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CONSISTENCY AND OPTIMALITY IN A DYNAMIC GAME

OF POLLUTION CONTROL I:  COMPETITION

Amitrajeet A. Batabyal

ABSTRACT

I model the interaction between a regulator and polluting firms as a Stackelberg

differential game in which the regulator leads.  The firms create pollution, which results in a stock

externality. I analyze the intertemporal effects of alternate pollution control measures in a

competitive industry.  The principal issue here concerns the dynamic inconsistency of the optimal

solution.  Inter alia, I compare the steady state levels of pollution under optimal and under time

consistent policies. 
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CONSISTENCY AND OPTIMALITY IN A DYNAMIC GAME

OF POLLUTION CONTROL I:  COMPETITION

1.  Introduction1

In environmental economics, until very recently, most analyses of the regulation of

externality generating firms have been conducted in a static context.  In such a context, the

externality problem is typically solved by setting a corrective tax equal in magnitude to the

marginal social damage caused by the externality being regulated.  This “Pigouvian” approach

has a long history—see Meade (1952), Newbery (1980), and Cropper and Oates (1992)—and the

Pigouvian tradition is well established in environmental economics.  Unfortunately, however, this

tradition ignores a fundamental aspect of most contemporary regulatory settings, namely, the

interaction between the regulator and the regulated firm over time.  Indeed, time is a key element

in the analysis of regulatory problems in environmental economics.  This means that any

reasonable analysis of environmental regulation must explicitly account for four features which

are germane owing to the dynamic nature of the underlying problem.  The first feature concerns

the inherent conflict in the objectives of the regulating agent and the regulated agent.  The second

feature pertains to the ongoing nature of the interaction between the regulator and the regulated

party.  Third, the question of the dynamic effects of alternate regulatory instruments is relevant.

Finally, because the interaction between the regulator and the regulated party is ongoing, the

parties in the interaction are forward looking, i.e., the future affects the present.  Thus, analyses

of environmental regulation in such a context must address the problem of dynamic inconsistency
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See Batabyal (1995a, pp. 33-37) for a sampling of papers which involve some study of dynamics, although2

not of dynamic inconsistency. 

The modern literature on prices versus quantities begins with Weitzman (1974).  See Batabyal (1995a) for3

a recent survey of many of the important issues in this literature. 

In this paper, competitive means price taking. 4

A companion paper, Batabyal (1995b), focuses on the monopolistic industry case. 5

of adopted regulatory policies.  While the significance of the first feature is generally well

understood, analyses of environmental regulatory problems, which explicitly incorporate all four

of the above features, have been few and far between.2

Given this state of affairs, in this paper I study environmental regulation in a dynamic

context, explicitly incorporating in my analysis, all four features mentioned in the above

paragraph.  An important part of my analysis will consist of studying the effects of alternate price

control instruments.  While there exists a substantial literature on the effects of price versus

quantity control instruments, there has been almost no research on the comparative properties of

alternate price control measures.  In focusing on prices versus prices, I hope to extend the vast

extant literature on prices versus quantities.  3

I model the interaction between a regulator and a competitive,  polluting industry as a4

deterministic Stackelberg differential game in which the regulator leads.   The differential game5

incorporates two important aspects of the regulator/polluter interaction:  first, it explicitly

considers the dynamic nature of the interaction; and, second, it recognizes that the game being

played by the parties at each instance in time is different owing to the evolution of the state. 

The first strand of the analysis in this paper considers dynamically inconsistent policies

in a game in which the state, i.e., the stock of pollution, evolves in a manner known to all the



3

This kind of objective is fairly standard in environmental economics.  See van der Ploeg and de Zeeu w6

(1992, p. 121) for a similar objective. 

players.  A single regulatory regime and two kinds of price control instruments are considered.

