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THE QUEUING THEORETIC APPROACH TO GROUNDWATER

MANAGEMENT

Amitrajeet A. Batabyal

ABSTRACT

In this paper I propose and develop a new framework for modeling groundwater

management issues.  Specifically, I apply the methods of queuing theory—for the first time, to

the best of my knowledge—to model a groundwater management problem from a long-run

perspective.  I characterize two simple management regimes as two different kinds of queues and

then show how to pose a manager's decision problem as an optimization problem using queuing

theoretic techniques.  I solve for certain fundamental quantities, such as the expected system size,

and then discuss the economic meaning and relevance of the queuing concepts being used.  I

close by discussing possible extensions to my basic models. 

Key words:  groundwater, management, stochastic, queuing, theory
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THE QUEUING THEORETIC APPROACH TO GROUNDWATER

MANAGEMENT

1.  Introduction

When economists have studied the  question of groundwater management, they have typically cast

the problem in a deterministic, control theoretic framework.  Brown and Mc Guire (1967), Burt (1967), Burt

and Cummings (1977), and Provencher and Burt (1993) have all analyzed different aspects of th e

groundwater management problem within this kind of control theoretic framework.  While this framework

has yielded many valuable insi ghts, in this schema, analysts have not been able to satisfactorily model the

twin phenomena of uncertain dynamic demand and uncertain dynamic supply.  Given this situation, in this

paper I propose and analyze a new framework for modeling the question of groundwater management .

This framework uses the techniques of queuing theory.  There are two main advantages to this method as

compared to the deterministic, control theoretic f ramework.  First, I am able to model the twin phenomena

of uncertain dynamic demand and uncertain dynamic supply effectively.  Second, I am able to treat th e

inherently stochastic nature of the problem explicitly and not as something that is relevant but incidental

to the problem owing to modeling difficulties. 

The rest of this paper is organized as follows.  In section 2, I discuss the main attributes o f

groundwater briefly and then proceed to pose a groundwater management problem in a queuing context.

I then explain the two kinds of queues that I propose to study.  In section 3, I develop the two queuin g

models and then pose the management problem mentioned above as a simple optimization proble m

involving the choice of two control variables.  Finally, in section 4, I present my salient findings, and I

discuss some of the many directions in which my basic models may be extended. 

To clarify any potential confusion, let me state at the outset that my problem is not the dam

problem which has been analyzed by queuing theorists such as Moran (1959) and Prabhu (1965) at some
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length.  First, I am not interested in determining how much water should be stored by a groundwate r

manager.  The issue of storage is not germane to my problem.  My problem is to determine how muc h

water to supply and at what rate in some specified  time period.  Second, I am not interested in determining

the optimal size of a dam; my secondary problem is to det ermine the optimal quota on water use within the

aforementioned time period.  Third, I am interested in the management problem, inter alia, due to the

common property nature of groundwater use and the co rresponding inefficiencies arising from unregulated

use (see Dasgupta 1982,  Chapter 6).  As such, my principal motivation for studying this problem is not to

make water supply more predictable in some statistically known manner. 

2.  Preliminaries

Water occurs as a stock and as a flow.  Surface water, i.e., the flows in lakes, rivers, etc., i s

typically the result of runoffs from precipitation and/or snowpack melt; both of these physical processes

are stochastic. On the other hand, groundwater exists in aquifers as a stock subject to stochastic recharge.

This suggests why the supply of groundwater is uncertain.  The demand uncertainty associated wit h

groundwater is principally a function of intertemporal m arket and climatic conditions.  Depending on these

conditions, the demand for groundwater will exhibit temporal fluctuations.  In a year with good rainfall and,

hence, plentiful supplies of surface water, the demand for groundwater will typically be less than in time

periods in which there is a drought.  In these lat ter times, the demand for groundwater will increase.  From

a management perspective, what is important is that the demand for groundwater is stochastic. 

