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Abstract

The GTAP final demand system has some known defects: the com-
putation of the equivalent variation is not exact; with non-standard
demand parameters, the equivalent variation may be grossly in error;
the decomposition of the equivalent variation contains a nuisance term.
We find a further defect, that the upper-level demand equations are
invalid. We revise the model to remove these defects.
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1 Introduction

The GTAP model, versions 4.1 and lower, suffers from some defects in the
implementation of the regional household demand system:

• The upper level of the demand system assumes a fixed price for utility
from private consumption. But with a private consumption demand
system of the CDE form, the price of utility from private consump-
tion depends on the level of private consumption expenditure. With
households not price takers for utility from private consumption, the
familiar Cobb-Douglas demand system does not apply. Accordingly,
the upper-level demand equations are in error.

• Utility and equivalent variation are wrongly computed in simulations
with non-standard settings for the CDE expansion parameters. Even
with the standard settings, in multi-step simulations the utility and
equivalent variation computations are inexact.

• The welfare decomposition inherits the defects of the equivalent vari-
ation computation.

In removing these defects we revise in passing some minor misfeatures
of the old treatment:

• We treat the entire final demand system as the demand system of a
representative household, rather as than a conglomeration of represen-
tative and region-wide demand systems (subsection 2.8).

• We provide a new facility for shifting the allocation of regional income
exogenously by modifying rather than overriding the final demand
system (subsection 2.15).

• We eliminate an uninterpretable “nuisance term” from the decompo-
sition of equivalent variation (subsection 4.3).

• We reorganize the GTAP model source code to gather within a sin-
gle module all equations derived from the upper-level demand system
(subsection 2.8).

The main disadvantage of the new treatment relative to the old is that
its implementation and properties are somewhat more complex. It requires
more equations and variables, mostly to support an exact calculation of the
equivalent variation. Also, whereas the old treatment allocated regional in-
come in fixed shares between private consumption expenditure, government
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household expenditure, and saving, the new treatment allows the shares to
vary in response to changes in income and consumer prices.

This paper describes the new treatment. It should be accompanied by
several program files—source code, gtap.tab, for the revised solution model,
a Tablo stored input file gtap.fts showing a typical model condensation,
and a GTAP test simulation command file ghom.cmf showing a typical model
closure. It includes extensive listings from the source code. It does not how-
ever describe but rather takes as given the standard GTAP model notation;
it should accordingly be read in conjunction with the source code or the
original GTAP model documentation (Hertel and Tsigas [5]).

Listings in this paper of old program code come from a GTAP model
version 5 prerelease, incorporating Ken Itakura’s reorganization of the code
structure, but no relevant changes in the model theory over version 4.1, and
used in the August 2000 GTAP short course.

We adopt the convention that a lower-case symbol denotes percentage
change in the corresponding upper-case symbol; so, for a variable X, x
denotes percentage change in X, x = (1/100)(dX/X).

2 The upper level of the regional household de-
mand system

2.1 The old treatment

In the GTAP model as originally implemented (Hertel and Tsigas [5]), in
each region a regional household allocates regional income so as to maximize
per capita aggregate utility according to a Cobb-Douglas utility function.
The maximand is described as “aggregate” utility because it comprises both
government and private sector behavior. The arguments in the utility func-
tion are per capita utility from private consumption, per capita utility from
government consumption, and per capita real saving. We refer to these as
the upper-level commodities of the final demand system.

Real saving is a single commodity, defined as saving deflated by a saving
price. Utility from government consumption is a Cobb-Douglas aggregate of
government consumption of individual commodities. Per capita utility from
private consumption is aggregated from per capita private consumption of
individual commodities following Hanoch’s ([3]) constant difference elasticity
(CDE ) demand system.

We note that in the private consumption demand system, unlike the
government consumption demand system, the variable maximized is a per
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capita rather than an economy-wide utility. This is necessary because the
private consumption demand system is non-homothetic. The allocation of
private consumption expenditure across commodities depends on the sum
to be allocated, and the appropriate sum variable is not economy-wide but
per capita private consumption expenditure.

The CDE demand system is characterized by an implicit expenditure-
cum-indirect-utility function,

1 =
∑

i

BiUΥiEi

(

Pi

X

)Υi

, (2.1.1)

where U denotes utility, Pi, the price of commodity i, X, expenditure, and
Bi, Υi, and Ei, various parameters. Following Hanoch [3], we call the Bi dis-
tribution parameters, the Υi substitution parameters, and the Ei expansion
parameters. Constraints on the parameters are:

∀i, Bi > 0,

∀i, Ei > 0,

and either

∀i, Υi < 0

or

∀i, 0 < Υi < 1.

Although we are not required to do so by theory, in standard GTAP data
bases we normalize the expansion parameters so that their share-weighted
sum is equal to one,

∑

i

SP
i Ei = 1,

where SP
i denotes the share of commodity i in private consumption expen-

diture.
This completes the specification the final demand system; it remains to

work out the implications of the specification. This is done briefly in Hertel
and Tsigas ([5]), but to support later discussion (subsection 2.2) we provide
here a more detailed derivation for the upper level of the system.

We write the upper-level utility function as

U = CUBP
P UBG

G UBS
S , (2.1.2)
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where U denotes per capita aggregate utility, UP , per capita utility from
private consumption, UG, per capita government consumption, and US , per
capita real saving, and BP , BG, and BS are distribution parameters.

We define a saving price PS , and postulate the existence of suitable price
indices PG and PP for utility from government and private consumption.
Then given income Y , the regional household maximizes U subject to the
budget constraint

N(PP UP + PGUG + PSUS) = Y, (2.1.3)

where N denotes population.
Since the utility function is Cobb-Douglas, we expect the regional house-

hold to allocate regional income in fixed shares between the upper-level
commodities:

YP =
BP

B
Y, (2.1.4)

YG =
BG

B
Y, (2.1.5)

YS =
BS

B
Y, (2.1.6)

where B denotes the sum of the distribution parameters, B = BP + BG +
BS , YP private consumption expenditure, YP = NPP UP , YG government
consumption expenditure, YG = NPGUG, and YS saving, YS = NPSUS .
Then

NPP UP =
BP

B
Y,

NPGUG =
BG

B
Y,

NPSUS =
BS

B
Y.

Putting

QP = NUP , (2.1.7)

QG = NUG, (2.1.8)

QS = NUS , (2.1.9)

, where QP denotes private consumption, QG government consumption, and
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QS saving, we obtain

PP QP =
BP

B
Y,

PGQG =
BG

B
Y,

PSQS =
BS

B
Y.

To allow for exogenous shocks in the allocation of saving, we define “slack
variables” KS and KG for saving and utility from government consumption,
initially equal to one. We insert these into the corresponding demand equa-
tions:

PGQG = KG
BG

B
Y,

PSQS = KS
BS

B
Y.

Differentiating and rearranging, we obtain

qG = y − pG + κG, (2.1.10)

qS = y − pS + κS . (2.1.11)

These appear in the old code as:

Equation GOVERTU
# computation of utility from government consumption (HT 39) #
(all,r,REG)

ug(r) = y(r) - pgov(r) + govslack(r);

and

Equation SAVINGS
# regional demand for savings (HT 38) #
(all,r,REG)

qsave(r) = y(r) - psave(r) + saveslack(r) ;

In the presence of shocks to the slack variables, the upper-level demand
system is no longer operative; the budget constraint however must still be
observed. Accordingly, we include in the model not the demand equation
for utility from private consumption but instead the budget constraint

YP = Y − YG − YS .
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For no compelling reason, we express government consumption expendi-
ture YG as the sum of expenditures on individual commodities, YG =

∑

i YGi,
where YGi denotes government consumption expenditure on commodity i,
YGi = PGiQGi, where PGi denotes the price of commodity i when purchased
for government consumption, and QGi government consumption of commod-
ity i. Then

YP = Y −
∑

i

YGi − YS

= Y −
∑

i

PGiQGi − PSQS ,

or, in percentage change form,

YP yP = Y y −
∑

i

YGi(pGi + qGi)− YS(pS + qS).

This appears in the old code as:

Equation PRIVATEXP
# private consumption expenditure (HT 8) # (all,r,REG)

PRIVEXP(r)*yp(r)
= INCOME(r)*y(r)
- SAVE(r)*[psave(r) + qsave(r)]
- sum(i,TRAD_COMM, VGA(i,r)*[pg(i,r) + qg(i,r)])
;

Finally, we compute utility. Substituting for UG and US from equations
(2.1.8) and (2.1.9) into equation (2.1.2), we have

U = CUBP
P

(

QG

N

)BG
(

QS

N

)BS

.

Differentiating, we obtain

u = BP uP + BG(qG − n) + BS(qS − n) (2.1.12)

= B
[

BP

B
uP +

BG

B
(qG − n) +

BS

B
(qS − n)

]

= B
[

YP

Y
uP +

YG

Y
(qG − n) +

YS

Y
(qS − n)

]

,

using equations (2.1.4–2.1.6). Then, setting B = 1, we have

Y u = YP uP + YG(qG − n) + YS(qS − n). (2.1.13)

This appears in the old code as:
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Equation UTILITY
# computation of per capita regional utility (HT 37) #
(all,r,REG)

INCOME(r)*u(r)
= PRIVEXP(r)*up(r)
+ GOVEXP(r)*[ug(r) - pop(r)]
+ SAVE(r)*[qsave(r) - pop(r)]
;

2.2 Defects in the old treatment: initial findings

While the old treatment has proven serviceable in many GTAP applications,
it has its defects. We identify three, of very different magnitude:

• It is slightly confusing in formulation, shifting unnecessarily between
unitary and representative households, and per capita and economy-
wide utilities.

• In setting saving or government consumption exogenously, the user
cannot adjust preferences within the upper-level demand system, but
must override them. There are some advantages to maintaining a
working upper-level demand system even when some upper-level de-
mands are exogenized.

• The underlying theory (subsection 2.1) is invalid; the model equations
do not logically follow from the system specifications.

The first, and very minor, objection to the old treatment is that in
formulation it is slightly incoherent. The upper-level utility function is at-
tributed to a unitary “regional household”, but its arguments are per capita
variables. The government consumption variable in the upper-level util-
ity function is per capita government consumption, but in the government
consumption demand system the variable is economy-wide government con-
sumption. Utility from private consumption pertains to a representative
private household, and utility from government consumption to a “govern-
ment household”, both distinct from the “regional household” that enjoys
aggregate utility. None of these disconnections is substantively damaging,
but together they create a slight impediment to thinking and writing about
the demand system.

If we take the descriptions in the old treatment seriously, we are not
entitled to talk about upper and lower levels of the demand system. To do so
implies that they are part of the same agent’s demand system, whereas really
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they pertain to different agents. Strictly speaking, the aggregate utility
function pertains to a unitary regional household that displays an altruistic
interest in the welfare of the representative private household, and also cares
about a variable, per capita government consumption, that is related to but
distinct from the welfare of the government household. We deliberately slur
over these niceities in deriving the old system (subsection 2.1). In discussing
below (in this subsection) the more substantive defects of the old system,
we override them, treating all the demand subsystems as components of
a representative regional household demand system. Finally, in presenting
the new treatment, we explicitly adopt the unified approach (subsection 2.8),
and implement the associated minor substantive changes (subsection 2.10).

The second limitation of the old treatment, also minor, is that the saving
and government consumption slack variables, KS and KG, override rather
than modify the upper-level demand system. We should be able to represent
exogenous shifts in income disposition as shifts in preferences in the upper-
level demand system. This would have three advantages:

• It would let us shock demand for any of the three upper-level com-
modities. The old treatment lets us shock either saving or government
consumption but not private consumption.

• It would let the upper-level demand system do some work even when
some external outcomes are imposed. For example, while exogenizing
saving, we could let the demand system allocate remaining income
between private and government consumption.

• It would allow us to obtain meaningful welfare results even when some
upper-level income allocations are set exogenously.

The main defect in the old treatment is that the theory it implements is
invalid. The error is embodied in the old upper-level budget constraint (2.1.3),
N(PP UP + PGUG + PSUS) = Y . In adopting this formulation for the con-
straint, we assume that the regional household can obtain utility from pri-
vate consumption at some fixed price PP . This assumption is non-trivial
and in fact unwarranted.

We rewrite the old upper-level budget constraint as

PP UP + PGUG + PSUS = X, (2.2.1)

where X denotes per capita income. Recalling that utility from private
consumption and utility from government consumption are defined within
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the private and government consumption demand subsystems, we obtain the
general form of the constraint,

EP (PP, UP ) + EG(PG, UG) + PSUS = X, (2.2.2)

where EP and EG are per capita expenditure functions, and PP and PG
price vectors, for private and government consumption. It might so happen
that the expenditure functions were of the form

EP (PP, UP ) = ΠP (PP)UP , (2.2.3)

EG(PG, UG) = ΠG(PG)UG

for some functions ΠP (PP) and ΠG(PG). If so, we could could set PP =
ΠP (PP) and PG = ΠG(PG), and replace the general budget constraint (2.2.2)
with the simpler form (2.2.1). In fact, the government consumption expen-
diture function is of the required form, but the private consumption expen-
diture function is not; so we cannot use the simpler budget constraint.

To show that the private consumption expenditure function cannot be
written in the form (2.2.3), we employ the general proposition (cf., e.g.
Deaton and Muellbauer [1] p. 143):

Proposition 1 For any demand system, the expenditure function is of the
form E(P, U) = Π(P)F (U) for some monotonic increasing function F if
and only if the system is homothetic.