In every case analyzed, the production of a certain good causes pollution.  The informational

costs of taxing pollution directly are assumed to be prohibitive.  Further, in setting policy, the

regulator is constrained by the dynamic optimizing behavior of the polluting firms.  As such, the

regulator taxes the production of the polluting good.  The regulator's objective is to maximize the

sum of net benefit and tax revenues.   The two kinds of policies available to the regulator include6

a unit tax and an ad valorem tax.  In comparison with a unit tax, an ad valorem tax often results

in different:  (a) levels of revenue, and (b) welfare effects.  Further, depending on the industry

structure, these two taxes can have very different effects.  For these reasons, I have chosen to

analyze the dynamic effects of these two policy instruments.  This analysis will involve a

comparison of the outcomes of the different games resulting from the use of these two

price-control instruments. 

As I shall show, an important part of this comparative exercise will turn on the

intertemporal consistency of the policies employed by the regulator.  Further, practical

considerations may favor the use of ad valorem taxes over unit taxes.  Finally, the efficacy of

regulatory action will depend fundamentally on whether firm production costs are related to the

stock of pollution. 

In what follows, section 2 describes the Stackelberg differential game.  Section 3 derives

and compares the various open loop policies.  In section 4, I derive dynamically consistent
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policies and compare them to the open loop policies of section 3.  Section 5 offers concluding

comments and discusses directions for future research. 

2.  The Stackelberg Differential Game

My model is a variant of one studied by Karp (1984).  I shall work with a representative

firm which maximizes profits.   is the twice differentiable inverse demand function faced

by the firm.  I assume that  where q is the production rate of the firm.  I shall think

of the firm as facing two kinds of costs associated with production at rate q.  The first kind of cost

depends on the current stock of pollution.  Only a portion of this cost is assumed to be

internalized by the firm.  As an example of such stock-dependent costs, consider the case of

groundwater-based irrigation farming in the San Joaquin Valley of California.  Since groundwater

is used for irrigation, the cost of farming for any single farmer depends on the pumping activities

of other farmers.  That is, a single farmer's cost depends on the stock of groundwater.  Let 

be the internalized average cost of producing one unit of output at time t when the stock of

pollution is   Then  represents the instantaneous, internalized, pollution dependent cost

of producing at rate q.  I assume that  and that   This

stock-dependent cost function is very important, and its properties will have a profound bearing

on virtually all my subsequent results. 

The second kind of cost is independent of the level of pollution.  Let w denote the constant

marginal cost of producing at rate q; thus, wq represents the pollution-independent cost of

producing at rate q.  Let  and  denote the unit and the ad valorem tax, respectively.  The
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Also see van der Ploeg and de Zeeuw (1992, p. 121). 7

firm's payoff in an infinite horizon game in which the regulator uses a unit tax and where r

denotes the interest rate is 

(1)

When the regulator uses an ad valorem tax, the corresponding firm payoff is

(2)

where  

There are three components to the regulator's payoff.  A twice differentiable function B(q)

represents social benefit from production at rate q.  D(x) is a differentiable function which

measures the damage from pollution.  In other words, firms create pollution; the level of this

pollution at time  is   The function  maps this pollution to a measure of environmental

damage for society.   I assume that  and that 7

When the regulator uses a unit tax to control pollution, his payoff is 

(3)

When he uses an ad valorem tax, his payoff is 

(4)

The regulator controls  and  and the firm controls q(t). As the leader, the

regulator announces a time path for the tax which the firm treats parametrically. Both the

regulator and the firm are constrained by the evolution of the stock of pollution which is given

by
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A more general state equation of the type  where  is the “regenerative capacity” of the8

environment, complicates the analysis in two ways.  First, the method used in section 4 to obtain dynamicall y
consistent policies fails when the state equation has this additional term.  Second, other methods of obtainin g
dynamically consistent policies, such as the method used in Karp (1991), result in multiple equilibria.  Sinc e
equilibrium selection is not the principal focus of this paper, I have imposed a uniqueness requirement on th e
equilibrium under study; this requirement is   The imposition of this uniqueness requirement on the above
state equation yields (5). 