An additional feature characterizing and providing a rationale for the regulation of groundwater

is the fact that groundwater is a res communes, or a common property resource.  That is, there are typically

no well- developed property rights to the aquifers containing groundwater.  Even in a developed country

like the USA, different states have a loose patchwork of rules governing the use of groundwater.  Fo r

instance, in Texas, the common law system regulates groundwater use; in New Mexico, groundwater rights
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This is yet another manifestation of the so-called Isolation Paradox.  See Sen (1967) for a discussion. 1

are defined by the prior appropriation doctrine.  In California, a mixed bag of riparian rights and right s

according to the prior appropriation doctrine govern groundwater use.  As a result, in the absence o f

regulation, each individual water user, in isolation, finds it profitable to exploit the aquifer until the price

received from selling (using) the water obtained from the aquifer equals the average cost of obtaining the

water.   At this point of resource use, all economic rents from the aquifer are dissipated and the tota l1

revenues from the use of groundwater equal the total cost of pumping the groundwater from the aquifer.

The inefficiencies associated with this rent dissipation are well understood (see Dasgupta 1982, Chapter

6); hence, I shall not pursue this issue any further.  A related problem concerns the intertempora l

misallocation of pumping due to the res communes nature of aquifers (Brown 1974). 

The dynamic and stochastic features of groundwater  use make the management problem amenable

to analysis via queuing theoretic methods.  By management, I am referring to a situation in which a social

planner (hereafter manager) who is assigned property rights to an aquifer solves an optimization problem.

In solving this problem, the manager explicitly takes into account the social benefit and the social cos t

stemming from the provision and use of  groundwater.  In my models, the manager's optimization problem

involves the maximization of the difference between monetary inflows (benefit) and monetary outflows

(cost) from the provision and use of groundwater.  In what follows, I shall refer to this difference as the

residual benefit. 

The uncertain demand for water over time is modeled by an inde pendent and identically distributed

(i.i.d.) stochastic arrival process of water users (hereafte r users).  The uncertain supply of water is modeled

by an i.i.d. stochastic supply process of the water manager.  The stochastic processes representing demand

and supply are assumed to be independent of each other.  More specifically, there is a single manager in

charge of dispensing groundwater from an aquifer to the different users who pay a fee for the water that

they receive.  The users arrive at some central water-dispensin g facility in accordance with some stochastic
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This does not have to involve actual physical collection.  Conceptually, obtaining could also mean arranging2

to have a certain quantity of water released by way of pipelines or canals. 

process with finite mean and for m a queue.  If the manager is idle, then the first user to arrive proceeds to

obtain his/her water,  otherwise the user waits in queue.  Users arrive one at a time and are served one at2

a time in order of arrival.  In the two cases that I analyze, I shall assume that the arrival process of the users

is Poisson and that this fact is known to the manager.  As a result, the interarrival times are exponentially

distributed and the distribution of interarrival times has the Markovian property of being memoryless.  I

will denote its distribution function by M( ), its mean by 1/ , and its rate by .  I shall model the supply

uncertainty in two ways.  In the first case I shall assume that the time taken by the manager in supplying

water can be represented by an exponential distribution.  In the second case, I shall assume that th e

manager's time to supply water is represented by so me arbitrary distribution whose cumulative distribution

function is G( ).  That is, the supply times, denoted by S, have a cumulative distribution function denoted

by G( ).  In both cases—Markovian in the first and general in the second—I assume that the mean of the

cumulative distribution function is finite; I denote this mean by 1/ . 

The manager's task is to choose the queue capacity, i.e., the number of people he/she will supply

water to in a specified time period and the rate at which he/she fills requests for water so as to maximize

the residual benefit arising from the provision and use  of groundwater.  In economic parlance, the manager

chooses a quota on water allocation in a  certain time period and the rate at which he/she will distribute the

available supply of water.  In the language of queuing theory, I am studying, in turn, the M/M/1 and the

M/G/1 queues, both with finite capacity.  In this three-letter designation, the first letter refers to the fact

that the interarrival times of the users has the Markovian property.  The second letter, M and G ,

respectively, refers to the fact that the manager's supply times distribution has the Markovian property in

the first case, whereas this distribution is general in the second case.  Finally, the number 1 refers to the

fact that there is a single groundwater manager. 
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I now proceed to a formal discussion of the queuing theoretic approach t o the aforementioned water

management problem.

