
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


Entropy Theory and RAS are Friends

Robert A. McDougall

May 14, 1999

Abstract

Recent research in applications of entropy theory to matrix balancing problems in eco-
nomics has put powerful new tools in the hands of data base developers, but overshadowed
some previous findings. We recall earlier findings that the RAS is an entropy-theoretic
model. Investigating the properties of a more recently proposed entropy-theoretic model,
we find that in general the RAS remains preferable. We show further that the RAS can
be obtained also as a generalised cross-entropy model. Finally, we present examples illus-
trating how entropy-theoretic techniques can extend the RAS to handle a wider range of
problems.

1 Introduction

Recent years have seen new interest in applications of entropy theory in economics, includ-
ing applications to data balancing problems such as those encountered in input-output (IO)
table construction. Works by Golan, Judge, and Robinson [11] (henceforward GJR) and Golan,
Judge, and Miller [10] (henceforward GJM) have been effective in promoting this new interest.
This interest however has not been without its disadvantages. The following mistaken views for
example may be encountered:

• that the application of entropy theory to IO data construction is a new development,

• that the RAS model widely used in such tasks is not an entropy-theoretic method,

• that the RAS has been superseded by more recently developed entropy-theoretic methods.

This paper is intended to recall to notice earlier findings on the relationship of entropy theory
and the RAS, to investigate the properties of some more recently proposed entropy-theoretic
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methods, to assess their merits relative to the RAS, and to offer some suggestions on how
entropy theory may most fruitfully be applied to data balancing problems.

Following a brief historical overview (section 2), we examine first the matrix filling prob-
lem and maximum entropy methods (section 3). This introduces ideas for section 4, on matrix
balancing methods and cross entropy methods, including the RAS. We then undertake a prelim-
inary examination of generalised cross entropy methods (section 5), provide examples of con-
structive applications to matrix balancing problems of entropy-theoretic techiques (section 6),
and conclude (section 7).

2 Historical overview

The RAS or biproportionate adjustment model has been invented several times in several differ-
ent disciplines. Bregman [3] reports “This method was proposed in the 1930s by the Leningrad
architect G.V. Sheleikhovskii for calculating traffic flow.” Bacharach’s [1] monograph relates
that “In 1940, Deming and Stephan had treated as a biproportional constrained matrix problem
the statistical problem of estimating an unknown contingency matrix from known marginals and
an initial estimate of the matrix [7]”; and that in 1941, Leontief [16] “proposed a biproportional
form for the relationship between the values taken by an input-output matrix at different points
of time.” But the impetus to its use in IO table construction came from Stone [8, 21], who in
1962 proposed its use by the Cambridge Growth Project in constructing use matrices for IO
tables for the United Kingdom, and gave it the nameRASit commonly bears in this field of
application.

Besides use matrices for IO tables, it has been applied in constructing other economic data
arrays such as make matrices for IO tables (e.g., Cambridge Growth Project [9], 1963) and
bilateral trade matrices (e.g., B´enard [2], 1963).

The iterative scaling method commonly used in solving the RAS was proposed by Deming
and Stephan [7] in 1940 in the contingency table context, and independently by Stone in 1962
in the IO table context.

While the RAS model was being discovered and rediscovered, Shannon [19] in 1948 ini-
tiated the field of information theory, appropriating for one of its key concepts the nameen-
tropy from thermodynamics. Shannon’s interest was in communication engineering (where
applications include the use of error correcting codes on compact disks, and the Lempel-Ziv
compression scheme widely used for file compression on computers), but connections were es-
tablished to other fields such as computer science (Kolmogorov complexity, [14] 1968), finance
theory (log optimal portfolios, Kelly [13] 1956), spectral analysis in geophysics and elsewhere
(Burg [5] 1975), and statistics (contingency tables, Fisher’s information measure; see, e.g.,
Kullback [15]).
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Theil [22] in 1967 collected and extended work on the application of entropy theory to eco-
nomic topics including the construction of economic data matrices (he does not seem to have
been aware of the finance theory work mentioned above). Following Uribe, de Leeuw and
Theil [23], he identified some relationship between entropy theory and the RAS; but the final
step of identifying the RAS model as an entropy-theoretic method was made by Bacharach [1] in
1970. Unknown to him, other researchers had already obtained similar results (e.g., Sinkhorn [20]
in 1964, Bregman [3] in 1967); those researchers in turn, though familiar with applications of
the RAS model to transport economics and statistics, were not aware of its employment in IO
economics.

Further information on the history of the RAS may be obtained from Bacharach [1] and
Schneider and Zenios [18].

It will be apparent to the reader that the early history of the RAS method in IO economics
was marked by a lack of awareness of relevant entropy-theoretic work in other fields. This is
unsurprising, since that work tends to be specialised and technical. More recently, GJR in 1994
and GJM in 1996 have done much to increase awareness of relevant work outside economics,
offset unfortunately by neglect of relevant work inside. Thus for instance GJR write that “in
contrast to [the RAS method], we make use of the entropy principle and consider a method
based only on the information that is available,” neglecting the literature that establishes for the
RAS precisely the connections to information and entropy theory that they deny.