(5)

where  is given.  Equation (5) tells us that the evolution of the stock of pollution

is a function of the flow of output.  The environment is assumed to be unable to regenerate itself.8

Depending on the policy employed by the regulator, different levels of steady state

pollution emerge.  One can think of these levels as the outcomes of different games.  One way

of comparing these outcomes is to compare the levels of output and pollution.  In this connection,

I shall say that game 1 results in less pollution than game 2 iff  where  is

the steady state level of pollution in game   Similarly, I shall say that game 1 results

in less output than game 2 iff  where  is the steady state level of output in

game   I can compare the different trajectories of output by deriving a differential

equation which the equilibrium  in each game must satisfy.  When I am able to compare the

trajectories of output without resorting to additional assumptions, I shall do so.  Typically though,

all my comparisons of pollution and output levels will take place in the steady state.  In many

cases it will not be possible to obtain general results. In such cases the analysis concentrates on

special functional forms. 
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3.  The Competitive Industry and Open Loop Taxes

In this section I shall derive the optimal open loop unit and ad valorem taxes for the

regulatory objectives discussed above.  In the class of Stackelberg games considered in this

paper, these taxes are dynamically inconsistent except when the pollution dependent cost function

is constant.  In other words, if the stock dependent cost function is not constant and the regulator

is able—at some time t > 0—to alter the time path of taxes he committed to at t = 0, he would

choose to do so.  This means that open loop taxes will fail to achieve their policy objectives

because a regulator who uses such taxes will not be deemed credible by polluting firms.  This is

an extremely important fact, and I shall have more to say about dynamic consistency in section

4. 

3.1  The Open Loop Unit Tax

I shall solve the regulator's problem using a method due to Chen and Cruz (1972) and

Simaan and Cruz (1973a, 1973b).  This method solves the regulator's problem when this problem

has one control and one state variable.  The method shows the dependence of the obtained

solution on the initial condition and hence the dynamic inconsistency of this solution.  The basic

idea is as follows.  The regulator treats the firm's first order condition as an ordinary constraint

and the firm's costate variable as a state variable.  These two conditions along with the

requirement that the optimal solution converge to a steady state converts the differential game

into a control problem for the regulator.  I now illustrate the use of this method. 

The first-order necessary conditions for the firm's problem, when the firm treats (t) asu

a parameter, are given by 
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For more on jump state constraints, see Karp and Newbery (1993). 9

If this condition does not hold, the present method of obtaining open loop controls fails, and alternat e10

methods, such as the one employed in Batabyal (1995b), will have to be used. 

(6)

and

(7)

where (t) is the costate variable.  The reader should note that (7) represents a jump state

constraint.   That is, the initial value of , (0) is free and the value of this jump state variable at9

any arbitrary point in time is determined by current and/or future events.  In other words, (7) is

not a fixed initial state constraint for the regulator.  This makes the regulator's problem a

nonstandard control problem. Solving for  from (6) and substituting in (3), I get u

(8)

Equation (8) gives the regulator's payoff as the present discounted stream of benefits and

revenues less the sum of costs, pollution damage, and q.  Since  is the shadow value of the

stock of pollution to the firm, q is the firm's implicit value of polluted air gained by production

at rate q. I now want to eliminate  from (8) by using (7). Integrating (7) and assuming that ( )

is finite,  I get10

(9)

Substituting this value of  from (9) into (8) I get

(10)



0

e rt[e rt

t

e rmc (x)q(m)dm]q(t)dt
0

e rtc (x)q(t){x0 x(t)}dt.

JR
0

e rt[B(q) P(q)q wq c(x)q c (x)q{x0 x(t)} D(x)]dt .

B (q) P (q)q P(q) w c(x) c (x){x0 x(t)} 0 ,
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9

Now reversing the order of integration of the last integral in (10), I get

(11)

Using (11), I can now write (10) as 

(12)

I have now converted the regulator's problem from one of maximizing (3) over  subject to (5)u

to one of maximizing (12) over q(t) subject to (5).  The first-order necessary conditions to this

problem are 

(13)

and

(14)

where (t) is the costate variable.  Equation (13) tells us that the solution to the regulator's

problem depends on the initial stock of pollution, x .  Further, (13) also tells us that if the0

regulator were able to alter his announced time path for the unit tax at any time (0, ), then x0

in (13) would have to be replaced with x( ).  As such, the ensuing solution  >  would not bet