3.  The Analytical Framework

3a.  The Water Management Regime as a M/M/1
       Queue with Finite Capacity

Since my analysis is being conducted from a long-run perspective, I first have to determine th e

stationary probabilities for this type of queue.  I now introduce three sets of probabilities that I shall work

with.  If X(t) denotes the number of water users in the queuing system at an arbitrary time t, then let

(1)

be the long-run probability that there are exactly k users in the system.  Let {a : k  0} be the proportionk

of users who find k in the system when they arrive.  Finally, let {d : k  0} be the proportion of users whok

leave behind k users in the system when they depart.  It is important to note that P  can be interpreted ask

the proportion of time that the system contains exactly k users.  For my purposes, the relevant stationary

probabilities are the {P }.  However, since it will not be possible to obtain the {P } directly in section 3b,k k

I shall exploit some well-known relationships between the {a }, {d }, and {P } to obtain the {P }.  Since Ik k k k

will be working with finite  capacity queues, let me denote the capacity of the queue by K.  Thus, the state

space of the queue can be indexed by k, where k = 0, . . . , K.  That is, when there are K users in the system,

the manager will not provide water to any more users in a certain time period.  K is, in fact, one of two

choice variables for the manager.  Later I will solve  for the K which maximizes the residual benefit arising

from the use of water. 

To determine the {P }, I shall follow Ross (1985) and solve a set of balance equations.  Thes ek

equations make use of the basic principle that the rate at which the queue enters state k equals the rate at

which it leaves state k.  Using this rate equality principle, the rate at which the stochastic process (o f
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arriving users) leaves state 0 must equal the rate at which the stochastic arrival process enters state 0.  So,

for state 0, I have

(2)

where  and  are the parameters of the two exponenti al distributions, as discussed in section 2.  Similarly,

for any state k, k = 1 , . . . , K - 1, I get 

(3)

Finally, for state K, the rate equality principle gives me the following balance equation 

(4)

The equation for state K requires some explanation.  Note that state K can be left by means of a departure

because once the system is in state K, no other users can enter the system.  Analogously, state K can be

entered only from state K-1, since there is no state K+I. 

I now solve (2)-(4) in terms of the stationary probability that the manager is idle, i.e., in terms of

P .  I get 0 

(5)

I can now use the fact that  to solve for P  explicitly.  I get 0

(6)

Using (5) and (6) I get

(7)

This accomplishes my first task.  The stationary probabilities for the water management regime which I

have modeled as a K state M/M/1 queue are given by (7). 
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I assume that the second-order conditions are satisfied. 3

I can now pose the manager's optimization problem.  In my model, the manager's task is (a) t o

choose the number of users who will be supplied water during some time period and (b) to choose the rate

at which he/she will supply water to the different users.  The rate at which users arrive to demand water

in a certain time period—which I take to be a month—is given by Int[y(1 - P )] where Int[ ] denotes theK

integer part of the term inside the square brackets.  Further, if the i  user demands x  units of water forth
i

which he/she pays a  = a (x ) dollars, then the manager's monetary inflows per month equa li i i

  Two additional interpretations are possible for the a .  First, they can bei

viewed as each individual groundwater user's tax arising from the use of groundwater.  Second, the a  cani

also be viewed as a net payment, i.e., a payment which includes a return for groundwater use.  I assume

that the manager incurs fixed costs of $F to supply water and that he/she incurs variable costs which are

a function of the rate at which he/she chooses to supply water and the number of users to whom he/sh e

supplies water.  I denote this variable cost function by C = C( , K).  The manager's objective is t o

maximize the total residual benefit per month arising from the provision of water, which I assume to be

the difference between monetary inflows (benefit) and outflows (cost) as described above.  Thus, th e

manager solves 

(8)

The first-order necessary conditions for an interior maximum are  3

(9)

and

(10)
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Equation (9) says that the weighted marginal cost of providing water per month (the RHS of the equation)

must equal the weighted total sum of monetary payments for water use.  Similarly, (10) says that th e

weighted marginal cost—with respect to K—of providing water (the RHS of the equation) must be se t

equal to a different weighted sum of the total monetary payments.  The weights themselves are functions

of the parameters of the two different exponential distributions.  The solutions to (9) and (10) give us the

optimal values of the choice variables  and K.  Since equations like (9) and (10) cannot, in general, b e

solved analytically, one will have to resort to numerical methods in order to obtain the optimal  and K.