Proof. For sufficiency, note that if the system is homothetic, there exists a
strictly increasing function F such that for all consumption vectors Q, for
all positive K, F ◦ U(KQ) = KF ◦ U(Q). Let U0 be some arbitrary utility
level; and for all price vectors P, let Π(P) = E(P, U0)/F (U0). Then for
any utility level U1 and any price vector P, E(P, U1) = Π(P)F (U1). For
suppose that with prices P, consumption Q0 yields utility U0 at minimum
cost. Then consumption (F (U1)/F (U0))Q0 yields utility U1 at minimum
cost; so E(P, U1) = P • (F (U1)/F (U0))Q0 = (F (U1)/F (U0))E(P, U0) =
Π(P)F (U1). Hence the expenditure function is of the specified form. For
necessity, note that by Shephard’s lemma, the budget share of each com-
modity i is equal to the elasticity of Π with respect to the price of i; so the
budget shares are independent of utility; so the system is homothetic.

Now as Hanoch [3] shows, the CDE is in general non-homothetic. Indeed,
this is a requirement for any empirically satisfactory demand system (see,
for example, Deaton and Muellbauer [1] p. 144), and part of the reason for
adopting the CDE in GTAP (Hertel and Tsigas [5], p. 49). So in GTAP,
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the private consumption expenditure function is not of the form (2.2.3), and
the budget constraint is not equation (2.2.1).

This shows that the old theory is defective, in that it contains an invalid
derivation; it does not show how or whether the relevant results are in error.
After dealing with a side-issue relating to the derivation (subsection 2.3) we
correct the theory (subsection 2.4) and compare the corrected with the old
results (subsection 2.5).

2.3 A digression on the Gorman conditions

As shown above (subsection 2.2), there is an error in the derivation of the
old upper-level demand system. One way to view the error is that it imposes
an erroneous two-stage budgeting scheme on the regional household demand
system. It is natural then to inquire, how the defects of the old treatment
relate to the necessary and sufficient conditions derived by Gorman [2] for
the feasibility of two-stage budgeting.

The Gorman conditions apply in the context of weak separability. A
system is said to be weakly separable if the utility function can be represented
in the form

U(Q) = U•(U1(Q1), . . . , UG(QG)),

where Q1, . . . ,QG is a partition of the quantity vector Q into subvectors
representing groups of commodities. The function U• is the upper-level
utility function, and the U1, . . . , UG are lower-level utilities or subutilities.
In a weakly separable system, the Gorman conditions are the necessary and
sufficient conditions for the existence of a upper-level demand system

max U∗
• (U

∗
1 , . . . , U∗

G) subject to
G

∑

i=1

P ∗
i U∗

i = X, (2.3.1)

where P ∗
i and U∗

i are price and quantity indices for the i’th lower-level
subsystem, and U∗

• a utility index, such that the solution for the upper-level
system is consistent with the solution for the overall system. Note that
the quantity indices U∗

i may or may not be the subutilities Ui. Also, the
utility index U∗

• may or may not be similar in form to the upper-level utility
function U•.

By construction, the GTAP regional household demand system is weakly
separable. The error in the old derivation is the assumption that utility from
private consumption can serve as a quantity index for private consumption
in the upper-level demand system (2.3.1). As shown above (subsection 2.2),
if we try to use utility from private consumption as the quantity index, we
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find there is no corresponding price index. This does not mean that the
regional household demand system does not meet the Gorman conditions;
price and quantity indices for private consumption might yet be found; it
means only that the quantity index cannot be the subutility.

On the other hand, even if suitable price and quantity indices did exist,
that would not necessarily validate the old treatment. It would show that we
could specify a upper-level demand system that treated private consumption
as an ordinary good, but it would not guarantee that the utility index U∗

•
in that system was of the Cobb-Douglas form, nor consequently that the
demands had the Cobb-Douglas fixed budget shares property. In short, the
requirements for the validity of the old treatment are more stringent than
the Gorman conditions.

Gorman [2] shows that a upper-level system of the desired form can be
constructed under either of two alternative conditions. One alternative is
that the lower-level systems are homothetic. Under this alternative, the
quantity indices are just the lower-level utilities, and the utility index is just
the upper-level utility function. The other alternative is that the upper-level
utility function is additive, U•(U1, . . . , UG) =

∑G
i=1 Ui, and the lower-level

systems admit indirect utility functions of the Gorman generalized polar
form,

Ψi(Pi, Xi) = Fi

(

Xi

Mi(Pi)

)

+ Ai(Pi). (2.3.2)

Under this alternative, the quantity indices, U∗
i = Xi/Mi(Pi), the price

indices, P ∗
i = Mi(Pi), and the utility index, U∗

• (U
∗
1 , . . . , U∗

G) =
∑G

i=1 Fi(U∗
i ).

As we have seen already, the GTAP final regional household demand
system does not meet the first condition, that the lower-level demand sys-
tems be homothetic. It seems obvious, but is not easily proved, that except
in degenerate cases, the CDE and Gorman generalized polar forms are in-
compatible.

Conjecture 1 If a demand system is both a CDE system and a Gorman
generalized polar form, then it is a CES system.

As noted above, it is possible to satisfy the Gorman conditions without
validating the old treatment of the upper-level demand system. More specif-
ically, solutions involving homothetic lower-level demand systems validate
the old treatment, but solutions involving the Gorman generalized polar
form do not. In particular, the old treatment specifies a utility function of
the Cobb-Douglas form, but the solutions involving the Gorman generalized
polar form require a utility function of the additive form.
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On the one hand, it is true to say that the old treatment is erroneous
because the CDE system does not satisfy the Gorman conditions. It is
true because, if the old treatment were valid, the Gorman conditions would
necessarily be satisfied. On the other hand, the Gorman conditions are a
something of a distraction in this context. To show that the old derivation
is invalid, we do not need to refer to the Gorman conditions; it is sufficient,
and simpler, to show that the private consumption demand system is non-
homothetic. Nevertheless, as we show below (subsection 2.7), although the
Gorman result is not useful in refuting the old treatment, it is potentially
useful in remedying its defects.

2.4 Revised theory

We find above (subsection 2.2) that we need to revise the budget con-
straint in the upper-level demand system from the special form (2.2.1),
PP UP +PGUG+PSUS = X, to the more general form (2.2.2), EP (PP, UP )+
EG(PG, UG) + PSUS = X. We now derive the demand equations, an equa-
tion for utility, and some auxiliary equations under this more general as-
sumption.

As an aid to the reader, we distinguish these derived equations by en-
closing them in boxes .

We begin by obtaining a general solution for the Cobb-Douglas demand
system in the absence of fixed prices.

Proposition 2 In the Cobb-Douglas demand system

max U = C
∏

i

UBi
i subject to

∑

i

Ei(Ui) = X, (2.4.1)

with expenditures Xi = Ei(Ui) on individual commodities convex in quanti-
ties Ui, the budget shares

Xi

X
=

Φ−1
i Bi

∑

j Φ−1
j Bj

, (2.4.2)

where Φi denotes the elasticity of expenditure on commodity i with respect to
quantity of commodity i. In the corresponding cost minimization problem,
the elasticity of expenditure with respect to utility, Φ, is given by:

Φ−1 =
∑

i

Φ−1
i Bi. (2.4.3)
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The proof is a straightforward exercise in constrained optimisation.
Note that with expenditures proportional to quantities, the Φi are unity,

so the equation reduces to the standard Cobb-Douglas fixed-shares equation.
In general however the expenditure shares are variable.

Now the government consumption demand system is Cobb-Douglas, so
it is homothetic, so we can cardinalize utility from government consumption
so that ΦG ≡ 1. Also saving is a single commodity, so ΦS ≡ 1. Applying
then proposition 2 to the GTAP demand system, we have

XP

X
=

(

ΦP

Φ

)−1

BP ,

XG

X
= ΦBG,

XS

X
= ΦBS ,

or, in percentage change form,

xP − x = −(φP − φ) (2.4.4)

xG − x = φ (2.4.5)

xS − x = φ (2.4.6)

For percentage change in the utility elasticity of income, φ, we have

φ =
∑

i

Φ−1
i Bi

∑

j Φ−1
j Bj

φi differentiating (2.4.3),

=
∑

i

Xi

X
φi substituting from (2.4.2),

=
∑

i

Siφi putting Si = Xi/X,

= SP φP + SGφG + SSφS .

Since φG = φS = 0, this reduces to

φ = SP φP (2.4.7)

As we see from these equations, the utility elasticity of income, Φ, is a
weighted average of the lower-level utility elasticities ΦP , ΦG, and ΦS . Since
ΦG and ΦS are fixed, changes in Φ depend only on changes in the utility
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elasticity of private consumption expenditure, ΦP . An increase in ΦP , a shift
so to speak towards decreasing returns from private consumption, leads to
a budget reallocation away from private consumption toward government
consumption and saving.

We now develop an equation for changes in ΦP . As shown by Hanoch [3],
with the CDE form for the private consumption demand system, the utility
elasticity is a weighted average of the expansion parameters:

ΦP =
∑

i

SP
i Ei. (2.4.8)

Differentiating, we obtain

φP =
∑

i

SEisPi

where SEi denotes the expansion-parameter-weighted budget share of com-
modity i,

SEi =
SP

i Ei
∑

j SP
j Ej

=
SP

i Ei

ΦP
. (2.4.9)

Then writing pPi for the price of commodity i in private consumption, and
uPi for per capita private consumption of commodity i, we obtain

φP =
∑

i

SEi(pPi + uPi − xP ) (2.4.10)

We see from this equation that shifts in private expenditure allocation to-
ward commodities with high expansion parameters Ei tend to be associated
with increases in the private expenditure utility elasticity, while shifts to-
wards commodities with low expansion parameters tend to be associated
with decreases.

For aggregate utility we use the general result:

Proposition 3 For the upper level of a weakly separable demand system,

max U(U1, . . . , UG) subject to
∑

i

E(Pi, Ui) = X,

where E(Pi, Ui) denotes the expenditure function for the i’th lower-level de-
mand system, we have

x = p + Φu,
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where p is an expenditure-share-weighted index of commodity group price
indices, p =

∑

i Sipi, where Si denotes the share of expenditure on group i
in total expenditure, Si = Xi/X, and pi is an expenditure-weighted index of
prices of commodities in group i, pi =

∑

j Si
jpij, where Si

j denotes the share
of commodity j from group i in total expenditure on group i, Si

j = Xij/Xi,
where Xij denotes expenditure on commodity j from group i, and pij denotes
the price of commodity j from group i.

Proof. Define the Lagrangean

L = U(U1, . . . , UG)− Λ

(

∑

i

E(Pi, Ui)−X

)

. (2.4.11)

Then the elasticity of utility with respect to income,

∂ log U
∂ log X

=
X
U

∂L
∂X

by the envelope theorem

=
X
U

Λ differentiating (2.4.11)

= Φ−1,

and the elasticity of utility with respect to the price of the j’th commodity
in the i’th commodity group, that is, with respect to the j’th component
of Pi,

∂ log U
∂ log Pij

=
Pij

U
∂L
∂Pij

by the envelope theorem

= −Pij

U
Λ

∂Xi

∂Pij
differentiating (2.4.11)

= −Λ
PijQij

U
by Shephard’s lemma

= −X
U

Λ
PijQij

X
= −Φ−1Sij ,

where Qij denotes consumption, and Sij the share in total expenditure,
of commodity j in commodity group i (for the envelope theorem see e.g.
Varian [7]). Then totally differentiating the indirect utility function, we
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have

u =
∑

i

∑

j

∂ log U
∂ log Pij

pij +
∂ log U
∂ log X

x

= −Φ−1
∑

i

∑

j

Sijpij + Φ−1x

= Φ−1(x− p),

where p is the expenditure-share-weighted index of commodity group price
indices,

p =
∑

i

∑

j

Sijpij

=
∑

i

∑

j

Xij

X
pij =

∑

i

Xi

X

∑

j

Xij

Xi
pij =

∑

i

Si

∑

j

Si
jpij

=
∑

i

Sipi,

as in the statement of the proposition. Solving for x, we obtain

x = p + Φu,

as was to be shown.
Moving from the general formulation of proposition 3 to the specific

case of the GTAP upper-level demand system, we copy the utility equation
verbatim:

x = p + Φu (2.4.12)

but write the disposition price index equation in the more specific form

p = SP pP + SGpG + SSpS (2.4.13)

where pP and pG denote expenditure-weighted price indices for private and
government consumption, and pS denotes the price of saving.

2.5 Defects in the old treatment: further findings

Having identified an error in the derivation of the old theory (subsection 2.2),
and revised the theory to remove that defect (subsection 2.4), we now com-
pare the results of the revised theory with the original.

From equations (2.4.4)–(2.4.6), we see that under the revised theory, the
upper-level income disposition shares are not in general fixed. They are fixed
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in the special case φ = φP = 0; from equation (2.4.7), this condition reduces
to φP = 0; from equation (2.4.8), this is satisfied if fixed private consumption
expenditure shares SP

i or uniform expansion parameters Ei ≡ E; that is, in
the special case of a homothetic system. In general however, the old top-
level demand equations, which assume fixed income disposition shares, are
in error.

For utility, the old and new treatments use rather different approaches,
so we cannot directly compare the two equations. Instead we derive a new
utility equation consistent with the new theory but similar in approach to
the old equation. We follow the old derivation as far as equation (2.1.12),

u = BP uP + BG(qG − n) + BS(qS − n).

Then, instead of the old Si = Bi/B (paraphrasing equations (2.1.4)–(2.1.6)),
we use the new equation (2.4.2), Si = Φ−1

i Bi/
∑

j Φ−1
j Bj . From this and

equation (2.4.3), Φ−1 =
∑

i Φ
−1
i Bi, we obtain

Bi =
Φi

Φ
Si,

for i = P, G, S. Substituting into equation (2.1.12), and setting ΦG = ΦS =
1, we obtain

u = Φ−1[ΦP SP uP + SG(qG − n) + SS(qS − n)].

Comparing this with the old utility equation (2.1.13),

Y u = YP uP + YG(qG − n) + YS(qS − n),

⇔ u = SP uP + SG(qG − n) + SS(qS − n), (2.5.1)

we note that the old computation is invalid in general, but valid in the
special case Φ = 1, ΦP = 1. As we now show, standard GTAP data bases
fall within the special case.