(13).  Hence, this solution is dynamically inconsistent.  Before deriving a differential equation

which the optimal q(t) satisfies, a comment on the significance of (7) is in order.  The reader

should note that (7) acts as a rational expectations constraint for the regulator.  The rational

expectations nature of this constraint stems from the fact that the firm's problem in this

Stackelberg game is dynamic. 
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* denotes a steady state value. 11

To find the differential equation which is satisfied by the optimal q(t) with the imposition

of the unit tax, I shall differentiate (13) w.r.t. time and then use (14) for simplification.  I get 

(15)

where q* = 0 is the boundary condition for q.   From (15) we see that the open loop unit tax is11

dynamically consistent iff the pollution dependent cost function is constant.  When this stock

dependent cost function is constant, three results follow.  First, the reason for the inconsistency,

i.e., the dependence of the solution on the initial condition, disappears.  Second, (7) implies that

(t)  0.  Third, (6) tells us that the optimal unit tax is now given by the price less the sum of the

wage and the average pollution dependent cost, i.e.,  

To find the equation for the optimal open loop unit tax, I shall differentiate (6) w.r.t. time.

I get 

(16)

where   In (16),  is given by (15).  x* can be obtained as indicated in section

3.3 below.  Let  denote the present value of the unit tax.  Substituting  from (15) into

(16), we see that the present value of the unit tax is increasing as long as

 

3.2  The Open Loop Ad Valorem Tax

I can now derive the solution for the open loop ad valorem tax with the regulatory

objective described in section 2. 
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JR
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aP(q). P(q) u aP(q) w c(x) (t) .

D (x )/r,
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11

To maximize (2) subject to (5), I form the firm's current value Hamiltonian.  The resulting

first-order necessary conditions are 

(17)

and (7).  Solving for  from (17), substituting in (4), and simplifying the resulting expression,a

I get 

(18)

At this time, a comparison of (8) and (18) is in order.  Note that the regulator's payoff is policy

invariant.  Further, the constraint in both cases is (5).  Thus, we can conclude that the optimal unit

and ad valorem taxes are equivalent, and, hence, they will both give rise to the same time profile

of output and pollution.  The firm's price with the unit tax is  and with the ad valorem

tax it is   It is easy to verify that  

3.3  Analysis

Denoting steady state values by "*", (5) tells us that q  = 0, (14) tells us that*

 and (7) tells us that  = 0.  Using these values for q , , , in (13), I find that the* * * *

steady state level of pollution, x  solves *

(19)

Observe that x  is always dependent on x  as long as   That is, in an optimal program, if*
0

the stock-dependent cost function is nonconstant, then the steady state level of pollution is a

function of the initial level of pollution.  I can now state 



(t) 0, a(0) [{c(x0) w (0)}/P{q(0)}] > 0 ,

a [{w c(x )}/P(0)] > 0 .

u(0) > 0 u > 0 .

t (0, )

12

Recall that   0.  So keeping  high means keeping it low in absolute value. 12

Proposition 1:  The optimal open loop unit and ad valorem taxes are both positive at t = 0 and

at t =  as long as P( )  0. 

Proof:  Using  I can write  and

 In this last expression, x  is given by (19).  Further, since the unit*

tax and the ad valorem tax are equivalent, I have  and 

Proposition 1 tells us that when the regulator uses policies which display perfect

commitment on his part, an optimal program involves setting positive taxes at the beginning and

at the end of the game.  At the beginning of the game, the regulator knows that he will be able

to use the tax trajectory to affect the firm's future behavior.  One way to affect the firm's future

behavior is to promise that future taxes will be low as long as current pollution is low.  This

means that the regulator would like to keep the firm's shadow value of pollution, , high in the

beginning of the game.   However, as (13) and (15) showed us, at some t > 0, the regulator12

would like to deviate from his announced policy trajectory at t = 0 and decrease the valuation of

pollution by the firm.  One way to do this is to set higher taxes than those announced at the

beginning of the game.  Further, inspection of (6) and (17) tells us that in general—for any

—it is not optimal to set zero taxes. 

