGB2 distribution, then the density is given by

(A3)

EGB2(,;*,F,p,q) '
exp

p (,&*)
F

|F|B(p,q) (1%e
,&*
F )

p%q

The mean and variance of z are then as follows: 

Var(z) = F2 (R'(p) + R'(q) ) = 1 (A4)
 E(z) = *+ F[R(p) - R(q)] = 0 (A

5)

Hence, solving for F and * in terms of )and S
(A6)

F '
1

Rr(p) % Rr(q)
'

1
S

(A7)

* ' &F [R(p)&R(q)] '&) 1
S

where:
) =  R(p)   - R (q) (A8)
S =  Rr(p) + Rr(q) (A9)

Substituting those expressions for * and F back into the EGB2 distribution yields an EGB2
density function with zero mean and unit variance as 

(A10)

EGB2(z;p,q) '

Sexp(p (z% )

S
) S)

B(p,q)(1%exp((z% )

S
) S))p%q

According to the assumption (A1),



39

EGB2(,;h,p,q) '

Sexp(p (
S

h
,%)))

hB(p,q) (1%exp(
S

h
,%))p%q

 (A11)
,t '

zt

ht

Changing the variable from z to , as follows: (dz = d,/h )

(A12)

EGB2(,;h,p,q) '

Sexp(p (
,

h
%

)

S
) 'S)

hB(p,q) (1%exp((
,

h
%

)

S
) 'S))p%q

Algebraic manipulation then yields

(A13)