Proposition 4 Under the old treatment, the utility elasticity of income is
equal to one if and only if the share-weighted sum of the CDE expansion
parameters is equal to one.

Proof. We have, from general theory, and from the treatment of saving and
government consumption,

uS = xS − pS ,

uG = xG − pG,

uP = Φ−1
P (xP − pP ).
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With the fixed-expenditure-shares upper-level demand equations in the old
system, this simplifies to

uS = x− pS ,

uG = x− pG,

uP = Φ−1
P (x− pP ).

Then recalling equation (2.5.1), we have

u = SP uP + SG(qG − n) + SS(qS − n)

= SP uP + SGuG + SSuS

= Φ−1
P SP (x− pP ) + SG(x− pG) + SS(x− pS).

Recalling equation (2.4.12), we have

u = Φ−1(x− p),

where
p = SP pP + SGpG + SSpS .

we find (ignoring the pathological case SP = 0) that the two equations for
u are consistent if and only if ΦP = 1. If however we ignore the effects of
price changes, but consider income changes only, we find that the equations
are consistent provided

Φ−1 = SP Φ−1
P + SG + SS .

We interpret the value of Φ from this equation as the value implicit in the
model. Then (again assuming SP 6= 0) Φ = 1 if and only if ΦP = 1.
But by equation (2.4.8), ΦP is the expenditure-share-weighted sum of the
CDE expansion parameters. So Φ = 1 if and only if the expenditure-share-
weighted sum of the CDE expansion parameters is equal to one; as was to
be shown.

In constructing standard GTAP data bases, we have normalized the ex-
pansion parameters so that their expenditure-share-weighted sum is indeed
equal to one. Then, from equation (2.4.8) and proposition 4, both the util-
ity elasticity of private consumption expenditure and the utility elasticity
of income are equal to one; so the old utility equation is valid locally. Since
however normalization is not a theoretical requirement of the CDE, users
may legitimately construct data bases with non-normalized parameters; and
with those data bases, the utility equation is invalid. Furthermore, in multi-
step simulations, initially normalized expansion parameters do not generally
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remain normalized; so even with initially normalized parameters, the utility
equation is not exact.

The old utility equation (2.5.1) then is exactly accurate in Johansen
simulations with data bases in which Φ = ΦP = 1 (including standard
GTAP data bases); accurate to first order in multi-step simulations with
data bases in which Φ = ΦP = 1; and inaccurate otherwise.

We note also that in GTAP simulations with the old treatment, the
results for utility are inaccurate even in Johansen simulations with standard
GTAP data bases. This is because, although the utility equation itself is
exact, the upper-level demand equations are inaccurate. In practice however,
with standard data bases, errors in the utility results are likely to be small
(see further section 5).

2.6 Possible remedies

There are several different approaches we might take to remedy the defects
of the old treatment.

1. We might retain the basic premises of the old treatment, in particu-
lar, the CDE form for the private consumption demand system, while
correcting the errors in the derived equations, adopting the revised
theory expounded above (subsection 2.4).

2. We might adopt a new functional form for the private consumption
demand system, that would allow us to retain fixed budget shares in
the upper-level system.

3. We might abandon the concept of a upper-level demand system. Rather
than representing the allocation of regional income as optimizing be-
havior by a fictitious regional household, we might simply impose some
arbitrary rule. There would not necessarily be a concept of regional
welfare, but instead a purely descriptive treatment of macroeconomic
behavior. This might be a simple rule such as the fixed shares rule, or
some more complex empirically motivated treatment.

Option (1) has the advantage of maximizing theoretical consistency with
the old treatment. Its disadvantage is that the upper-level demand equations
become more complex, so that the upper-level budget shares are no longer
fixed. Options (2) and (3) let us keep the fixed budget shares property, but
require changes in the basic theory. Option (3) also entails some fundamental
change in the welfare analysis.
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In this paper (subsections 2.8– 2.16) we concentrate on option (1). It
seems reasonable to develop the implications of the current basic theory
before entertaining proposals to modify it. First however (subsection 2.7)
we verify that (2) is, as implied above, a feasible option.

2.7 A digression on alternative private consumption demand
systems

As shown above (subsection 2.3), unless we accept a homothetic private
consumption demand system, we must accept some changes to the upper-
level system. On the other hand, while not concerned to retain all aspects
of the current upper-level system, we would like to retain at least the fixed
shares property. In this section we investigate whether we can find a new
form for the private consumption demand system such as to preserve the
fixed shares property while perhaps affecting other aspects of the upper-level
system.

Recalling equation (2.4.2),

Xi

X
=

Φ−1
i Bi

∑

j Φ−1
j Bj

,

we see that even when the elasticities Φ are not all equal to one, the budget
shares are constant provided that the elasticities are constant. This seems
a hopeful notion: with constant elasticities, we change some aspects of the
upper-level system but retain the fixed budget shares. As it turns out how-
ever, this approach imposes unacceptable restrictions on the form of the
lower-level systems.

Proposition 5 In any demand system, if the utility elasticity of expenditure
is constant, the system is homothetic.

Proof. Let Ū denote some arbitrary elasticity level, and Φ the constant
utility elasticity. If the utility elasticity of expenditure is constant, then for
any utility level U , E(P, U) = (U/Ū)ΦE(P, Ū). But then we can write,
for all P, U , E(P, U) = Π(P)(U/Ū)Φ, where Π(P) = E(P, Ū). So, by
proposition 1, the system is homothetic.

Since homotheticity is empirically unacceptable, this idea does not help
us find an acceptable form for the private consumption demand system.

We may also attempt to use the Gorman [2] conditions for two stage
budgeting to find a functional form for the private consumption demand
system that lets us preserve the upper-level demand system. This is a some-
what subtle strategy. We have seen above (subsection 2.3) that there is no
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non-homothetic private consumption demand system that, in conjunction
with a Cobb-Douglas upper-level utility function U•, leads to fixed upper-
level budget shares. There might yet however be a non-homothetic private
consumption demand system that, in conjunction with a upper-level utility
function not of the Cobb-Douglas form, leads to a Cobb-Douglas upper-level
utility index U∗

• . This is in fact feasible.
Of the two alternative conditions in [2], one entails homothetic lower-

level demand systems, which is unacceptable. The other condition however
does allow an acceptable solution.

Proposition 6 In a two-level demand system with an upper-level additive
utility function U•(U1, . . . , UG) =

∑G
i=1 Ui and lower-level indirect utility

functions

Ψi(Pi, Xi) = Bi log
Xi

Mi(Pi)
+ Ai(Pi), (2.7.1)

the upper-level expenditure shares are fixed.

Proof. In consumer equilibrium, the group expenditure levels Xi solve the
problem

Find Xi to maximize
∑

i Ψi(Pi, Xi) such that
∑

i Xi = X;

that is, with the specified form for the lower-level indirect utility func-
tions Ψi,

Find Xi to maximize

∑

i

Bi log
(

Xi

Mi(Pi)

)

+
∑

i

Ai(Pi)

such that
∑

i Xi = X.

Since the functions Ai do not involve group expenditure Xi, this is equivalent
to

Find Xi to maximize
∑

i Bi log(Xi/Mi(Pi)) such that
∑

i Xi =
X;

or, putting U∗
i = Xi/Mi(Pi), Pi = Mi(Pi),

Find U∗
i to maximize

∑

i Bi log U∗
i such that

∑

i PiU∗
i = X.
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This has the standard Cobb-Douglas solution

U∗
i =

Bi
∑

j Bj

X
Pi

,

so the expenditure shares

Xi

X
=

PiU∗
i

X
=

Bi
∑

j Bj
,

so the expenditure shares are fixed, as was to be shown.
The functional form (2.7.1) covers both (with zero AG) the Cobb-Douglas

demand system used in GTAP for government consumption, and (with non-
zero AP ) a reasonably extensive class of non-homothetic private consump-
tion demand systems. So with the demand system of proposition 6, we
can preserve the Cobb-Douglas government consumption system and the
upper-level fixed shares, by changing the upper-level utility function and
the private consumption demand system.

2.8 A new treatment

We now develop a new treatment for the upper-level demand system. As
discussed above (subsection 2.6), we correct errors in the old theory without
changing its basic premises. In particular, we retain the CDE form for the
demand system for private consumption.

We do change one minor feature of the old framework: we redefine util-
ity from government consumption, ug, as a per capita utility, so that it de-
pends on per capita rather than total government consumption. Since saving
and utility from private consumption are already per capita variables, this
change allows us to treat the entire regional household demand system as
the demand system of a representative regional household, rather than as a
conglomeration of demand systems of different households (subsection 2.2).

To allow for exogenous shifts in the upper-level budget allocation, we
treat the Cobb-Douglas distribution parameters Bi as variables. This allows
the model to simulate exogenous budget shifts within the demand system,
rather than (as with the old treatment) by overriding the demand system.
With this addition, we use the revised theory derived above (subsection 2.4).

We modify the module structure within the GTAP model source code, to
bring within the regional household module all equations derived from the
upper level of the final demand system, rather than leaving them scattered
across the regional household, government household, and investment and
saving modules.
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2.9 Shared variables

To implement the revised system, we first define some new cross-module
variables. In the new theory, the private consumption and regional house-
hold modules share the levels coefficient ΦP for the elasticity of private
consumption expenditure with respect to utility from private consumption:

747 Coefficient (all,r,REG)
748 UELASPRIV(r)
749 #elasticity of cost wrt utility from private consumption#;

the corresponding percentage variable φP :

478 Variable (all,r,REG)
479 uepriv(r)
480 #elasticity of cost wrt utility from private consumption#;

and pP , the private consumption price index:

475 Variable (all,r,REG)
476 ppriv(r)
477 #price index for private consumption expenditure in region r#;

The government consumption and regional household modules share yG,
government consumption expenditure:

470 Variable (all,r,REG)
471 yg(r)
472 #regional government consumption expenditure, in region r#;

At the same time, some variables previously shared between modules now
become localised to individual modules. Utility from government consump-
tion, ug, the prices of composite commodities in government consumption,
pg, and quantities of composite commodities consumed by government, qg,
become local to the government consumption module. Utility from private
consumption, up, becomes local to the private consumption module.

2.10 Government consumption

Following the redefinition of utility UG from government consumption as a
per capita variable (subsection 2.8), we make the consequential changes in
the government consumption module. Specifically, we revise the government
consumption utility equation:
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798 Equation GOVU
799 # utility from government consumption in r #
800 (all,r,REG)
801 yg(r) - pop(r) = pgov(r) + ug(r);

and the government consumption demand equation:

793 Equation GOVDMNDS
794 # government consumption demands for composite commodities (HT 41) #
795 (all,i,TRAD_COMM)(all,r,REG)
796 qg(i,r) - pop(r) = ug(r) - [pg(i,r) - pgov(r)];

Besides making these substantive changes, we remove all references to
the government household from comments and labels in the source code.

2.11 Utility from private consumption

Within the private consumption module, we need new code for the utility
elasticity of private consumption expenditure, the private consumption price
index, and utility from private consumption.

To implement, we compute the level of the utility elasticity ΦP according
to equation (2.4.8):

900 Formula (all,r,REG)
901 UELASPRIV(r) = sum{i,TRAD_COMM, CONSHR(i,r)*INCPAR(i,r)};

the expansion-parameter-weighted budget shares SEi according to equa-
tion (2.4.9):

918 Coefficient (all,i,TRAD_COMM)(all,r,REG)
919 XWCONSHR(i,r)
920 #expansion-parameter-weighted consumption share#;
921 Formula (all,i,TRAD_COMM)(all,r,REG)
922 XWCONSHR(i,r) = CONSHR(i,r)*INCPAR(i,r)/UELASPRIV(r);

and percentage change in the utility elasticity φP according to equation (2.4.10):

924 Equation UTILELASPRIV
925 #elasticity of expenditure wrt utility from private consumption#
926 (all,r,REG)
927 uepriv(r)
928 = sum{i,TRAD_COMM, XWCONSHR(i,r)*[pp(i,r) + qp(i,r) - yp(r)]};

For utility from private consumption, we replace the perfectly satisfac-
tory computation in the old code,
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Equation PRIVATEU
# computation of utility from private consumption in r (HT 45) #
(all,r,REG)

yp(r)
= sum(i,TRAD_COMM, (CONSHR(i,r) * pp(i,r)))
+ sum(i,TRAD_COMM, (CONSHR(i,r) * INCPAR(i,r))) * up(r)
+ pop(r)
;

with a more readily interpretable computation based on the following general
proposition:

Proposition 7 For a demand system,

max U(Q1, . . . , QI) subject to
∑

i

PiQi = X,

we have
x = p + Φu,

where p is an expenditure-share-weighted index of commodity prices, p =
∑

i pi.

Proof. This is a special case of proposition 3, where the lower-level demand
systems each cover just one commodity and the subutilities Ui are just the
commodity consumption quantities Qi.