Since the optimal unit and ad valorem taxes are equivalent in a competitive industry, a

comparative exercise is not relevant.  I state the following general result which is of some

interest, especially when compared with the corresponding result for a monopolistic industry,

contained in Batabyal (1995b). 

Proposition 2:  When the regulator uses both taxes simultaneously, one is redundant. 



u 0 a 0 .
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This method is essentially identical to a “loss of leadership” method proposed by W. Buiter.  For mor e13

details, see Buiter (1989) and the references cited therein. 

Proof (Outline):  This follows from the fact that in a competitive market, the two taxes are

equivalent. 

Proposition 2 tells us that when the regulator chooses to use both taxes simultaneously,

it is optimal for him to set either  or   I now discuss the implications of using

dynamically consistent taxes when the underlying market structure is competitive. 

4.  The Competitive Industry and Dynamically Consistent Taxes

I begin with a brief synopsis of dynamically consistent policies.  The problem with

inconsistent policies, i.e., open loop policies, is that such policies are not credible.  In other

words, forward-looking firms will recognize that at t = 0, the regulator will set a policy trajectory

from which he will later want to deviate.  Thus, such a policy trajectory will not be believed by

firms, and, hence, the original policy will fail to achieve its objectives.  This lack of credibility

of open loop policies provides a rationale for the study of dynamically consistent policies. 

I shall obtain consistent controls by using a method employed in Karp (1984, pp. 87-88).13

While other methods—see Karp (1991)—for obtaining consistent controls do exist, there are two

basic advantages to the Karp (1984) method.  First, it makes the logic of the solution transparent.

Second, this method facilitates the comparison of results obtained in section 3 with the results to

be derived in this section.  The basic idea of Karp's procedure is as follows.  In a Stackelberg

game, it must be possible to use the follower's first-order condition to eliminate the leader's
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14

control from his objective functional.  When this has been done and the leader's problem has the

form 

(20)

(21)

(22)

where g(q, x), in my case, is a linear combination of the derivatives of the benefit, damage,

inverse demand, and stock dependent cost functions, one can obtain consistent controls by using

Theorem 1:  When the leader's problem has the form given by (20)-(22), dynamically consistent

controls can be found by solving 

(23)

subject to (21).  Theorem 1 can be proved as in Karp (1984, pp. 94-96).  Note that while the proof

requires that the function multiplying the follower's costate variable be linear in the leader's

control, the proof does not depend on h or the follower's costate variable being nonnegative. 

Put differently, in the class of problems that can be stated as (20)-(22), the leader obtains

dynamically consistent controls by disregarding the effect that the follower's marginal value of

the state has on his own payoff.  The logical basis of this procedure is as follows.  One way to

eliminate the inconsistency of the open loop solutions of section 3 lies in eliminating the term

which makes the solution dependent on x   This can be done in two ways.  The first approach is0

to posit that the pollution-dependent cost function is constant.  Then  and the source of

the inconsistency disappears.  However, this is a strong and, a priori, unrealistic restriction.  The
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maxq(t)[
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0

e rtg(q,x)dt]}
0

q̂ ˆdt ,

q̂ ˆ

15

second approach lies in making  vanish.  This is exactly what the above described

procedure does “. . . by treating the [regulator's] problem as [a] sequence of short open loop

problems, which in the limit becomes an infinite sequence of static optimization problems” (Karp,

1982, p. 117). 

Intuitively, we can think of a regulator who revises his tax policy whenever air quality

declines by some predetermined amount.  The idea is to let this predetermined amount and,

hence, the time interval between successive revisions approach zero.  When the regulator does

not commit to a specific tax trajectory at the beginning of the game but continuously revises his

tax policy,  in  must be replaced by   When this is done,  vanishes and the

resulting solution is dynamically consistent. 

It should be noted that dynamically consistent controls always result in a lower payoff to

the leader than do open loop controls except when the two kinds of controls coincide.  This stems

from the fact that forcing the controls to satisfy the principle of optimality completely eliminates

any gain accruing to the leader from setting policy once at the beginning of the game.  Alternately

put, when the leader uses consistent controls, his “. . . period of commitment [shrinks] to

zero . . .” (Buiter, 1989, p. 244).  In a manner analogous to Karp (1984, p. 88). the claim in this

paragraph can be verified formally by observing that 

(24)

where  and  are the optimized values of the output rate and the follower's marginal value of

the state which arise from the solution to the maximization problem on the RHS of (24).  The

constraints for both problems are the same and are given by (21) and (22).  Equality in (24) holds
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r c (x)q D (x) ,
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iff  a condition which holds when the pollution-dependent cost function is constant.

