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1  Especially noteworthy contributions include Katz and Shapiro [8; 9; 10], Farrell and Saloner [6; 7],
Economides and Salop [4], Liebowitz and Margolis [11], Economides and Himmelberg [4], and the October 1996 issue
of the International Journal of Industrial Organization.
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NONCONCAVE, NONMONOTONIC NETWORK EXTERNALITIES

I. Introduction

A rapidly growing literature considers the economics of industries based on products

characterized by externalities in which the utility derived by consumers is a function of the number

of consumers.1  Such externalities might arise for any of a number of reasons: because the usefulness

of the product depends directly on the size of the network (e.g., telephones, fax machines), or

indirectly through the availability of complementary goods and services (often known as the

"hardware-software paradigm") or of postpurchase services (e.g., for automobiles).  Collectively,

these phenomena are often termed "network externalities."  These externalities generally cause the

competitive market equilibrium network size to be socially suboptimal. 

Network externalities are typically modeled as monotonic, strictly (globally) concave functions

of consumer’s expectations of network size.  But other than for reasons of tractability, why should

analysts assume concavity and monotonicity in network externalities?  We believe such assumptions

are often counterintuitive in this setting.  Casual observation of paradigmatic networks like

telephones, electronic mail, financial exchanges or computer software suggests the externality effects

of a network are modest, potentially even decreasing, while the network is small, then increase quite

rapidly once the network reaches some critical mass, and then gradually taper off again.  At

particularly large network sizes, externality effects may even turn negative due to overloading.  That

is, many network externality functions faced by a prospective consumer are unlikely to be strictly
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concave, and perhaps not even monotonic.  Perhaps this sounds like a quibbling point regarding the

technical details, in particular the functional form, of a relatively recent class of microeconomic

models.  But these points are central to understanding the dynamics of adjustment to network

equilibrium as well as the properties of the resulting equilibria, particularly under imperfect

information or in the presence of liquidity constraints or bounded rationality.  We do not claim all

network externalities conform to the specification we introduce here, but we believe this simple

technical refinement adds some interesting insights to a burgeoning literature on a subject of

considerable importance to crucial international industries.  We offer little in the way of truly new

qualitative findings; ours is a methodological innovation that provides a less complex, more intuitive,

unifying and tractable mechanism to reach conclusions generally scattered through the extant

literature on networks.

II. Consumer Choice and Market Equilibrium

To make our points clearly, we work with the simple case of a single system under monopoly.

This necessarily excludes the interesting issues of inter-firm coordination, competition and product

compatibility, but focuses attention on the nature of the network externalities themselves. 

In this section, we offer a brief and necessarily incomplete summary of the extant network

externalities literature, which proceeds roughly as follows.  The ith consumer’s willingness to pay for

the product, x, takes the form ri+v(xe), where ri is the consumer-specific myopic valuation of the

product and v(xe) is the network externality value defined over expected network size.  Consumers

are assumed to value network externalities and form expectations over market size identically.  The

existing literature assumes v' > 0, v" < 0, v(0) = 0 and lim x64 v'(xe)=0, i.e, concavity and monotonicity



2  If there exist sunk costs or economies of scale in production, the very existence of a good or service network
depends on firms' expectations of consumer demand, which is in turn a function of individual consumers' expectations
of others' demands.  The (potentially heterogeneous) way in which agents form expectations is thus of extraordinary
significance in industries characterized by network externalities.
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in the network externality function.  This form of network externality is depicted in the top panel of

Figure 1.

The manner in which consumers form expectations about network size obviously influences

market equilibrium.2  Katz and Shapiro [8] employed — and most subsequent research has followed

by using — a "fulfilled expectations" concept; consumers form rational expectations which must be

satisfied in equilibrium.  Even with a fulfilled expectations solution concept, multiple equilibria

naturally emerge (one of which is no sales).  But assuming non-instantaneous adjustment to shocks,

including network introduction, one faces a dynamic problem  of adjustment to equilibrium.  This

issue is generally overlooked in the existing network externalities literature, which implicitly presumes

instantaneous adjustment.  Furthermore, the dynamic problem of network size adjustment arises if

there is imperfect information such that consumers’ expectations are only “quasi-fulfilled”, which we

define as expectations that are fulfilled in the subsequent period, but  not necessarily at an equilibrium

value.  Under such circumstances, imperfect information that might cause consumers to expect on

a nonequilibrium network size can lead to a sequence of revised expectations that converge on a true

equilibrium.  Thus, consumers purchase the good at time t if and only if ri + v (xe
t | Φt) $ pt where pt

is the  price charged and Φt is information available at time t, including xt-1.  As long as consumer

expectations are not fulfilled, {xt , pt} adjust to a dynamic equilibrium {x*t , p*t |pt-1, Φt} conditional

on the past price (pt-1) at which the product is offered on the market and the information set that

conditions consumers’ expectations. 