Applying proposition 7 to utility from private consumption, we have

yP − n = pP + ΦP uP , (2.11.1)

where the price index for private consumption,

pP =
∑

i

SP
i pPi, (2.11.2)

We compute the private consumption price index pP according to equa-
tion (2.11.2):

903 Equation PHHLDINDEX
904 # price index for private consumption expenditure #
905 (all,r,REG)
906 ppriv(r) = sum{i,TRAD_COMM, CONSHR(i,r)*pp(i,r)};

and utility from private consumption according to equation (2.11.1):

908 Equation PRIVATEU
909 # computation of utility from private consumption in r (HT 45) #
910 (all,r,REG)
911 yp(r) - pop(r) = ppriv(r) + UELASPRIV(r)*up(r);
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2.12 Regional household preliminaries

Within the regional household module we revise the submodules for regional
household demands (subsection 2.13) and aggregate utility (subsection 2.14).
We compute at the outset some coefficients common to both submodules,
the upper-level shares Si in regional income, Si = Xi/X:

1975 Coefficient (all,r,REG)
1976 XSHRPRIV(r) #private expenditure share in regional income#;
1977 Formula (all,r,REG)
1978 XSHRPRIV(r) = PRIVEXP(r)/INCOME(r);
1979

1980 Coefficient (all,r,REG)
1981 XSHRGOV(r) #government expenditure share in regional income#;
1982 Formula (all,r,REG)
1983 XSHRGOV(r) = GOVEXP(r)/INCOME(r);
1984

1985 Coefficient (all,r,REG)
1986 XSHRSAVE(r) #saving share in regional income#;
1987 Formula (all,r,REG)
1988 XSHRSAVE(r) = SAVE(r)/INCOME(r);

We also declare some common variables: the distribution parameters bi from
the top-level demand equation:

1993 Variable (all,r,REG)
1994 dppriv(r) #private consumption distribution parameter#;
1995 Variable (all,r,REG)
1996 dpgov(r) #government consumption distribution parameter#;
1997 Variable (all,r,REG)
1998 dpsave(r) #saving distribution parameter#;

and φ, the utility elasticity of income:

1990 Variable (all,r,REG)
1991 uelas(r) #elasticity of cost of utility wrt utility#;

2.13 Regional household demands

We extend the revised theory (subsection 2.4) to treat the Cobb-Douglas
distribution parameters of the upper-level demand system as variables in
the simultaneous equation system. For the demand equations, we extend
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equations (2.4.4)–(2.4.6), obtaining

xP − x = −(φP − φ) + bP , (2.13.1)

xG − x = φ + bG, (2.13.2)

xS − x = φ + bS . (2.13.3)

For the utility elasticity of income, φ, we extend equation (2.4.7), obtaining

φ = SP φP − bAV , (2.13.4)

where bAV denotes a weighted average of the distribution parameters,

bAV =
∑

i

Sibi. (2.13.5)

To implement this, we first declare the distribution parameters bi:

1993 Variable (all,r,REG)
1994 dppriv(r) #private consumption distribution parameter#;
1995 Variable (all,r,REG)
1996 dpgov(r) #government consumption distribution parameter#;
1997 Variable (all,r,REG)
1998 dpsave(r) #saving distribution parameter#;

We then compute the weighted average of the distribution parameters ac-
cording to equation (2.13.5):

2108 Variable (all,r,REG)
2109 dpav(r) #average distribution parameter shift, for EV calc.#;
2110 Equation DPARAV #average distribution parameter shift#
2111 (all,r,REG)
2112 dpav(r)
2113 = XSHRPRIV(r)*dppriv(r)
2114 + XSHRGOV(r)*dpgov(r)
2115 + XSHRSAVE(r)*dpsave(r)
2116 ;

the utility elasticity of income according to equation (2.13.4):

2118 Equation UTILITELASTIC #elasticity of cost of utility wrt utility#
2119 (all,r,REG)
2120 uelas(r) = XSHRPRIV(r)*uepriv(r) - dpav(r);

and regional household demands according to equations (2.13.1)–(2.13.3):
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2122 Equation PRIVCONSEXP #private consumption expenditure# (all,r,REG)
2123 yp(r) - y(r) = -[uepriv(r) - uelas(r)] + dppriv(r);
2124

2125 Equation GOVCONSEXP #government consumption expenditure# (all,r,REG)
2126 yg(r) - y(r) = uelas(r) + dpgov(r);
2127

2128 Equation SAVING #saving# (all,r,REG)
2129 psave(r) + qsave(r) - y(r) = uelas(r) + dpsave(r);

2.14 Regional household utility

Now we compute utility for the regional household. Recalling the levels
equation (2.4.1),

U = C
∏

i

UBi
i ,

we extend the differential equation (2.4.12) to treat the scaling factor C and
the distribution parameters Bi as variable, obtaining

u = c +
∑

i

Bi(log Ui)bi + Φ−1(x− p). (2.14.1)

We remark that the initial settings of log Ui are arbitrary, in that they
are not constrained by the observed state of the economy as recorded in the
data base, and do not affect the positive properties of the demand system.
They affect only the sensitivity of utility to changes in preferences. Once the
initial settings have been made however, theory dictates how the coefficients
should be updated. By adjusting the settings of log Ui, we can make utility
increasing in the distribution parameters, decreasing, or locally invariant.
We can also make it increasing with respect to some of the distribution
parameters and decreasing with respect to others.

The requirements for implementing distribution terms in the equation
are somewhat onerous, in that we need to store and update both the dis-
tribution parameters Bi and the quantities Ui—even though these are not
required for any positive variables. Given all this, and the doubtful mean-
ingfulness of utility comparisons in the presence of preference changes, it
may seem hardly worthwhile incorporating the distribution parameters into
the utility equation. Yet we attach some importance to it. Some important
macro closures involve exogenizing the balance of trade and endogenizing
a distributional variable. It would be a great inconvenience when using
these closures to forego results for utility and equivalent variation and the
welfare decomposition. Moreover it seems that most of the welfare analysis
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should be just as meaningful with an exogenous as with an endogenous trade
balance.

Since we must have the distributional parameters but do not welcome
their welfare effects, we do what we can to minimize them. We choose
initial parameter values so that, in small change simulations, changes in
the distributional parameters do not affect utility (subsection 2.16). And
we provide, in connection with the measurement of equivalent variation, a
mechanism for minimizing the welfare effects of distributional parameter
changes in large-change simulations (subsection 3.8).

To implement equation (2.14.1), we first declare as percentage change
variables utility u:

2138 Variable (all,r,REG)
2139 u(r) #per capita utility from aggregate hhld expend., in region r#;

and the constant c in the utility function:

2140 Variable (all,r,REG)
2141 au(r) #input-neutral shift in utility function#;

We need next the levels values of the distributional parameters Bi. From
equations (2.4.2) and (2.4.3), we find that we can calculate them as

Bi =
ΦiSi

Φ
, (2.14.2)

given the levels value of the utility elasticity Φ. The theory however does
not determine the levels value of Φ. We could store Φ in the data base, but
it is slightly more convenient to store instead the sum of the distribution
parameters, B =

∑

i Bi; since when the utility elasticity of private consump-
tion expenditure, ΦP , is non-unitary, it is more natural to take B than Φ as
unitary, leaving the other coefficient to take a non-obvious calculated value.
From equation (2.14.2), we obtain the formula giving Φ in terms of given B:

Φ =
∑

i SiΦi

B
. (2.14.3)

To calculate the sum B of the distribution parameter in updated databases,
we use the corresponding percentage change variable b. We declare this vari-
able:

2142 Variable (all,r,REG)
2143 dpsum(r) #sum of the distribution parameters#;

and define the corresponding levels coefficient:
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2145 Coefficient (all,r,REG)
2146 DPARSUM(r) #sum of distribution parameters#;
2147 Read
2148 DPARSUM from file GTAPDATA header "DPS";
2149 Update (all,r,REG)
2150 DPARSUM(r) = dpsum(r);

This lets us define the level Φ of the utility elasticity of expenditure, accord-
ing to equation (2.14.3):

2152 Coefficient (all,r,REG)
2153 UTILELAS(r) #elasticity of cost of utility wrt utility#;
2154 Formula (all,r,REG)
2155 UTILELAS(r)
2156 = [UELASPRIV(r)*XSHRPRIV(r) + XSHRGOV(r) + XSHRSAVE(r)]/DPARSUM(r);

We define the levels coefficients Bi for the distribution parameters using
equation (2.14.2):

2158 Coefficient (all,r,REG)
2159 DPARPRIV(r) #private consumption distribution parameter#;
2160 Formula (all,r,REG)
2161 DPARPRIV(r) = UELASPRIV(r)*XSHRPRIV(r)/UTILELAS(r);
2162

2163 Coefficient (all,r,REG)
2164 DPARGOV(r) #government consumption distribution parameter#;
2165 Formula (all,r,REG)
2166 DPARGOV(r) = XSHRGOV(r)/UTILELAS(r);
2167

2168 Coefficient (all,r,REG)
2169 DPARSAVE(r) #saving distribution parameter#;
2170 Formula (all,r,REG)
2171 DPARSAVE(r) = XSHRSAVE(r)/UTILELAS(r);

We define also the levels coefficients Ui for the goods in the top-level utility
function:

2173 Coefficient (all,r,REG)
2174 UTILPRIV(r) #utility from private consumption#;
2175 Read
2176 UTILPRIV from file GTAPDATA header "UP";
2177 Update (all,r,REG)
2178 UTILPRIV(r) = up(r);
2179

2180 Coefficient (all,r,REG)
2181 UTILGOV(r) #utility from government consumption#;
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2182 Read
2183 UTILGOV from file GTAPDATA header "UG";
2184 Update (all,r,REG)
2185 UTILGOV(r) = ug(r);
2186

2187 Coefficient (all,r,REG)
2188 UTILSAVE(r) #utility from saving#;
2189 Read
2190 UTILSAVE from file GTAPDATA header "US";
2191 Update (change) (all,r,REG)
2192 UTILSAVE(r) = 100*[qsave(r) - pop(r)]*UTILSAVE(r);

We compute the outlays price index p according to equation (2.4.13):
2194 Variable (all,r,REG)
2195 p(r) #price index for disposition of income by regional household#;
2196 Equation PRICEINDEXREG
2197 #price index for disposition of income by regional household#
2198 (all,r,REG)
2199 p(r)
2200 = XSHRPRIV(r)*ppriv(r)
2201 + XSHRGOV(r)*pgov(r)
2202 + XSHRSAVE(r)*psave(r)
2203 ;

After all these preliminaries, we compute regional household utility u, ac-
cording to equation (2.4.12):

2205 Equation UTILITY #regional household utility# (all,r,REG)
2206 u(r) = au(r)
2207 + DPARPRIV(r)*loge(UTILPRIV(r))*dppriv(r)
2208 + DPARGOV(r)*loge(UTILGOV(r))*dpgov(r)
2209 + DPARSAVE(r)*loge(UTILSAVE(r))*dpsave(r)
2210 + [1.0/UTILELAS(r)]*[y(r) - pop(r) - p(r)];

One task remains, to determine the variable dpsum used to update the
coefficient DPARSUM:

2212 Equation DISTPARSUM #sum of the distribution parameters# (all,r,REG)
2213 DPARSUM(r)*dpsum(r)
2214 = DPARPRIV(r)*dppriv(r) + DPARGOV(r)*dpgov(r) + DPARSAVE(r)*dpsave(r);

2.15 Shifting income allocation without affecting the utility
elasticity

In the new treatment, changes in the distribution parameters do not affect
the current level of utility (utility is compensated as described in subsec-
tion 2.14), but they do generally affect the utility elasticity of income. This
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in turn affects the relation between income y and utility u in simulation
results. It would be nice to be able to modify the upper-level income dis-
tribution without changing the utility elasticity of income. To that end
we provide the distribution parameters with item-specific and generic shift
variables.

From equation (2.13.4), we see that the distribution parameters affect
the utility elasticity through the average distribution parameter bAV . So to
change the distribution parameters without affecting the marginal utility of
income, the user makes bAV exogenously zero. The user may swap bAV either
with one of the bi or with a generic distribution parameter scaling factor.
To support this, we write each distribution parameter as the product of a
specific and the generic scaling factor:

2092 Variable (all,r,REG)
2093 dpfpriv(r) #private-consumption-specific distparam shift#;
2094 Variable (all,r,REG)
2095 dpfgov(r) #government-consumption-specific distparam shift#;
2096 Variable (all,r,REG)
2097 dpfsave(r) #saving-specific distparam shift#;
2098 Variable (all,r,REG)
2099 dpshift(r) #generic distparam shift#;
2100

2101 Equation DISTPARPRIV #private consumption distribution parameter# (all,r,REG)
2102 dppriv(r) = dpfpriv(r) + dpshift(r);
2103 Equation DISTPARGOV #government consumption distribution parameter# (all,r,REG)
2104 dpgov(r) = dpfgov(r) + dpshift(r);
2105 Equation DISTPARSAVE #saving distribution parameter# (all,r,REG)
2106 dpsave(r) = dpfsave(r) + dpshift(r);

If no exogenous change in distribution is desired, the user may make the
distribution parameters endogenous, the average of the distribution param-
eters endogenous, and the distribution parameter shift variables exogenous.
To shift say the saving share in income without changing the utility elastic-
ity,

• make exogenous:

– the saving distribution parameter dpsave,

– the average distribution parameter dpav,

– the private consumption distribution parameter shift dpfpriv,
and

– the government consumption distribution parameter shift dpfgov;
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• make endogenous:

– the private consumption distribution parameter dppriv,

– the government consumption distribution parameter dpgov,

– the saving distribution parameter shift dpfsave, and

– the distribution parameter generic shift dpshift; and

• shock the saving distribution parameter dpsave as desired.

Because the marginal utility of income depends on the budget shares
Si, this approach keeps it fixed only locally, not globally. Furthermore, it
introduces a path dependency into the model, affecting dpshift and the
endogenous distribution parameter variables (in the example shown above,
dppriv and dpgov). If the user considers path dependency objectionable, she
may prefer to leave dpshift exogenous, and apply to it a shock calculated
ex ante outside the model.

2.16 Changes to the data file

As described in subsection 2.14, we read a new coefficient DPARSUM from the
data file. To do this we need a new data file array DPS, with dimension
REG. The new array records, for each region, the sum of the distribution
parameters.

The setting of this parameter has no effect on the positive variables in
the model, nor on the equivalent variation, but through the top-level utility
elasticity UTILELAS it does affect regional utility u. We set it initially at 1
in each region; changes in the distribution parameters dppriv, dpgov, and
dpsave may affect its value in updated data bases.

In standard data bases, with both UTILELASPRIV and DPSUM set equal
to 1, the utility elasticity UTILELAS of generalized expenditure is equal to 1.
This means that initially, a one per cent change in regional income translates
into a one per cent change in regional utility.