When this last condition holds, the open loop and the dynamically consistent controls coincide.

I now obtain dynamically consistent controls, in turn, when the regulator uses a unit tax and then

when the regulator uses an ad valorem tax. 

4.1  The Dynamically Consistent Unit Tax

When the regulator uses an unit tax, his problem is to solve 

(25)

subject to (5).  The first-order necessary conditions to this problem are 

(26)

and

(27)

where  is the costate variable associated with (5).  The maximizing rate of output solves 

(28)

with boundary condition q  = 0. *

4.2  The Dynamically Consistent Ad Valorem Tax

The solution for the consistent ad valorem tax can be obtained in an analogous manner.

The firm's first-order necessary condition is 

(29)

The regulator's problem now is to solve

(30)



B (0) P(0) w c(x ) D (x )/r 0 .

c (x) 0,
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As in section 3, I note that (25) and (30) are identical; in both problems, the constraint is (5).  I

conclude that in a competitive industry, the consistent unit and ad valorem taxes are equivalent.

The maximizing rate of output—when the regulator uses an ad valorem tax—solves (28).  Using

(26) and the relevant steady state values, I find that the steady state level of pollution, x  solves*

(31)

A comparison of (31) with (19) reveals the essential differences in x  stemming from the use of*

the consistent tax as opposed to the open loop tax. 

4.3  Analysis

I can now compare the steady state pollution and output effects of the two policy

instruments.  Recall that d  = 0 in every case.  I shall first compare the open loop policies with*

the dynamically consistent policies. 

The results of this comparative exercise are summarized in Table 1.  The two equations

that I shall use to compare the pollution levels with the open loop unit tax and with the

dynamically consistent unit tax are (19) and (31).  The subsequent analysis concentrates on

special functional forms.  If the relevant functions in (19) and (31) are arbitrary but  then

a comparison of (19) and (31) tells us that the open loop unit tax and the dynamically consistent

unit tax both give rise to the same level of pollution.  Using

 in (19) and (31) and assuming that

  I find that the open loop unit tax leads to a lower (higher) level of pollution as compared

to the dynamically consistent unit tax depending on whether

  Now consider



B(q) q (1/2)q 2 , D(x) x , P(q) a bq , c(x) 1x . ( a) > {w ( /r)} ,

1x0/2 1 <(>) [[{ a w ( /r)}/ 1] [{ a w ( /r)}/2 1]] .

B(q) q (1/2)q 2 , D(x) x , P(q) q , (0,1) , c(x) 1 x

> {w ( /r)} .

1x0/2 1 <(>) [[{ w ( /r)}/ 1] [{ w ( /r)}/2 1]] .

a 1 1 , x0 10 , w 4 , 5 ,

1 4 .

a 1 1 , x0 3 , w 4 , 100 ,
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  If  then,

as compared to the consistent unit tax, the open loop unit tax leads to a lower (higher) level of

pollution as   Finally,

consider  and let

  Then as opposed to the consistent unit tax, the open loop unit tax leads to a

lower (higher) level of pollution as 

Inspection of (19) and (31) tells us that the effects of these two taxes essentially depend on the

properties of the pollution-dependent cost function.  The other functions affect both the equations

in a similar manner.  A comparison of the open loop ad valorem tax and the dynamically

consistent ad valorem tax is not germane since these two taxes are equivalent, in turn, to the open

loop unit tax and the dynamically consistent unit tax. 