3  The possibility of overlapping technology generations, and thus of upgrade timing choices under both
concave and nonconcave externalities, is the subject of separate research by the senior author.

4  Given the assumption of a monotonic, concave network externality function, V(xt
e), the network will

converge to a finite equilibrium only if G(.) is at some point decreasing in V(xt
e).  This point has not been recognized

in the literature to date.  A proof is available from the authors by request. 
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Assume the firm can provide enough x to satisfy demand fully over the product life cycle.3

The dynamic adjustment of the network size, i.e., the network growth function,  can thus be captured

in the differential equation dx/dt = G(v(xe
t),pt).  Assume G(.) initially increases in v(.), then decreases

after some point K2.
4  This is depicted in the middle panel of Figure 1.  The sign of

MG(.)/Mxe
t=(MG/Mv)v' depends on MG/Mv since v'>0 in the traditional model.  Assume also that

(M2G/Mv2) < 0 and  M2G(.)/M(xe
t)

2 = (MG/Mv)v''+ (M2G/Mv2)(vN)2 < 0 in order to guarantee the

convergence  of  the  system.  Assuming linear partial demand (ri), and aggregating across a finite

population of consumers, the concavity of the network externality and G(.) functions generate a

concave network growth function with an equilibrium xt* > K2, as shown in the bottom panel of

Figure 1.  This is the conventional result, with details commonly implicitly assumed brought into the

open.

The monopoly firm chooses an optimal pricing strategy to maximize the discounted present

value of the profit stream, taking into account the impact of the different network growth paths

associated with different prices.  Thus the firm's objective is 

Max pt
 IT

0 e
 -rt (pt -c)yt dt  (1)

s.t.yt=G(v(xe
t),pt) (2)

dxe
t /dt = yt (3)

xT= IT
0 yt dt $ 0 (4)

xe
0=0 (5)

where r is the discount rate, c is the constant marginal cost of production, and yt is sales flow.  Note

that under the earlier assumptions regarding G(.) the monopolist need not worry about scale of entry



5  The second order condition requires M2H/Mpt
2 = (pt - c+φt ) (M

2G/Mpt
2) + 2(MG/Mpt) < 0
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since the growth path automatically leads to a stable, positive equilibrium network size.  Defining

φt=ert λt, where λt is the costate variable, the current value Hamiltonian can be written as H=(p-

c+φt)G(.). The maximum principle suggests that the necessary conditions for a solution to the current

value Hamiltonian are

(pt - c + Nt)  Mpt

MG
 + G = 0 (6)

dt
dNt = rNt - (pt - c + Nt) Mv Mxt

e
MG Mv

(7)

dt
dxt = yt = G(v(xt), pt) (8)

Furthermore, the transversality condition tells us that φt  $ 0, φT x(T) = 0.

 Assuming an interior solution5, the necessary conditions for maximization of the monopolist's

profits yield the marginal revenue equals marginal cost condition

p*[1+1/εt]+φt = c (9)

where εt is the price elasticity of demand.  Network externality effects, captured in φt, have the effect

of reducing the monopolist's optimal price, pt*.  So if the network externality function is strictly

concave, then λt is decreasing in network size, φt is decreasing in time, and the monopolist's markup

is increasing over time (holding elasticity constant).  This point has been largely overlooked in the

literature to date although it has interesting implications for the regulation of natural monopolies in

network goods and services (e.g., electricity, telecommunications).

III. Nonconcave Network Externalities



6  We do not model the case of overloaded networks, wherein the externality v’ turns negative once again.
This is nonetheless a relatively straightforward extension. 
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Now consider what happens if network externalities are not globally concave and monotonic.

For example, assume instead that v(xt
e) follows the critical depensation form from bioeconomics [3]

as shown in the top panel of Figure 2.  Formally, assume this nonconcave, nonmonotonic network

externality function exhibits v'<0 when xe <K and v'>0 when xe >K, and v'' > 0 if xe < x*
1 and v'' <0

if xe > x*
1, where x*

1 is the critical mass.  This network externality is depicted in the top panel of

Figure 2. 

Why might the network size externality take such a shape?  Recognize that network size

affects both the functionality of a good and its exclusivity.  To date the networks literature has

assumed consumers value only the former.  But casual observation of purchasing patterns and

consumer psychology when network goods are introduced suggests that initial purchasers place

considerable positive value on the exclusivity of their possessions.  New technologies, network

technologies not excepted, are often status goods when they are held by only a few.  This exclusivity

value necessarily decreases in network size, going to zero once enough people own the good.  The

functionality value associated with network size remains very low initially then increases rapidly once

the network achieves some minimum effective size.  This functionality value may level off  at some

point once the network becomes saturated.  It might even decrease if the network becomes

overloaded.6  We implicitly model the exclusivity value as dominating the functionality value up to

some positive mass K.  After that point, v(xt
e) is increasing due to increasing functionality value.