We also set values for three region-dimension arrays representing levels
for the commodities in the top level of the regional demand system: utility
from private consumption, UP; utility from government consumption, UG;
and saving, Q. We set these all to zero to ensure that with the standard data
base, changes in the distributional parameters have no first-order effect on
utility (subsection 2.14).
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3 Equivalent variation

We derive the old treatment (subsection 3.1), assess its defects (subsec-
tion 3.2), develop a new treatment (subsection 3.3), and implement it (sub-
sections 3.5–3.10).

By definition, the equivalent variation (EV ),

EV = YEV − Ȳ ,

where YEV denotes regional income required to achieve current utility at
initial prices, and Ȳ denotes initial regional income. Differentiating, we
obtain:

dEV =
1

100
YEV yEV . (3.0.1)

This equation provides a starting point for both the old and new treatments.

3.1 The old treatment

In the old treatment, EV is computed according to the equation

Equation EVREG
# regional EV, the money metric welfare change (HT 67) #
(all,r,REG)

EV(r)
= [REGEXP(r)/100]*[URATIO(r)*POPRATIO(r)]*[u(r) + pop(r)];

In mathematical notation, we may write this as

dEV =
1

100
Ȳ URNR(n + u), (3.1.1)

where UR = U/Ū is the ratio of current to initial utility, NR = N/N̄ the
ratio of current to initial population, and n the percentage change in popu-
lation. So far as we are aware, no derivation of this equation is available in
the original GTAP documentation (Hertel and Tsigas [5]) or earlier GTAP
technical papers or working papers. We now provide one, in order to explore
the conditions under which the equation is valid.

Proposition 8 Equation (3.1.1) is a valid first-order approximation for
small changes in U , provided that initially the utility elasticity of income,
Φ, is equal to one.
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Proof. Recall equation (3.0.1),

dEV =
1

100
YEV yEV .

Now
yEV = n + xEV ,

where xEV denotes percentage change in per capita expenditure required to
achieve current utility at initial prices. Also, adapting equation (2.4.12), we
have

xEV = ΦEV u, (3.1.2)

where ΦEV denotes the utility elasticity of income, evaluated at current
utility and initial prices. So

yEV = n + ΦEV u, (3.1.3)

and
dEV =

1
100

YEV (n + ΦEV u).

Although this equation is suitable for implementation, it does not lead
directly to the GTAP 4.1 equation (3.1.1). To derive that we need to replace
YEV with an expression involving Ȳ . Now

YEV = NXEV = NRN̄XEV ,

where XEV denotes per capita expenditure required to achieve current utility
at initial prices P̄; and

XEV = UΦARC
R X̄,

where ΦARC denotes the arc elasticity of income with respect to utility along
the arc between (P̄, Ū) and (P̄, U); so

YEV = NRUΦARC
R N̄X̄

= NRUΦARC
R Ȳ ,

and
dEV =

1
100

NRUΦARC
R Ȳ (n + ΦEV u).

Suppose that initially Φ is equal to one. Then ΦEV also is initially
equal to one, since ΦEV is initially equal to Φ. So, by continuity, ΦEV is
arbitrarily close to one for sufficiently small changes in U . Also, by the mean
value theorem, ΦARC is arbitrarily close to the initial value of Φ, one, for
sufficiently small changes in U . So, to a first-order approximation,

dEV =
1

100
NRURȲ (n + u),

as was to be shown.
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3.2 Defects in the old treatment

As shown above (subsection 3.1), the old computation of EV is not exact,
but is a valid approximation when the utility elasticity of income Φ is equal
to one. Recalling proposition 4, we note that the condition is satisfied in
standard GTAP data bases. Much like the old utility equation then (subsec-
tion 2.5), the EV equation is exactly accurate in Johansen simulations with
data bases in which Φ = 1 (including standard GTAP data bases); accurate
to first order in multi-step simulations with data bases in which Φ = 1; and
inaccurate otherwise.

While the old treatment works well for standard GTAP data bases and
small utility changes, a treatment that works well with non-standard data
bases and large utility changes would of course be even better. This we now
develop (subsection 3.3).

3.3 A new treatment

We seek a new formula for the equivalent variation that does not assume a
unit elasticity of income with respect to utility, and is consistent with the
new implementation of the regional household demand system.

We cannot implement equation (3.0.1) for EV directly, since we do not
have an explicit functional form for the regional household expenditure func-
tion. Indeed, we do not have an explicit functional form even for the private
consumption expenditure function. We can however compute the expendi-
ture function indirectly, by implementing the demand system and solving
for expenditure Y given utility U . It is then easy to compute EV .

The regional demand system already present in the model gives the rela-
tion between expenditure Y , current utility U , and current prices P. To find
the expenditure YEV required to achieve current utility U at initial prices
P̄, we implement a shadow demand system with the same utility level as
the ordinary system, but with prices held at initial levels. The expenditure
level in this shadow system is just the YEV required to calculate EV .

Recalling the equation (3.1.2) for percentage change in equivalent in-
come, xEV = ΦEV u, we see that we can compute equivalent income pro-
vided that we track ΦEV , the utility elasticity evaluated at current utility
and initial prices. To track ΦEV we need to compute the corresponding per-
centage change variable φEV . To do that we need to include in the shadow
system most of the upper-level regional household demand system.

Furthermore, as shown by equation (2.13.4), φ = SP φP − bAV , the re-
gional household elasticity φ depends on the private consumption elasticity
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φP . To compute that elasticity, we need to include part of the private con-
sumption demand system. The private consumption demand system also
supplies to the top level system the change variable uP for utility from pri-
vate consumption required to update the levels coefficient UP used in the
top-level utility equation. Similarly the top-level demand system requires a
variable uG to be supplied from a government consumption demand system.
Altogether then the shadow demand system includes four parts: a govern-
ment consumption demand system, a private consumption demand system,
a upper-level regional household demand system, and equations relating in-
come to the equivalent variation.

3.4 Equivalent variation with preference change

So far we have not considered the effect of preference change on the equiva-
lent variation. When the top level distribution parameters Bi or the scaling
constant C change, should we calculate the equivalent variation at initial
preferences or at final preferences, or should we include the effects of the
preference change in the equivalent variation?

Extending our earlier notation, we may write E(P, U ;A) for the gener-
alized expenditure function evaluated at prices P, utility U , and preferences
A. Initial income, Ȳ , is equal to E(P̄, Ū ; Ā), that is, to the expenditure
function evaluated at initial prices, utility, and preferences. If we calculate
the equivalent variation at initial preferences, then

EV = E(P̄, U ; Ā)− E(P̄, Ū ; Ā); (3.4.1)

if we calculate it at final preferences, then

EV = E(P̄, U ;A)− E(P̄, Ū ;A); (3.4.2)

if we include preference change in the equivalent variation, then

EV = E(P̄, U ;A)− E(P̄, Ū ; Ā). (3.4.3)

Standard theory offers no guidance here, since it naturally considers the
equivalent variation only with constant preferences. Likewise the old GTAP
treatment contains no preference change variables. It does however face a
comparable issue, namely the relationship between the equivalent variation
and change in population. There its choice is to include population change
in the equivalent variation, so that if prices and utility remain constant but
population changes, the equivalent variation is non-zero.
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We take a similar approach here, defining the equivalent variation to
include change in preferences (3.4.3). Then we may write as before

EV = YEV − Ȳ ,

putting
YEV = E(P̄, U ;A)

and
Ȳ = E(P̄, Ū ; Ā).

We now revert to our earlier concern (subsection 2.14) to neutralize the
welfare effects of changes in the distribution parameters Bi using endogenous
changes in the utility scaling factor C. Decomposing equation (3.4.3), we
can isolate the effects of preference changes in either of two natural ways:

EV = E(P̄, U ;A)−E(P̄, Ū ; Ā)

=
(

E(P̄, U ;A)− E(P̄, U ; Ā)
)

+
(

E(P̄, U ; Ā)− E(P̄, Ū ; Ā)
)

(3.4.4)

=
(

E(P̄, U ;A)− E(P̄, Ū ;A)
)

+
(

E(P̄, Ū ;A)−E(P̄, Ū ; Ā)
)

. (3.4.5)

Following the decomposition (3.4.4), we may let C vary so that

E(P̄, U ;A)− E(P̄, U ; Ā) = 0; (3.4.6)

then our specification (3.4.3) for EV reduces to specification (3.4.1), the
equivalent variation calculated at initial preferences. Or following the de-
composition (3.4.5), we may let

E(P̄, Ū ;A)−E(P̄, Ū ; Ā) = 0; (3.4.7)

in that case EV reduces to specification (3.4.2), the equivalent variation
calculated at final preferences.

In implementing these conditions we already have available E(P̄, Ū ; Ā),
since that is just Ȳ , and E(P̄, U ;A), since that is just YEV . So the only new
values needed are E(P̄, U ; Ā) and E(P̄, Ū ;A). Like YEV , we can determine
these in suitable shadow demand systems. For E(P̄, U ; Ā), we hold fixed
not only prices but also preferences; for E(P̄, Ū ;A), we hold fixed prices
and utility.

We have now three shadow demand systems to implement. Since they
are all quite similar in form, it is convenient to implement them simultane-
ously, indexing the shadow variables and coefficients over a dummy parame-
ter indicating the shadow system. As discussed above, (subsection 3.3), the
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module implementing these systems contains several parts: a government
consumption demand system, a private consumption demand system, and a
shadow top-level demand system. To these we now add a submodule to select
coefficients and variables from the appropriate shadow system for EV calcu-
lations, and a submodule to determine distribution-parameter-neutralizing
values for the scaling factor C.

3.5 Shared objects

We begin by declaring the coefficients and variables that the EV module
contributes to the rest of the model. The module’s primary function is to
compute the regional and world-wide equivalent variations:

2568 Variable (Change)(all,r,REG)
2569 EV(r) #equivalent variation, $ US million#;
2570 Variable (Change)
2571 WEV #equivalent variation for the world#;

But it also contributes several coefficients needed for the EV decomposition
(section 4): the utility elasticity of generalized expenditure ΦEV in the EV
shadow system:

2573 Coefficient (all,r,REG)
2574 UTILELASEV(r)
2575 #utility elasticity of generalized expenditure, for EV calcs#;

and the quantities Ui of the goods in the shadow top-level demand system:

2577 Coefficient (all,r,REG)
2578 UTILPRIVEV(r) #utility from private consumption, for EV calcs#;
2579

2580 Coefficient (all,r,REG)
2581 UTILGOVEV(r) #utility from private consumption, for EV calcs#;
2582

2583 Coefficient (all,r,REG)
2584 UTILSAVEEV(r) #utility from private consumption, for EV calcs#;

Next we define and characterize the set of shadow systems,

2592 Set
2593 SHAD #shadow systems# (dp0u1, dp1u0, dp1u1);

Of these three systems, dp0u1 uses initial preferences but current utility
to calculate E(P̄, U ; Ā); dp1u0 uses current preferences but initial utility
to calculate E(P̄, Ū ;A); and dp1u1 uses current preferences and utility to
calculate E(P̄, U ;A) = YEV .

39



We characterize the shadow systems using two coefficients. The coeffi-
cient TRACKSDP is non-zero if the system tracks current preferences:

2600 Coefficient (all,v,SHAD)
2601 TRACKSDP(v) #tracks preferences#;
2602 Formula
2603 TRACKSDP("dp0u1") = 0;
2604 Formula
2605 TRACKSDP("dp1u0") = 1;
2606 Formula
2607 TRACKSDP("dp1u1") = 1;

while TRACKSU is non-zero if the system tracks current utility:

2609 Coefficient (all,v,SHAD)
2610 TRACKSU(v) #tracks utility#;
2611 Formula
2612 TRACKSU("dp0u1") = 1;
2613 Formula
2614 TRACKSU("dp1u0") = 0;
2615 Formula
2616 TRACKSU("dp1u1") = 1;

Finally we declare several variables shared between different parts of the
EV module. The government consumption shadow demand system com-
putes shadow utility from government consumption, ugshd, for use in the
upper-level shadow demand system. The private consumption shadow de-
mand system computes utility from private consumption, upshd, and the
shadow elasticity of private consumption expenditure with respect to util-
ity from private consumption, ueprivshd, both for use in the upper-level
shadow demand system. The upper-level shadow demand system computes
shadow government consumption expenditure, ygshd, for use in the govern-
ment consumption demand system, and shadow private consumption expen-
diture, ypshd, for use in the private consumption demand system.

2618 Variable (all,r,REG)(all,v,SHAD)
2619 ugshd(r,v) #per capita utility from gov’t expend., shadow#;
2620 Variable (all,r,REG)(all,v,SHAD)
2621 upshd(r,v) #per capita utility from private expend., shadow#;
2622 Variable (all,r,REG)(all,v,SHAD)
2623 ueprivshd(r,v)
2624 #utility elasticity of private consn expenditure, shadow#;
2625 Variable (all,r,REG)(all,v,SHAD)
2626 ygshd(r,v)
2627 #government consumption expenditure, in region r, shadow#;
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2628 Variable (all,r,REG)(all,v,SHAD)
2629 ypshd(r,v)
2630 #private consumption expenditure, in region r, shadow#;

From several coefficients and variables in the shadow top-level demand
system, we need to extract the appropriate components for use in equiv-
alent variation calculations. Thus the utility elasticity ΦEV from the EV
shadow system is extracted from the corresponding shadow-system-generic
coefficient:

2632 Coefficient (all,r,REG)(all,v,SHAD)
2633 UTILELASSHD(r,v)
2634 #elasticity of cost of utility wrt utility, shadow#;

Likewise for quantities Ui of goods in the top-level utility function:

2636 Coefficient (all,r,REG)(all,v,SHAD)
2637 UTILPRIVSHD(r,v) #utility from private consumption#;
2638

2639 Coefficient (all,r,REG)(all,v,SHAD)
2640 UTILGOVSHD(r,v) #utility from government consumption#;
2641

2642 Coefficient (all,r,REG)(all,v,SHAD)
2643 UTILSAVESHD(r,v) #utility from saving#;

Regional income y has both shadow-system-generic and EV-system-specific
variables, the latter used in the equivalent variation calculation:

2645 Variable (all,r,REG)(all,v,SHAD)
2646 yshd(r,v) #regional household income, in region r, shadow#;
2647

2648 Variable (all,r,REG)
2649 yev(r) #equivalent income, for EV#;

and likewise for the corresponding income coefficients Y :

2651 Coefficient (all,r,REG)(all,v,SHAD)
2652 INCOMESHD(r,v) #regional income, shadow#;
2653

2654 Coefficient (all,r,REG)
2655 INCOMEEV(r) #equivalent income, for EV#;

3.6 The shadow government consumption demand system

The task of the shadow government consumption demand system is to com-
pute shadow values for the change variable uG for utility from government
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consumption. It contains just one equation, a simplified version of the equa-
tion from the actual government consumption module (subsection 2.10) re-
lating utility from government consumption to government consumption ex-
penditure, with the price variable omitted:

2663 Equation GOVUSHD
2664 # utility from government consumption in r #
2665 (all,r,REG)(all,v,SHAD)
2666 ygshd(r,v) - pop(r) = ugshd(r,v);

3.7 The shadow private consumption demand system

The task of the shadow private consumption demand system is to compute
shadow values for the change variables uP for utility from private consump-
tion, and φP for the elasticity of private consumption expenditure with
respect to utility from private consumption.