I shall now use Table 1 and specific parameter values to:  (a) illustrate the analysis of the

previous paragraph, and (b) determine whether the consistent unit tax always leads to a higher

steady state pollution.  Consider the functional forms in the first row of Table 1.  When

 and r = 5%, we see that, as compared to the

consistent unit tax, the open loop unit tax leads to higher steady state pollution.  Holding fixed

the values of the other parameters, let us increase the magnitude of the cost and damage

parameters to   Once again the open loop unit tax leads to higher steady state

pollution.  Now consider an altered configuration of parameters.  Let

 and let r = 5%.  We see that when the benefit

parameter is relatively high and the initial level of pollution relatively low, the            



B(q) q (1/2)q 2,

D(x) (1/2) x 2

P(q) a bq, c(x) 1x

>w

1x0/{2 1 /r}<

[[{ a w}/{ 1 /r}]

[{ a w}/{2 1 /r}]]

B(q) q (1/2)q 2

D(x) x

P(q) a bq, c(x) 1x

a>{w ( /r)}

1x0/2 1<

[[{ a w ( /r)}/ 1]

[{ a w ( /r)}/2 1]]

B(q) q (1/2)q 2

D(x) x

P(q) q , (0,1)

c(x) 1x

>{w ( /r)}

1x0/2 1<

[[{ w ( /r)}/ 1]

[{ w ( /r)}/2 1]]
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Table 1

Steady State Pollution Effects of the Open Loop Unit Tax versus the 

Dynamically Consistent Unit Tax

Functional Forms Restrictions on Parameters Open Loop Unit Tax

 and Lower Pollution

 and Lower Pollution

 and Lower pollution



a 1 1 , x0 10 , w 4 , 90 ,

1 4 ,

1 1 , x0 10 , w 4 , 90 ,

1 4 ,

D (x) > 0 .
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This result does not hold in models with state equations more complicated than (5). 14

consistent unit tax leads to higher steady state pollution.  Next consider the functional forms in

the second row of Table 1.  Let  and let r = 5%.

Now the consistent unit tax leads to higher steady state pollution.  However, when we keep the

other parameter values fixed and increase the cost and damage parameters to  we

see that now it is the open loop unit tax which results in higher steady state pollution.  Finally,

consider the functional forms in the third row of Table 1.  Let

 and let r = 5%.  In this case, the consistent unit tax

leads to higher steady state pollution.  However, when we leave the values of the other

parameters unchanged and increase the cost and damage parameters to  we find that

on this occasion it is the open loop unit tax which results in higher steady state pollution.  This

analysis demonstrates that the consistent unit tax does not always lead to higher steady state

pollution.  Indeed, there are parametric configurations for which the consistent unit tax actually

leads to lower steady state pollution. 

The analysis of this section tells us that the regulator's payoff is lower with continuous

policy revision; further, there exist circumstances in which the use of dynamically consistent

taxes leads to a higher level of pollution.  As compared to the open loop tax, the higher pollution

implies a higher level of social damage because   On the other hand q  = 0 in all the*

cases analyzed.  Thus, higher pollution implies lower social welfare—as embodied in the

regulator's objective functional—in the steady state.   While the use of other functional forms14

also leads to interpretable results, the analysis of this section suffices to demonstrate the

sensitivity of the results to the choice of functional form. 



OL
u , OL

a , DC
u ,

DC
a , OL

u
OL
a

DC
u

DC
a c(x) 1 .

OL
u

OL
a

DC
u

DC
a

B(q) q (1/2)q 2 , D(x) x , c(x) 1x , P(q) a bq

( a) > {w ( /r)} ,OL
u

OL
a <(>) DC

u
DC
a( 1x0/2 1) <(>)[[{ a w ( /r)}/ 1] [{ a w ( /r)}/2 1]] .

B(q) q (1/2)q 2 , D(x) x , c(x) 1x , P(q) q , (0 , 1) .

> {w ( /r)} , OL
u

OL
a <(>) DC

u
DC
a ( 1x0/2 1) <(>)

[[{ w ( /r)}/ 1] [{ w ( /r)}/2 1]] .
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In a monopolistic industry, this equivalence breaks down.  See Batabyal (1995b) for details. 15

In a competitive market, owing to the equivalence of the consistent unit and ad valorem

taxes, we see the same time profile for output and pollution.  As such, a comparative exercise is

not necessary.  15

My next task in this section is to rank the steady state pollution levels with all four taxes.