Two quantities which have a bearing on the efficie ncy of the management function and, hence, are

of considerable interest to the manager are the average number of groundwater users in the system, i.e.,

the expected system size (which I shall denote by L) and the average number of groundwater users waiting

in queue or the expected queue size (which I shall denote by L ).  The quantities L and L  are useful forQ Q

planning purposes.  They provide the manager with summary statistics about the water users.  Since the

manager is a social planner vested with property rights to the aquifer, he/she will want to alter his/he r

choice variables over time if, f or instance, the average number of users being supplied water is deemed to

be too few. 

Now   For the K state M/M/1 queue, this simplifies to 

(11)

The expected queue size,  where = expected arrival rate of users =  and WQ

= expected time a user spends waiting in queue =   Thus, I get 

(12)

where P  is given by (7) and L is given by (11). K
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I use the Stieltjes integral to avoid problems arising from the potential nonexistence of the density function.4

Thus far, I have characterized a groundwater management regime as a M/M/1 queue with finite

capacity.  In democratic poli ties, society can choose how to use the maximized residual benefit.  It can be

used to maintain water supply facilities so as to make the management regime self-financing.  It can be

used to pay for water imports in times of emergency such as a drought.  If one were to view the a  as neti

payments by users, then some of this benefit could be retumed to the ind ividual groundwater users.  Finally,

if society desires that the manager break even financially, then the manager's problem becomes one o f

choosing  and K so as to equate monetary inflows (benefits) and outflows (costs). 

I now discuss an alternate queuing theoretic characterization of a groun dwater management regime.

3b.  The Water Management Regime as a M/G/1
        Queue with Finite Capacity

I now model the water management regime as a M/G/1 queue with finite capacity.  Befor e

obtaining the stationary probabilities for the K state M/G/1 queue, I first have to obtain the stationar y

probabilities for the M/G/1 queue with a countable state space.  Because the manager's supply tim e

distribution is arbitrary for this queue, the methods cannot be applied here that were employed in section

3a to obtain the stationary probabilities for {X(t): t  0} where X(t) denotes the number of users in th e

system at time t.  In fact, {X(t): t  0} is not a discrete time Markov chain.  As is usually done in this case,

I proceed by analyzing the embedded Markov chain {X(n): n ~ l, 2, . . .} where X(n) refers to the number

of users left behind by the nth departure from the system (see Ross 1983, pp. 100-112).  Let P = [p ]i j

denote the chain's transition probability matrix and let the one-step transition probabilities be 4

(13)

where G( ) is the distribution function of the manager's supply times.  If I let  = Pr{n arrivals during an

supply time S = t}, then I get 

(14)
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In order to obtain the stationary probabilities for the chain {X(n): n = l, 2, . . .}, I shall assume that

 That is, the mean number of arrivals in a supply time period is assumed to be less

than

unity.  This assumption ensures the ergodicity of the chain and hence the existence of the stationar y

probabilities.  To determine the stationary probabilities {d }, I need to solve the stationary equations . k

These are

(15)

To solve the above set of equations, I shall use probability-generating functions as in Ross (1983 ,

pp. 111-112).  To this end, let 

(16)

and let

(17)

Multiplying the LHS and the RHS of (15) by z , summing over i, and then solving for D(z) yields  i 

(18)

Equation (18) can be further simplified by using L'Hopital's rule, noting that (1) = 1 and that

(1) =  = E[supply time] = (1/ ), where E[ ] is the expectation operator.  Performing thes e

simplifications, I get d  = 1 -  and 0

(19)

Equation (19) is as far  as I can go in obtaining the stationary probabilities of the embedded Markov chain

{X(n): n = l, 2, . . .}.  So far, I have obtained the {d } for the countable state Markov chain.  However, Ik

am actually interested in obtaining the {d } for the K state embedded chain.  I now  proceed to obtain thesek

probabilities. 
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See Cohen (1982, pp. 570-572) for an alternate and considerably more rigorous approach to the solution.5

I first have to truncate the state space to k = 0 . . . , K - 1 states.  This truncation necessitates a

modification of the relevant stationary equations.  These equations can now be written as 

(20)

The solution to these K equations will give us the {d } for the K state chain.  To obtain the solution, I shallk

proceed heuristically.   Inspecting (15) and (20), I conjec ture that the stationary probabilities for the K state5

embedded Markov chain must be proportional to the stationary probabilities for the countable state Markov

chain which I now denote by { d  }.  That is, n

(21)

where L is the constant of proportionality.  To verify that my conjecture is true, I first need to determine

L.  To obtain L I shall use the fact that   This tells me that

  From this I conclude that the stationary probabilities for the K state Markov chain

are given by 

(22)

I have now solved for the {d } , i.e., the proportion of users leaving behind k in the system when theyk 

depart the system.  However, we are really interested in the { P }.  To obtain the {P }, I shall first solvek k 

for the {a }.  Now, in any queuing system in which users arrive one at a time and are supplied water onek 

at a time,  (Ross 1985, p. 308).  This property hol ds in the case that I have been studying.