Recalling equation (2.4.10), we have, with fixed prices,

φP =
∑

i

SEi(uPi − xP ), (3.7.1)

where SEi denotes the expansion-parameter-weighted budget share, SiEi/ΦP ,
of commodity i in the shadow private consumption demand system. So to
compute the shadow elasticity, we need shadow system values for the con-
sumption shares SEi and the private consumption demands uPi. To compute
the private consumption demands we need the expenditure elasticities, and
to compute them and the expansion-parameter-weighted budget shares, we
need the ordinary budget shares. To compute the ordinary budget shares,
we need to record shadow private consumption expenditures for individual
composite commodities.

We implement as a shadow system as much of the private consumption
demand system as we need to compute the shadow private consumption
budget shares. Since the shadow system uses the same theory as the ordi-
nary private consumption demand system, we do not provide derivations,
but instead refer the reader to the original documentation (Hertel and Tsi-
gas [5]).

We begin by declaring the shadow private consumption demand variable:

2674 Variable (all,i,TRAD_COMM)(all,r,REG)(all,v,SHAD)
2675 qpshd(i,r,v)
2676 #private hhld demand for commodity i in region r, shadow#;

We then define the shadow private consumption expenditure levels:
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2678 Coefficient (all,i,TRAD_COMM)(all,r,REG)(all,v,SHAD)
2679 VPASHD(i,r,v)
2680 #private hhld expend. on i in r valued at agent’s prices, shadow#;
2681 Formula (initial) (all,i,TRAD_COMM)(all,r,REG)(all,v,SHAD)
2682 VPASHD(i,r,v) = VPA(i,r);
2683 Update (all,i,TRAD_COMM)(all,r,REG)(all,v,SHAD)
2684 VPASHD(i,r,v) = qpshd(i,r,v);

and the shadow private consumption budget shares:

2686 Coefficient (all,r,REG)(all,v,SHAD)
2687 VPAREGSHD(r,v) #private consumption expenditure in region r, shadow#;
2688 Formula (all,r,REG)(all,v,SHAD)
2689 VPAREGSHD(r,v) = sum{i,TRAD_COMM, VPASHD(i,r,v)};
2690

2691 Coefficient (all,i,TRAD_COMM)(all,r,REG)(all,v,SHAD)
2692 CONSHRSHD(i,r,v)
2693 #share of private hhld consn devoted to good i in r, shadow#;
2694 Formula (all,i,TRAD_COMM)(all,r,REG)(all,v,SHAD)
2695 CONSHRSHD(i,r,v) = VPASHD(i,r,v)/VPAREGSHD(r,v);

We compute the expenditure elasticities as in the ordinary demand sys-
tem, but using the shadow budget shares CONSHRSHD instead of the ordinary
shares CONSHR:

2697 Coefficient (all,i,TRAD_COMM)(all,r,REG)(all,v,SHAD)
2698 EYSHD(i,r,v)
2699 #expend. elast. of private hhld demand for i in r, shadow#;
2700 Formula (all,i,TRAD_COMM)(all,r,REG)(all,v,SHAD)
2701 EYSHD(i,r,v)
2702 = [1.0/[sum{n, TRAD_COMM, CONSHRSHD(n,r,v)*INCPAR(n,r)}]]
2703 * [
2704 INCPAR(i,r)*[1.0 - ALPHA(i,r)]
2705 + sum{n, TRAD_COMM, CONSHRSHD(n,r,v)*INCPAR(n,r)*ALPHA(n,r)}
2706 ]
2707 + ALPHA(i,r)
2708 - sum{n, TRAD_COMM, CONSHRSHD(n,r,v) * ALPHA(n,r)}
2709 ;

We can now compute the shadow private consumption demands, needed
as shown above to update the levels coefficients for private consumption
expenditure:

2711 Equation PRIVDMNDSSHD
2712 #private hhld demands for composite commodities, shadow#
2713 (all,i,TRAD_COMM)(all,r,REG)(all,v,SHAD)
2714 qpshd(i,r,v) - pop(r) = EYSHD(i,r,v)*[ypshd(r,v) - pop(r)];
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Next we compute the utility elasticity ΦP of private consumption expen-
diture:

2716 Coefficient (all,r,REG)(all,v,SHAD)
2717 UELASPRIVSHD(r,v)
2718 #elast. of cost wrt utility from private consn, shadow#;
2719 Formula (all,r,REG)(all,v,SHAD)
2720 UELASPRIVSHD(r,v) = sum{i,TRAD_COMM, CONSHRSHD(i,r,v)*INCPAR(i,r)};

This appears both in the equation for utility uP from private consumption,
a simplified version of equation (2.11.1):

2722 Equation PRIVATEUSHD
2723 # computation of utility from private consumption in r (HT 45) #
2724 (all,r,REG)(all,v,SHAD)
2725 ypshd(r,v) - pop(r) = UELASPRIVSHD(r,v)*upshd(r,v);

and as the denominator in the formula for the expansion-parameter-weighted
budget shares SEi:

2727 Coefficient (all,i,TRAD_COMM)(all,r,REG)(all,v,SHAD)
2728 XWCONSHRSHD(i,r,v)
2729 #expansion-parameter-weighted consumption share, shadow#;
2730 Formula (all,i,TRAD_COMM)(all,r,REG)(all,v,SHAD)
2731 XWCONSHRSHD(i,r,v) = CONSHRSHD(i,r,v)*INCPAR(i,r)/UELASPRIVSHD(r,v);

With these shares, as shown in equation (3.7.1), we compute the change
variable φP for the utility elasticity of private consumption expenditure:

2733 Equation UTILELASPRIVSHD
2734 #elasticity of cost wrt utility from private consn, shadow#
2735 (all,r,REG)(all,v,SHAD)
2736 ueprivshd(r,v)
2737 = sum{i,TRAD_COMM, XWCONSHRSHD(i,r,v)*[qpshd(i,r,v) - ypshd(r,v)]};

3.8 The shadow upper-level regional household demand sys-
tem

The tasks of the shadow upper-level regional household demand system are
to compute shadow income and shadow private consumption expenditure,
given utility. To compute shadow income, it tracks the elasticity ΦEV of
shadow income with respect to utility. Recalling equations (2.13.4), φ =
SP φP −bAV , and (2.13.5), bAV =

∑

i Sibi, we see that we must also compute
shadow values for the upper level income disposition shares Si, i = P, G, S.
To do that we need shadow values for the upper-level components of income
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disposition, YP , YG, and YS ; and to do that, we need shadow results for the
related percentage change variables yP , yG, and qS .

We begin by declaring a change variable for change in real saving:

2746 Variable (all,r,REG)(all,v,SHAD)
2747 qsaveshd(r,v) #regional demand for NET savings, shadow#;

We then compute the level of income in the shadow system:

2749 Formula (initial) (all,r,REG)(all,v,SHAD)
2750 INCOMESHD(r,v) = INCOME(r);
2751 Update (all,r,REG)(all,v,SHAD)
2752 INCOMESHD(r,v) = yshd(r,v);

levels for the upper-level components of income disposition:

2754 Coefficient (all,r,REG)(all,v,SHAD)
2755 PRIVEXPSHD(r,v)
2756 #private consumption expenditure in region r, shadow#;
2757 Formula (initial) (all,r,REG)(all,v,SHAD)
2758 PRIVEXPSHD(r,v) = PRIVEXP(r);
2759 Update (all,r,REG)(all,v,SHAD)
2760 PRIVEXPSHD(r,v) = ypshd(r,v);
2761 !< PRIVEXPSHD should agree with VPAREGSHD.>!
2762

2763 Coefficient (all,r,REG)(all,v,SHAD)
2764 GOVEXPSHD(r,v)
2765 #government consumption expenditure in region r, shadow#;
2766 Formula (initial) (all,r,REG)(all,v,SHAD)
2767 GOVEXPSHD(r,v) = GOVEXP(r);
2768 Update (all,r,REG)(all,v,SHAD)
2769 GOVEXPSHD(r,v) = ygshd(r,v);
2770

2771 Coefficient (all,r,REG)(all,v,SHAD)
2772 SAVESHD(r,v)
2773 #saving in region r, shadow#;
2774 Formula (initial) (all,r,REG)(all,v,SHAD)
2775 SAVESHD(r,v) = SAVE(r);
2776 Update (all,r,REG)(all,v,SHAD)
2777 SAVESHD(r,v) = qsaveshd(r,v);

and upper-level income-disposition shares:

2779 Coefficient (all,r,REG)(all,v,SHAD)
2780 XSHRPRIVSHD(r,v)
2781 #private expenditure share in regional income, shadow#;
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2782 Formula (all,r,REG)(all,v,SHAD)
2783 XSHRPRIVSHD(r,v) = PRIVEXPSHD(r,v)/INCOMESHD(r,v);
2784

2785 Coefficient (all,r,REG)(all,v,SHAD)
2786 XSHRGOVSHD(r,v)
2787 #government expenditure share in regional income, shadow#;
2788 Formula (all,r,REG)(all,v,SHAD)
2789 XSHRGOVSHD(r,v) = GOVEXPSHD(r,v)/INCOMESHD(r,v);
2790

2791 Coefficient (all,r,REG)(all,v,SHAD)
2792 XSHRSAVESHD(r,v) #saving share in regional income, shadow#;
2793 Formula (all,r,REG)(all,v,SHAD)
2794 XSHRSAVESHD(r,v) = SAVESHD(r,v)/INCOMESHD(r,v);

This enables us to compute the weighted average of the distribution param-
eters, following equation (2.13.5):

2796 Variable (all,r,REG)(all,v,SHAD)
2797 dpavshd(r,v) #average distribution parameter shift, shadow#;
2798 Equation DPARAVSHD #average distribution parameter shift, shadow#
2799 (all,r,REG)(all,v,SHAD)
2800 dpavshd(r,v)
2801 = XSHRPRIVSHD(r,v)*dppriv(r)
2802 + XSHRGOVSHD(r,v)*dpgov(r)
2803 + XSHRSAVESHD(r,v)*dpsave(r)
2804 ;

and the utility elasticity of income, following equation (2.13.4), but using
dummy coefficients to control whether the distributional coefficients affect
the result in each shadow system:

2806 Variable (all,r,REG)(all,v,SHAD)
2807 uelasshd(r,v)
2808 #elasticity of cost of utility wrt utility, shadow#;
2809 Equation UTILITELASTICSHD
2810 #elasticity of cost of utility wrt utility, shadow#
2811 (all,r,REG)(all,v,SHAD)
2812 uelasshd(r,v) = XSHRPRIV(r)*ueprivshd(r,v) - TRACKSDP(v)*dpavshd(r,v);

This in turn enables us to implement the upper-level demand equations,
following equations (2.13.1)–(2.13.3), again using dummy coefficients on the
distribution parameters:

2814 Equation PCONSEXPSHD #private consumption expenditure, shadow#
2815 (all,r,REG)(all,v,SHAD)
2816 ypshd(r,v) - yshd(r,v)

46



2817 = -[ueprivshd(r,v) - uelasshd(r,v)] + TRACKSDP(v)*dppriv(r);
2818

2819 Equation GOVCONSEXPSHD #government consumption expenditure#
2820 (all,r,REG)(all,v,SHAD)
2821 ygshd(r,v) - yshd(r,v) = uelasshd(r,v) + TRACKSDP(v)*dpgov(r);
2822

2823 Equation SAVINGSHD #saving# (all,r,REG)(all,v,SHAD)
2824 qsaveshd(r,v) - yshd(r,v) = uelasshd(r,v) + TRACKSDP(v)*dpsave(r);

and to compute the level of the utility elasticity of income:

2826 Formula (initial) (all,r,REG)(all,v,SHAD)
2827 UTILELASSHD(r,v) = UTILELAS(r);
2828 Update (all,r,REG)(all,v,SHAD)
2829 UTILELASSHD(r,v) = uelasshd(r,v);

We also define levels coefficients for the goods in the top-level utility func-
tion:

2831 Formula (initial) (all,r,REG)(all,v,SHAD)
2832 UTILPRIVSHD(r,v) = UTILPRIV(r);
2833 Update (all,r,REG)(all,v,SHAD)
2834 UTILPRIVSHD(r,v) = upshd(r,v);
2835

2836 Formula (initial) (all,r,REG)(all,v,SHAD)
2837 UTILGOVSHD(r,v) = UTILGOV(r);
2838 Update (all,r,REG)(all,v,SHAD)
2839 UTILGOVSHD(r,v) = ugshd(r,v);
2840