Table 2 summarizes the results of this paragraph.  In the rest of this paragraph, a > b means that

a leads to a higher level of pollution than does b, and a  b means that a and b both give rise to

the same level of pollution.  Denote the open loop unit tax, the open loop ad valorem tax, the

dynamically consistent unit tax, and the dynamically consistent ad valorem tax by 

and  respectively.  Recall that in a competitive industry,  and  hold.  Let 

 Then using this functional form and comparing (19) and (31), we see that

 h o l d s .   U s i n g

 in (19) and (31) and assuming

that  we conclude that  as  

 Next, let   and let   If

 then  as  

  This analysis once again clearly brings out

the sensitivity of the qualitative results to the choice of functional form and in particular to the

properties of the stock dependent cost function. 

I close this section by asking at what level the two taxes should be set when the regulator

chooses to use both dynamically consistent taxes simultaneously.  The answer is contained in



B(q) q (1/2)q 2

D(x) x

P(q) a bq

c(x) 1x

a>{w ( /r)}

1x0/2 1<

OL
u

OL
a <

DC
u

DC
a

B(q) q (1/2)q 2

D(x) x

P(q) q , (0, 1)

c(x) 1x

>{w ( /r)}

1x0/2 1<

OL
u

OL
a <

DC
u

DC
a
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Table 2

Steady State Pollution Rankings of the Alternate Policy Instruments

Market Structure Functional Forms Parameters Instruments

Restrictions on Ranking of

Competition

and

Competition

and
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Proposition 3:  When the industry is competitive and the regulator uses both taxes

simultaneously, one of the two taxes is redundant. 

Proof (Outline):  This follows from the fact that in a competitive industry, the two taxes are

equivalent.  

The reader will note that while continuous revision of the tax by the regulator alters the

solution to his optimization problem, it does not alter his optimal course of action when he

chooses to use both taxes simultaneously. 

5.  Conclusions

In this paper I formulated and analyzed the interaction between polluting firms and a

regulator as a Stackelberg differential game in which the regulator leads.  I analyzed the impact

of unit and ad valorem taxes in a competitive industry.  Specifically, I derived open loop and

dynamically consistent policies for the regulator.  I illustrated the dynamic inconsistency of open

loop policies, and I pointed out the equivalence of open loop and consistent policies when

production costs are unrelated to the stock of pollution.  Further, I demonstrated the equivalence

of the unit tax and the ad valorem tax in a competitive market. 

By means of numerous steady state examples, I showed how one might interpret the

general results, and then I ranked the four taxes in terms of their ability to control pollution.

These examples demonstrate the sensitivity of the qualitative results to:  (a) the choice of

functional forms for inverse demand and stock dependent costs, and (b) the nature of the taxes.

Four main policy conclusions follow from the analysis of this paper.  First, owing to the

sensitivity of the results to the choice of functional forms, in any given regulatory scenario,
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empirical research will be needed to estimate the parameters of the relevant functions and, hence,

serve as a guide to regulatory action.  Second, a practical consideration which might favor the

use of ad valorem taxes ceteris paribus is that, compared to unit taxes, it is often easier to

incorporate the effects of factors such as inflation in ad valorem taxes.  Third, as far as policy

credibility is concerned, the efficacy of regulatory action depends on the properties of the stock

dependent cost function.  If production costs are unrelated to the stock of pollution, then the open

loop and the dynamically consistent solutions coincide.  As such, it makes no difference whether

the regulator announces a policy trajectory at the beginning of the game or whether he

continuously revises his policy.  Fourth, there is a basic tradeoff between policy credibility and

policy payoff.  Consistent policies yield a lower payoff than do open loop policies.  This is a

possible explanation as to why many regulators are loath to use consistent policies. 

I believe that the two most promising extensions of this line of research lie in:  (a)

generalizing the analysis to imperfectly competitive markets, and (b) analyzing the various issues

in a stochastic framework.  I have largely completed the task listed in (a) above.  The results of

that analysis are to be found in Batabyal (1995b).  I am currently at work on the task listed in (b)

above, and I hope to report the results of my research shortly. 
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