Further, by the PASTA property (see Wolff 1989, pp. 293-297),   Hence, to obtain the {P },k 

it suffices to find the {a }.  In my case, , except that to obtain the { a }, I have to expand the statek k 
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I assume that the second-order conditions are satisfied. 6

space to include the K state.  This can be done easily.  First, note that d  = Pr{an arrival finds k userst 

occupying the system/arrival does join the queue} and, hence,   Thus, 

(23)

Finally, to find  I use the rate equality principle alluded to in the derivation of (2)–(4).  I have 

and, hence, 

(24)

Also, using (24), then (23) can be simplified to 

(25)

Thus, the required stationary probabilities for the K state M/G/1 queue are given by (24) and (25). 

I am now in a position to discuss the manager's optimization problem.  Reasoning analogous to that

employed in section 3a reveals that the manager's optimization problem is given by (8).  The relevan t

first-order necessary conditions for an interior maximum are  6

(26)

and

(27)

Equation (26) tells us that optimality requires the manager to set the weighted marginal cost of supplying

water (the RHS of the equation) equal to the weighted sum of total monetary inflows.  Further, (27) tells

us that the marginal cost of supplying water (the RHS of the equation) should be set equal to a different

weighted sum of monetary inflows.  Alternately, the weighted sum of total monetary inflows can also be
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These quantities were defined in section 3a. 7

interpreted as the marginal revenue from water use.  The optimal  and K are defined by (26) and (27 )

implicitly.  As in section 3a, (26) and 27) will  typically have to be solved numerically to obtain the desired

 and K. 

To obtain the expected system size, L, and the expected queue size, L ,  for the K state M/G/1Q
7

queue, I will follow a slightly different route.  As is well known,  where W is the expected time

that a water user spends in the syst em.   as in section 3a.  W can be computed from the

r e l a t i o n    S o m e  a l g e b r a  r e v e a l s  t h a t

 (see Ross 1985, p. 337).  Finally, 

Using these relationships, I get 

(28)

and

(29)

where S denotes a supply time and P  is given by (24). K

In addition to the ways suggested in section 3a of app ortioning the residual benefit arising from the

provision of groundwater, this benefit can be u sed for other purposes as well.  This could include activities

such as the financing of a monetary scheme which would reward water conservation during times o f

emergency. 

4.  Conclusions and Potential Extensions

In this paper I have proposed and analyzed a new framework for modeling a groundwate r

management problem.  This framework applies the techniques of queuing theory.  Specifically, I
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See Kreps (1989, Chapters 16 and 17) for an informative discussion of the principal/agent paradigm. 8

characterized two simple water management regimes as two different kinds of queues.  I then went on to

show how the manager could choose a quota on water allo cation and the rate at which he/she would supply

water in a certain time per iod so as to maximize the residual benefit arising from the provision and use of

groundwater. 

The basic models discussed in this paper may be extended in many directions.  In what follows,

I suggest three possible extensions.  One can make the models richer by considering bulk arrivals and/or

bulk supply.  While this would invalidate the a  = d  result, the explicit incorporation of bulk arrivals and/ork k

bulk supply will permit one to analyze management regimes more general than the ones that I hav e

analyzed.  A second line of extension woul d be to consider cases where the arrival process is arbitrary and

the supply times process is either deterministic or some known stochastic process.  This kind of settin g

would be in the spirit of the principal/agent paradigm of information economics.   In this paradigm, the8

principal (my manager) is generally as sumed to know the characteristics affecting the discharge of his/her

functions with certainty.  Ho wever, the principal is assumed to know the characteristics of the agents (my

users) only imperfectly.  Finally, th e use of queue networks would permit the analysis of interactions such

as those between agricultural and nonagricultural uses of groundwater. 
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