2841 Formula (initial) (all,r,REG)(all,v,SHAD)
2842 UTILSAVESHD(r,v) = UTILSAVE(r);
2843 Update (change) (all,r,REG)(all,v,SHAD)
2844 UTILSAVESHD(r,v) = 100*[qsaveshd(r,v) - pop(r)]*UTILSAVESHD(r,v);

Finally we compute the percentage change in shadow income, following equa-
tion (2.14.1), and using dummy coefficients on utility, the utility scaling
factor, and the distribution parameters:

2846 Equation INCOME_SHAD #shadow income# (all,r,REG)(all,v,SHAD)
2847 TRACKSU(v)*u(r) = TRACKSDP(v)*au(r)
2848 + TRACKSDP(v)*DPARPRIV(r)*loge(UTILPRIVSHD(r,v))*dppriv(r)
2849 + TRACKSDP(v)*DPARGOV(r)*loge(UTILGOVSHD(r,v))*dpgov(r)
2850 + TRACKSDP(v)*DPARSAVE(r)*loge(UTILSAVESHD(r,v))*dpsave(r)
2851 + [1.0/UTILELASSHD(r,v)]*[yshd(r,v) - pop(r)];
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3.9 Extracting coefficients and variables for the EV calcula-
tions

The next part of the module is a piece of bridging code selecting coefficients
and variables from the appropriate shadow system for use in equivalent
variation calculations. For use in the EV decomposition (section 4) we
define the utility elasticity ΦEV from the EV shadow system:

2859 Formula (all,r,REG)
2860 UTILELASEV(r) = UTILELASSHD(r,"dp1u1");

and the quantities Ui of the goods in the shadow top-level demand system:

2862 Formula (all,r,REG)
2863 UTILPRIVEV(r) = UTILPRIVSHD(r,"dp1u1");
2864

2865 Formula (all,r,REG)
2866 UTILGOVEV(r) = UTILGOVSHD(r,"dp1u1");
2867

2868 Formula (all,r,REG)
2869 UTILSAVEEV(r) = UTILSAVESHD(r,"dp1u1");

For use in calculating the equivalent variation itself we define the levels co-
efficient YEV and change variable yEV for income in the EV shadow system:

2871 Formula (all,r,REG)
2872 INCOMEEV(r) = INCOMESHD(r,"dp1u1");
2873

2874 Equation INCOME_EQUIV #equivalent income# (all,r,REG)
2875 yev(r) = yshd(r,"dp1u1");

3.10 Computing the equivalent variation

The income variable and coefficient are for local use, the utility elasticity
for the welfare decomposition (subsection 4.3).

Implementing equation (3.0.1), we compute regional equivalent variation
EV :

2883 Equation EVREG #regional EV (HT 67)# (all,r,REG)
2884 EV(r) = [INCOMEEV(r)/100.0]*yev(r);

We also compute a world equivalent variation, WEV, as the sum of the regional
equivalent variations:

2886 Equation EVWLD #EV for the world (HT 68)#
2887 WEV = sum{r, REG, EV(r)};
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3.11 Neutralizing the welfare effects of distributional param-
eter change

We provide an equation and slack variable to control the neutralization of
distributional parameter changes at the initial utility level, following equa-
tion (3.4.7):

2895 Variable (all,r,REG)
2896 yu0slack(r) #controls normalization of preferences at original U#;
2897 Equation NORMPREFU0 #normalize preferences at original U# (all,r,REG)
2898 yshd(r,"dp0u1") = yu0slack(r);

When the variable yu0slack is exogenous and zero, equation (3.4.7) applies,
and the equivalent variation reduces to the specification (3.4.2). Similarly,
we provide an equation and slack variable for neutralization at the final
utility level, following equation (3.4.6):

2900 Variable (all,r,REG)
2901 yu1slack(r) #controls normalization of preferences at final U#;
2902 Equation NORMPREFU1 #normalize preferences at final U# (all,r,REG)
2903 yshd(r,"dp1u1") = yshd(r,"dp1u0") + yu1slack(r);

When the variable yu1slack is exogenous and zero, equation (3.4.6) applies,
and the equivalent variation reduces to the specification (3.4.1).

4 Decomposing the equivalent variation

We describe the old decomposition of the equivalent variation (subsection 4.1),
discuss its defects (subsection 4.2), and derive (subsection 4.3, 4.4) and im-
plement (subsection 4.5) a new decomposition.

In the derivations below, we divide each EV decomposition formula into
two parts: a lengthy formula decomposing some income-related variable,
such as real income or real per capita income, and a decomposition scheme
relating the income variable to EV . Substituting the decomposition of the
income-related variable into the decomposition scheme yields the full EV
decomposition.

4.1 The old treatment

The old derivation (Huff and Hertel [6]) uses a decomposition of real income,

D = Y (y − p), (4.1.1)

49



where D stands for a rather lengthy decomposition (reproduced with minor
changes in subsection 4.3) of real regional income into components related
to factor endowments, technological change, allocative efficiency, and terms
of trade. The relation between real income and EV is given by the decom-
position scheme

dEV =
1

100
URNR

Ȳ
Y

[

D −

(

∑

i

YPi(Ei − 1)

)

uP

]

, (4.1.2)

where YPi denotes private consumption expenditure on commodity i.
The problems with the old decomposition relate not to the real income

decomposition but to the decomposition scheme. Accordingly, we do not
derive here the real income decomposition, but refer the reader to the orig-
inal documentation. We do provide a new derivation for the decomposition
scheme, in order to identify sources of error in the old decomposition, and
also to explain why the old decomposition is consistent with the old com-
putation of EV .

We use the old utility equation (2.5.1),

û = SP uP + SG(qG − n) + SS(qS − n). (4.1.3)

We recall (from subsection 2.5) that the old computation is invalid in general,
but valid in the special case Φ = 1, ΦP = 1, and that standard GTAP data
bases fall within the special case. We use for this derivation the notation û
for utility computed according to equation (4.1.3).

Recalling equations (2.1.10) and (2.1.11), and dropping the government
consumption and saving slack variables κG and κS , we have

qG = y − pG,

qS = y − pS .

Also, from equation (2.11.1), we have ΦP uP = yP − n − pP . Adding uP −
ΦP uP to both sides, and putting y for yP (consistent with the old treatment
provided the slack variables are zero), we obtain

uP = y − n− pP − (ΦP − 1)uP .

Substituting into equation (4.1.3), we obtain

û = y − n− (SP pP + SGpG + SSpS)− SP (ΦP − 1)uP .
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Then substituting from equation (2.4.13), p = SP pP + SGpG + SSpS , we
obtain

û = y − n− p− SP (ΦP − 1)uP .

Substituting into the old EV equation (3.1.1), dEV = (1/100)URNRȲ (n +
û), we obtain

dEV =
1

100
URNRȲ [y − p− SP (ΦP − 1)uP ].

Substituting for D from equation (4.1.1), we obtain

dEV =
1

100
URNR

Ȳ
Y

[D − YP (ΦP − 1)uP ].

Substituting for ΦP from equation (2.4.8), ΦP =
∑

i S
P
i Ei, we obtain finally

the old EV decomposition scheme,

dEV =
1

100
URNR

Ȳ
Y

[

D −

(

∑

i

YPi(Ei − 1)

)

uP

]

.

4.2 Defects in the old treatment

The old welfare decomposition has two defects: it contains a nuisance term,
the term in uP in equation (4.1.2); and it is in general invalid.

As shown in subsection 3.1, the old decomposition relies on the old utility
equation (4.1.3), and inherits its validity conditions. Accordingly, it is valid
in Johansen simulations with data bases in which Φ = ΦP = 1 (including
standard GTAP data bases); approximate in non-linear simulations in which
initially Φ = ΦP = 1; and invalid otherwise.

While this is the major defect of the old decomposition, it is also in a
way a merit, since it allows the decomposition to be consistent with the
old EV computation. More specifically, the old EV computation and de-
composition are consistent because they use the same equation (4.1.3) for
aggregate utility.

4.3 A revised treatment

Hanslow [4] presents a general welfare decomposition applicable to many
CGE models. For convenience, we base our derivation on the GTAP-specific
Huff and Hertel ([6]) approach. As revised, the results are consistent with
the Hanslow decomposition.
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In revising the decomposition, we at first assume no changes in prefer-
ences, and then extend our results to incorporate preference changes. Rear-
ranging equation (2.4.12), x = p + Φu, we obtain

u = Φ−1(x− p)

= Φ−1(y − p− n) by defn. of x

= Φ−1(Y −1D − n) from (4.1.1)

Substituting into equation (3.1.3), yEV = ΦEV u + n, we obtain

yEV =
ΦEV

Φ
(Y −1D − n) + n.

Then substituting into equation (3.0.1), dEV = 1
100YEV yEV , we obtain the

decomposition scheme

dEV =
1

100
ΦEV

Φ
YEV

Y
D − 1

100

[

ΦEV

Φ
− 1

]

YEV n.

This scheme suffers from one objectionable feature, the presence of a
nuisance term involving population growth n. In simulations with standard
data bases (with ΦEV = Φ = 1 initially), the term would typically be
small but non-zero. We can remove this nuisance by modifying the income
decomposition, to decompose not real regional income y − p but real per
capita income x− p. Accordingly we write

Y (x− p) = D∗, (4.3.1)

where D∗ represents a decomposition of real per capita income. Then pro-
ceeding as before, we obtain

u = Φ−1Y −1D∗,

yEV =
ΦEV

Φ
Y −1D∗ + n,

and
dEV =

1
100

ΦEV

Φ
YEV

Y
D∗ +

1
100

YEV n.

Now instead of a nuisance term, we have an interpretable term in population
growth n.
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Finally, we incorporate preference changes. Instead of the simpler equa-
tion (2.4.12), we begin with the more complete equation (2.14.1),

u = c +
∑

i

Bi(log Ui)bi + Φ−1(x− p)

= c +
∑

i

Bi(log Ui)bi + Φ−1Y −1D∗,

substituting from equation (4.3.1). Also, adapting equation (2.14.1), we
have

yEV = ΦEV

(

−c−
∑

i

Bi(log UEV i)bi + u
)

+ n,

where UEV i denotes the level of good i in the top-level utility function,
in the shadow demand system with initial prices but current utility and
preferences. Then proceeding as before, we obtain

dEV = − 1
100

ΦEV YEV

∑

i

Bi

(

log
UEV i

Ui

)

bi

+
1

100
ΦEV

Φ
YEV

Y
D∗ +

1
100

YEV n.

(4.3.2)

We note that changes c in the utility scaling factor do not affect the
equivalent variation, and that changes in the distribution parameters af-
fect it only when correlated with differences between the actual and shadow
subutilities Ui and UEV i. If both distribution parameter changes and price
changes favor usage of top-level good i, then the effect of the distribution
parameter changes on utility is more favorable with final prices than with
initial prices, so expenditure in the shadow system needs to be higher than
it would otherwise, so the contribution to the equivalent variation is pos-
itive. Conversely, if the distribution parameter for good i increases while
price changes operate to discourage its consumption, the contribution to the
equivalent variation is negative.

4.4 Decomposing real per capita income

Based on Huff and Hertel [6], we have a decomposition of real regional
income:

(all,r,REG)
INCOME(r)*[y(r) - p(r)]

= sum{i, ENDW_COMM, VOA(i,r)*qo(i,r)} - VDEP(r)*kb(r)
+ sum{j, PROD_COMM, VOA(j,r)*ao(j,r)}
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+ sum{j, PROD_COMM, VVA(j,r)*ava(j,r)}
+ sum{j, PROD_COMM, sum{i, ENDW_COMM, VFA(i,j,r)*afe(i,j,r)}}
+ sum{j, PROD_COMM, sum{i, TRAD_COMM, VFA(i,j,r)*af(i,j,r)}}
+ sum{s, REG, sum{i, TRAD_COMM, sum{m, MARG_COMM,

VTMFSD(m,i,s,r)*atmfsd(m,i,r,s)
}}}

+ sum{i, NSAV_COMM, [VOM(i,r) - VOA(i,r)]*qo(i,r)}
+ sum{i, ENDW_COMM, sum{j, PROD_COMM,

[VFA(i,j,r) - VFM(i,j,r)]*qfe(i,j,r)
}}

+ sum{j, PROD_COMM, sum{i, TRAD_COMM,
[VIFA(i,j,r) - VIFM(i,j,r)]*qfm(i,j,r)

}}
+ sum{j, PROD_COMM, sum{i, TRAD_COMM,

[VDFA(i,j,r) - VDFM(i,j,r)]*qfd(i,j,r)
}}

+ sum{i, TRAD_COMM, [VIPA(i,r) - VIPM(i,r)]*qpm(i,r)}
+ sum{i, TRAD_COMM, [VDPA(i,r) - VDPM(i,r)]*qpd(i,r)}
+ sum{i, TRAD_COMM, [VIGA(i,r) - VIGM(i,r)]*qgm(i,r)}
+ sum{i, TRAD_COMM, [VDGA(i,r) - VDGM(i,r)]*qgd(i,r)}
+ sum{i, TRAD_COMM, sum{s, REG,

[VXWD(i,r,s) - VXMD(i,r,s)]*qxs(i,r,s)
}}

+ sum{i, TRAD_COMM, sum{s, REG,
[VIMS(i,s,r) - VIWS(i,s,r)]*qxs(i,s,r)

}}
+ sum{i, TRAD_COMM, sum{s, REG, VXWD(i,r,s)*pfob(i,r,s)}}
+ sum{m, MARG_COMM, VST(m,r)*pm(m,r)}
- sum{i, TRAD_COMM, sum{s, REG, VXWD(i,s,r)*pfob(i,s,r)}}
- sum{m, MARG_COMM, VTMD(m,r)*pt(m)}
+ NETINV(r)*pcgds(r) - SAVE(r)*psave(r)
;

This is a equation from Huff and Hertel [6], modified to conform to the
new (in GTAP 5) treatment of international margins. The right hand side
is the expression represented above as D. Rearranging, substituting for
the coefficient INCOME on pop, and introducing from GTAP 5 new notation
for tax revenue coefficients, we obtain a decomposition for real per capita
income:

(all,r,REG)
INCOME(r)*[y(r) - pop(r) - p(r)]

= sum{i,ENDW_COMM, VOA(i,r)*[qo(i,r) - pop(r)]}
- VDEP(r)*[kb(r) - pop(r)]
+ sum{j,PROD_COMM, VOA(j,r)*ao(j,r)}
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+ sum{j,PROD_COMM, VVA(j,r)*ava(j,r)}
+ sum{j,PROD_COMM, sum{i,ENDW_COMM, VFA(i,j,r)*afe(i,j,r)}}
+ sum{j,PROD_COMM, sum{i,TRAD_COMM, VFA(i,j,r)*af(i,j,r)}}
+ sum{s,REG, sum{i,TRAD_COMM, sum{m,MARG_COMM,

VTMFSD(m,i,s,r)*atmfsd(m,i,r,s)
}}}

+ sum{i,NSAV_COMM, PTAX(i,r)*[qo(i,r) - pop(r)]}
+ sum{i,ENDW_COMM, sum{j,PROD_COMM,

ETAX(i,j,r)*[qfe(i,j,r) - pop(r)]
}}

+ sum{j,PROD_COMM, sum{i,TRAD_COMM,
IFTAX(i,j,r)*[qfm(i,j,r) - pop(r)]

}}
+ sum{j,PROD_COMM, sum{i,TRAD_COMM,

DFTAX(i,j,r)*[qfd(i,j,r) - pop(r)]
}}

+ sum{i,TRAD_COMM, IPTAX(i,r)*[qpm(i,r) - pop(r)]}
+ sum{i,TRAD_COMM, DPTAX(i,r)*[qpd(i,r) - pop(r)]}
+ sum{i,TRAD_COMM, IGTAX(i,r)*[qgm(i,r) - pop(r)]}
+ sum{i,TRAD_COMM, DGTAX(i,r)*[qgd(i,r) - pop(r)]}
+ sum{i,TRAD_COMM, sum{s,REG,

XTAXD(i,r,s)*[qxs(i,r,s) - pop(r)]
}}

+ sum{i,TRAD_COMM, sum{s,REG,
MTAX(i,s,r)*[qxs(i,s,r) - pop(r)]

}}
+ sum{i,TRAD_COMM, sum{s,REG, VXWD(i,r,s)*pfob(i,r,s)}}
+ sum{m,MARG_COMM, VST(m,r)*pm(m,r)}
- sum{i,TRAD_COMM, sum{s,REG, VXWD(i,s,r)*pfob(i,s,r)}}
- sum{m,MARG_COMM, VTMD(m,r)*pt(m)}
+ NETINV(r)*pcgds(r)
- SAVE(r)*psave(r)
;

Here the right hand side is the expression referred to above as D∗.
Unlike for example Hanslow [4], we do not introduce into the decomposi-

tion a new term involving population. Instead we incorporate the population
variable into the terms involving quantity variables. We prefer this approach
for several reasons.

• Looking forward to the equivalent variation decomposition, it does
not create there a nuisance term involving population growth. There
is indeed still a population growth term. It is however no longer a nui-
sance term but an interpretable term, expressing the intuition that in
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the absence of imbalances in growth, income grows equiproportionally
with population.

• It does lead to a redefinition of the endowment terms. We recognize
now an increase in utility arising not from growth in total endowments,
but from growth in endowments per capita. While change admittedly
is bad, this change is not very bad, since the new endowment terms
are as readily interpretable as the old ones.

• It leads also to a redefinition of the allocative efficiency effects, but
here the change is for the better. With balanced growth in a distorted
economy, the old decomposition reported an allocative efficiency im-
provement associated with every taxed flow, and an allocative effi-
ciency deterioration associated with every subsidised flow. Intuitively
however, balanced growth involves no change in allocative efficiency.
The new decomposition here conforms to intuition better than the old.

4.5 Implementation

To implement the new treatment, we need to define the new population
growth term in the decomposition, and revise the old terms. The old terms
included a factor representing U

Ū
N
N̄ Ȳ /Y . The new terms include instead a

factor representing (ΦEV /Φ)(YEV /Y ). Since the numerator U
Ū

N
N̄ Ȳ in the old

factor is an approximation to YEV (provided that the elasticity of income
with respect to utility is initially equal to one), and since ΦEV /Φ in the new
factor is (for small changes) approximately equal to one, the old factor may
be considered an approximation to the new one.

To implement the new treatment, we first compute the equivalent vari-
ation scaling factor (ΦEV /Φ)(YEV /Y ):

3266 Coefficient (all,r,REG)
3267 EVSCALFACT(r) #equivalent variation scaling factor#;
3268 Formula (all,r,REG)
3269 EVSCALFACT(r)
3270 = [UTILELASEV(r)/UTILELAS(r)]*[INCOMEEV(r)/INCOME(r)];

We then revise the decomposition-based computation of equivalent varia-
tion, using equation (4.3.2) and the real per capita income decomposition
obtained in subsection 4.4.

3282 Variable (Linear,Change)(all,r,REG)
3283 EV_ALT(r) # regional EV computed in alternative way #;
3284 Equation EV_DECOMPOSITION
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3285 # decomposition of Equivalent Variation #
3286 (all,r,REG)
3287 EV_ALT(r)
3288 = 0.01*UTILELASEV(r)*INCOMEEV(r)*[
3289 DPARPRIV(r)*loge(UTILPRIVEV(r)/UTILPRIV(r))*dppriv(r)
3290 + DPARGOV(r)*loge(UTILGOVEV(r)/UTILGOV(r))*dpgov(r)
3291 + DPARSAVE(r)*loge(UTILSAVEEV(r)/UTILSAVE(r))*dpsave(r)
3292 ]
3293 + [0.01*EVSCALFACT(r)]
3294 * [
3295 sum{i,NSAV_COMM, PTAX(i,r)*[qo(i,r) - pop(r)]}
3296 + sum{i,ENDW_COMM, sum{j,PROD_COMM,
3297 ETAX(i,j,r)*[qfe(i,j,r) - pop(r)]
3298 }}
3299 + sum{j,PROD_COMM, sum{i,TRAD_COMM,
3300 IFTAX(i,j,r)*[qfm(i,j,r) - pop(r)]
3301 }}
3302 + sum{j,PROD_COMM, sum{i,TRAD_COMM,
3303 DFTAX(i,j,r)*[qfd(i,j,r) - pop(r)]
3304 }}
3305 + sum{i,TRAD_COMM, IPTAX(i,r)*[qpm(i,r) - pop(r)]}
3306 + sum{i,TRAD_COMM, DPTAX(i,r)*[qpd(i,r) - pop(r)]}
3307 + sum{i,TRAD_COMM, IGTAX(i,r)*[qgm(i,r) - pop(r)]}
3308 + sum{i,TRAD_COMM, DGTAX(i,r)*[qgd(i,r) - pop(r)]}
3309 + sum{i,TRAD_COMM, sum{s,REG,
3310 XTAXD(i,r,s)*[qxs(i,r,s) - pop(r)]
3311 }}
3312 + sum{i,TRAD_COMM, sum{s,REG,
3313 MTAX(i,s,r)*[qxs(i,s,r) - pop(r)]
3314 }}
3315 + sum{i,ENDW_COMM, VOA(i,r)*[qo(i,r) - pop(r)]}
3316 - VDEP(r)*[kb(r) - pop(r)]
3317 + sum{i,PROD_COMM, VOA(i,r)*ao(i,r)}
3318 + sum{j,PROD_COMM, VVA(j,r)*ava(j,r)}
3319 + sum{i,ENDW_COMM, sum{j,PROD_COMM, VFA(i,j,r)*afe(i,j,r)}}
3320 + sum{j,PROD_COMM, sum{i,TRAD_COMM, VFA(i,j,r)*af(i,j,r)}}
3321 + sum{m,MARG_COMM, sum{i,TRAD_COMM,
3322 sum{s,REG, VTMFSD(m,i,s,r)*atmfsd(m,i,s,r)}}}
3323 + sum{i,TRAD_COMM, sum{s,REG, VXWD(i,r,s)*pfob(i,r,s)}}
3324 + sum{m,MARG_COMM, VST(m,r)*pm(m,r)}
3325 + NETINV(r)*pcgds(r)
3326 - sum{i,TRAD_COMM, sum{s,REG, VXWD(i,s,r)*pfob(i,s,r)}}
3327 - sum{m,MARG_COMM, VTMD(m,r)*pt(m)}
3328 - SAVE(r)*psave(r)
3329 ]
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3330 + 0.01*INCOMEEV(r)*pop(r);

Consistency between this and the standard equivalent variation computation
is a check on the validity of the decomposition.

Finally we compute various components of the change in equivalent vari-
ation. We compute first the distributional parameter component:

3338 Variable (Linear,Change) (all,r,REG) CNTdpar(r)
3339 # contribution to EV of change in distribution parameters#;
3340 Equation CNT_WEV_dpar (all,r,REG)
3341 CNTdpar(r) = 0.01*UTILELASEV(r)*INCOMEEV(r)*[
3342 DPARPRIV(r)*loge(UTILPRIVEV(r)/UTILPRIV(r))*dppriv(r)
3343 + DPARGOV(r)*loge(UTILGOVEV(r)/UTILGOV(r))*dpgov(r)
3344 + DPARSAVE(r)*loge(UTILSAVEEV(r)/UTILSAVE(r))*dpsave(r)
3345 ];

and the population component:

3347 Variable (Linear,Change) (all,r,REG) CNTpop(r)
3348 #contribution to EV in region r of change in population#;
3349 Equation CONT_WEV_pop (all,r,REG)
3350 CNTpop(r) = 0.01*INCOMEEV(r)*pop(r);

The other components derive from the real per capita income decomposition.
They are generally similar to the corresponding components of the old de-
composition, but with the new scaling factor replacing the old. For instance,
for the allocative efficiency effect associated with production subsidies and
income taxes, we have corresponding to the first term in the decomposition:

3352 Variable (Linear,Change) (all,r,REG) CNTqor(r)
3353 #contribution to EV in region r of output changes#;
3354 Equation CONT_WEV_qor (all,r,REG)
3355 CNTqor(r)
3356 = sum{i,NSAV_COMM, 0.01*EVSCALFACT(r)*PTAX(i,r)*[qo(i,r) - pop(r)]};

The code for the remaining components is not reproduced here but may be
found in the associated program source file.

5 Properties of the final demand system

In the new treatment, the model should display several easily checked prop-
erties:

• All variables except utility from private consumption (φP or uelaspriv)
are invariant with respect to rescalings of the CDE expansion param-
eters.
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• All variables except aggregate utility (φ or uelas) are invariant with
respect to changes in the initial level of the elasticity of income with
respect to utility.

• In quantity homogeneity tests—that is, simulations in which uniform
shocks are applied to population, factor endowments, and any other
exogenous quantity variables—all components of the EV decomposi-
tion except the population component are zero.

The first property is not obvious, since rescalings of the expansion pa-
rameters do affect the utility elasticity of private consumption expenditure,
and, in the linearised equation system, changes in the utility elasticity of
private consumption expenditure affect the upper-level allocation of income.
Nevertheless, as the following proposition shows, it does apply:

Proposition 9 With a upper-level Cobb-Douglas demand system and a bottom-
level CDE system, with distribution parameters calibrated to a given initial
equilibrium, rescaling the CDE expansion parameters has no effect on quan-
tities demanded.

Proof. Suppose that the CDE expansion parameters Ei are rescaled by
a common positive factor K. Now changing the maximand from U to UK

does not affect quantities demanded, but as we see by substituting into equa-
tion (2.1.1), maximizing UK with the old expansion parameters is equivalent
to maximizing U with the new expansion parameters. So rescaling the CDE
expansion parameters does not affect the private consumption demand sys-
tem. It does affect the upper level of the final demand system, since the
elasticity of private consumption expenditure with respect to utility from
private consumption is linearly homogeneous in the CDE expansion param-
eters. To calibrate to the observed income allocation, however, when we
rescale the expansion parameters by a factor K, we need also to multiply by
K the upper-level distribution factor for private consumption. With that
adjustment, the new demand system is equivalent to the old.

In the private consumption demand system, as income increases, the
budget share of commodities with higher expansion parameters increases.
Then because of the expansion-parameter weighting of XWCONSHR, the util-
ity elasticity uepriv also increases. This leads to a shift away from private
consumption toward government consumption and saving. In addition, re-
ductions in relative prices of commodities with low expansion parameters
(with sufficiently low price elasticities) typically decrease their budget share,
again leading to increases in uepriv and reallocation of income away from
private consumption toward government consumption and saving.
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In standard GTAP data bases, the greatest differences in expansion pa-
rameters are typically between food and non-food commodities, the expan-
sion parameters of food commodities typically being much lower than those
of non-food. Accordingly, the share of private consumption in regional in-
come typically varies directly with food prices.

Simulations with the old and new models with aggregated standard data
bases suggest the following tentative generalizations:

• In moving from the old to the new treatment, corrections to the welfare
variables are typically small.

• Under the new treatment, the upper-level allocation of income is typ-
ically insensitive to changes in income.

• Under the new treatment, the upper-level allocation of income is mod-
erately sensitive to changes in relative prices of commodities with dif-
ferent expansion parameters. In particular, in low- and middle-income
countries, the upper-level allocation of income is moderately sensitive
to changes in the price of food relative to other commodities. The
upper-level allocation is typically less sensitive to food prices in high
income countries, since there the share of food in private consumption
expenditure is typically low.

6 Future work

Later versions of this paper may include more detailed derivations and some
illustrative applications. We may revise the program decomp.tab, used to
prepare a ViewHAR-friendly equivalent variation decomposition report, to
work with the revised gtap.tab. We may assess the empirical merits of the
new, more complex upper-level demand system.
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