Meanwhile, any externalities related to the exclusivity of the network good are soon exhausted.
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With that sort of a nonconcave, nonmonotonic network externality, and maintaining the same

functional form used earlier for G(.) (reproduced as the middle panel of Figure 2), the network

growth function takes on a markedly different shape, as depicted in the bottom panel of Figure 2.

At least three distinct equilibria now emerge with the nonconcave network externality.  First, x*=0,

network extinction, is a stable equilibrium, as one can prove by discretizing and differentiating

equations (3) and (4).

dxt
e/dt=G(v(xt

e),pt)
xt+1

e - xt
e = G(v(xt

e),pt)
xt+1

e = xt
e + G(v(xt

e),pt)
Mxt+1

e / Mxt
e = 1+(MG/Mv) Mv/Mxt

e (10)

Since MG/Mv >0 and Mv/Mxt
e < 0 in the neighborhood of v(0) by earlier assumptions, Mxt+1

e/Mxt
e < 1 and

x* = 0 is a stable equilibrium.  A stable, positive equilibrium occurs at x*
2 >K2, where  MG/Mv<0 and

vN > 0.  These are the finite, stable equilibria of the traditional literature on network externalities [8,9].

The nonconcave network externality function, however, generates an unstable, positive equilibrium

network of size x1
* 0 (K1,K2) because

Mxe
t+1 / Mxe |x e

 = x
*

1 = 1 + (MG/Mv)vN > 1 (11)

(evaluated around the point xe = x1
*).  Additional unstable positive equilibria could result at superlarge

sizes if vN again turns negative due to network congestion and overloading externalities.  Those are

not depicted in Figure 2.

The shape of the network externality function thus fundamentally changes the dynamics of

network growth.  This simple refinement thereby adds a number of useful characteristics to a basic

network model that otherwise require more complex and less intuitive modeling.  If the product is

introduced with a network size less than x1*, the critical mass associated with the inflection point in
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v(xt
e), it regresses irreversibly toward extinction, not toward the stable, positive-output equilibrium

size of x2*. It is also evident that dN/dt is positive over the range [0,K+], where dN/dt=rN

(equivalently, d8/dt=0) at xe = K (K+ >K) according to (7).   In words, the monopolist’s mark-up will

now be time-varying, temporarily decreasing to some intermediate network size — as is commonly

the case with introductory offers and, in the limit, distribution of network products as freeware —

then increasing once the monopolist has cleared the critical mass threshold.  

Under the assumption of fulfilled expectations and instantaneous adjustment to equilibrium,

the unstable, intermediate equilibrium would not result for the simple reason that it is not a subgame

perfect equilibrium.  A monopolist with perfect foresight would choose the stable, positive

equilibrium network size, x2* — or at least an initial network size that would converge toward  x2*

— since this is the only equilibrium offering stable, positive profits.  Thus the unstable equilibrium

is a set of measure zero if there is perfect information and the capacity to act on that information. 

Under quasi-fulfilled expectations due to imperfect information, however, or in the case where

the firm faces liquidity, informational or bounded rationality constraints, then the intermediate,

unstable equilibrium becomes a point of real interest, not a mere abstraction.  If consumers

significantly adjust expectations over time, if the monopolist significantly misjudges consumer

expectations — whether due to misinformation or error of judgement — or if the monopolist is

unable to finance potential termporary losses necessary to select a one period flow sufficient to hurdle

the nonconcavity and put himself on a saddle path toward x2*, then the intermediate, unstable

equilibrium becomes a real possibility.  Given the likelihood of these complications, we think this a

particularly interesting possibility of considerable practical interest to the analysis of network

industries.



7  Church and Gandal [2] generate such effects using concave (CES) indirect utility functions in a competition
between incompatible software packages.
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Nonconcave, nonmonotonic externalities make several crucial, existing insights more

transparent, tractable and integrated and adds some extra insights as well.  First, other researchers,

notably Besen and Farrell [1], have described network markets as "tippy," i.e., prone to instability.

But they have had to approach this point through far more complex analytics.  By generating an

inflection point in the network externality function by combining exclusivity and functionality values,

our nonconcave network externality function generates such tippiness directly in its unstable

equilibria.  Momentarily extending the model to potential oligopoly, if  competing networks emerge,

ultimately settling into equilibria of different sizes, those who joined what turns out to be the smaller

network may switch to the other network (if the marginal benefit of the larger network exceed the

switching costs), thereby perturbing the smaller network from its unstable equilibrium and toward the

stable equilibrium of extinction.7  Cases such as Supercalc spreadsheet software, Wang computers,

and Betamax videocassette recorders spring immediately to mind as examples.  More innovatively,

even in the monopolistic case we have modeled, a negative shock to demand can precipitate the

demise of a network poised at or near an unstable, intermediate-sized equilibrium.  The ill-fated New

Orleans rice futures market offers an excellent example of this phenomenon, which the existing

literature does not capture. 

Second, the existence of unstable intermediate equilibria reinforces claims that scale of entry

matters enormously to firms providing products characterized by network externalities, irrespective

of production costs.  Economides and Himmelberg [4] raise this issue of critical mass, showing (again

in the oligopolistic case) that only the bigger of two networks of different size is Pareto dominant and



8  Critical mass also arises naturally in Economides and Himmelberg [4] through their assumption of a
multiplicative functional form for consumer demand with globally strictly concave network externalities. As a
consequence, their fulfilled-expectations demand function is not monotonic.
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stable.  If one adopts a nonconcave network externality function, particularly the specification

presented above, such critical mass emerges naturally8.  Insufficient initial network size (below x*1

in Figure 3) leads to depressed product demand as consumers adjust downward their expectations

of network size, and hence  the value added from adoption externalities.  Firms advertise, distribute

a large number of pre-release ("beta") versions of a product, tolerate product piracy or employ other

marketing tactics to ensure sufficient scale of entry to prevent regress toward extinction.  

Third and following up on the second point, nonconcave network externalities add another

dimension to the gains from market dominance.  Not only might the firm with the largest network in

an industry be able to extract greater profit due to the added value consumers derive from its larger

network or from lower unit costs in the presence of scale economies, but it may have leapt over the

unstable intermediate equilibrium to the larger, stable one.  A higher probability of survival, not just

short-term profits, accrue to larger networks if adoption externalities are nonconcave.  This issue of

stability, and thus sustainability, sheds a bit more light on both the fierce battle over product standards

in races to introduce new technologies (e.g., videocassette recorders, digital audio format), on the

need for late-comers to maximize compatibility with the existing market leader (e.g., Borland's

mimicking of Lotus when introducing Quattro), and on the incentives for firms to overestimate

adoption rates for their own technologies (as occured in the battle between IBM and Microsoft over

the Windows and PS/2 operating systems).  It also  helps explain why firms might be more receptive

to letting others copy their technologies, as freeware or shareware (e.g., Mosaic and Netscape in
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Internet software) or be lenient with software pirates in early efforts to establish a large, sustainable

network size [12].

Fourth, several commentators on network externalities refer to the history-dependence of

network size [1].  Hysteresis emerges quite naturally from modelling the network externality effect

as following the nonconcave form we have laid out.  Recall that the slope of the growth function,

G(v(xe
t),pt), depends fundamentally on xe

t.  Thus the stable equilibrium (x*
0 or x*

2) toward which the

network converges is conditional on xe
t.  The disequilibrium dynamics of networks exhibiting

nonconcave externalities turn on the product's (equilibrium and disequilibrium) history.

Fifth and finally, nonconcave network externalities generate a non-monotonic time path of

monopoly markups.  Since λt increases over some range of xt , φt increases in time over part of the

product's life.  Our nonconcave structure to network externalities leads to a partial cycling of

monopoly markups: they decrease from product introduction through some intermediate network

size, then begin growing again.  Casual observation suggests this is frequently the path of markups

(or pricing in the case of constant or decreasing costs).

IV. Conclusions

One's assumptions about the nature of network externalities matter to the resulting equilibria

and to the disequilibrium dynamics of network size adjustment.  While the existing literature confines

attention to strictly concave and montonic network externality functions, we make a case in this paper

for considering also nonconcave and nonmonotonic forms, in particular the critical depensation form

from bioeconomics [3].  This follows from the observation that network size affects not just the

functionality of the good but also its exclusivity, which some consumers value. This allows us to be
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more specific — relative to the existing literature — about the relationship between network effects

and the size of the network and to capture in a simple model some of the most intriguing insights of

this burgeoning literature.  

What insights does this simple technical refinement offer?  Aside from a more intuitive

depiction of the relation between network size and adoption externalities, nonconcavity provides

explicitly for unstable equilibrium, critical mass in network entry, the importance of market

dominance, and history-dependence, all important but to-date disconnected findings.  This approach

thus helps unify core findings on network externalities.  It also yields interesting insights on the non-

monotonic time path of monopoly mark-up pricing for network products, a point thus far absent in

the literature.
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Figure 1: Network Growth With Concave Network Externalities
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Figure 2: Network Growth With Nonconcave Network Externalities