3 Entropy optimization and proportional allocation

Consider the matrix filling problem: find matrix elementsvij , i = 1, . . . , I, j = 1, . . . , J
consistent with row target totalsvi• and column target totalsv•j . Equivalently, find column
coefficientsbij = vij/v•j consistent with the row and column totals.

Such a problem might arise, for example, in disaggregating an industry in an IO table,
knowing only the industry-wide input valuesvi• and disaggregated industry output valuesv•j ;
or in constructing a bilateral trade matrix, knowing only country export valuesvi• and import
valuesv•j . We shall refer to the column coefficientsbij , i = 1, . . . , I as thecolumn structure
of columnj. Similarly we shall refer to the row coefficientsvij/vi•, j = 1, . . . , J as the row
structure of rowi.

This problem has a simple and obvious solution, namely, to allocate values equiproportion-
ally across columns and across rows:

vij =
vi•
v••

v•j
v••

v•• =
vi•v•j
v••

, (1)
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or, in terms of column coefficients,

bij =
vi•
v••

, (2)

wherev•• is the common sum
∑

j v•j =
∑

i vi• (required to exist, for the problem to be feasi-
ble). We call this theproportional allocationmethod.

The proportional allocation method might seem too obvious to require justification. Never-
theless, a reasoned justification can uncover some less obvious considerations.

Proposition 1 For the matrix filling problem, the proportional allocation method should be
preferred, in the absence of information about variation in column structure or variation in row
structure.

Since we have no basis for differentiating the column structure across columns, we should not
differentiate it, but assume a uniform structure. For example, in disaggregating an input-output
table, if we know nothing about how cost structures vary across the disaggregate industries, we
should give them all the same cost structure. Equivalently, having no basis for differentiating
the row structure, we should assume a uniform structure.

Again, this appears intuitively obvious, but further justification is available if needed. If we
arbitrarily differentiate the column structures or row strucures, we are liable to create spurious
mechanisms in any model built on the data set. If for example we differentiate cost structures
across industries, then in a model using these data, a fall in the price of a given input leads to a
relative cost reduction for the industries that use that input most intensively; and that is liable to
have further effects, for example, a shift in the export pattern toward those industries’ products.
But if the differentiation in cost structures in the data base is arbitrary, then those effects are
most likely spurious.

In brief, we should use the proportional allocation method because it avoids importing spu-
rious information into the matrix.

In justifying the proportional allocation method, we do not rely on the argument that it
yields the most accurate estimates. For reasonable assumptions about probability distributions
and choices of accuracy measures, the proportional allocation method may well be the most
accurate. But any estimation method for this problem is bound to be highly inaccurate, so any
use of the estimates should not rely on their accuracy.

Typically however accuracy is not the only consideration. Suppose for example we devel-
oped some random method for filling in the matrix. It would likely be more inaccurate on
average than the proportional allocation method; but it might not be much more inaccurate. But
it would be far inferior methodologically, because it would create spurious mechanisms in any
model built on top of the data, that is, mechanisms we had no justification for putting in the
model.
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The argument for proportional allocation is not of course an argument against using further
information where available. This further information might bear directly or indirectly on the
problem in hand. As an example of direct information, in disaggregating the food processing
industry, one would know better than to assume that the sugar industry uses raw sugar in the
same proportions as other food processing industries. As an example of indirect information,
in constructing a bilateral trade matrix, one might infer from other trade pattern studies that the
gravity model would provide better results than proportional allocation.

Golan, Judge and Robinson [11] (GJR) however use maximum entropy to derive a different
method. Maximizing an objective function

H = −
∑

i

∑
j

bij log bij (3)

subject to constraints ∑
j

bijv•j = vi•, (4)

∑
i

bij = 1, (5)

they obtain

bij =
1

Ωj(λi)
exp[−λiv•j ], (6)

where

Ωj(λi) =

m∑
i=1

exp[−λiv•j ]. (7)

We note that the objective function (3) is not an entropy but a sum of entropies. Specifically,
we may write

H =
∑

j

Hj, (8)

where each

Hj =
∑

i

bij log bij

Hj is an entropy, since it is a sum of terms involving variablesbij , i = 1, . . . , m subject to an
adding-up constraint

∑
i bij = 1. But H itself is not an entropy.

Entropy theory in other words supplies theHj, but the method of combining them to form
a single objective function, formula (8), was chosen at its authors’ [11] discretion. The simple
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sum (8) is a natural and obvious way of combining the entropies, but if on examination we
find some problem with the estimators it yields, we are free to define a new objective function
combining them in some other way. The only obvious restriction on such an objective function
is that it should be a strictly increasing function of the individual entropies. As we shall see, we
can also chose a different set of variables to include in the entropy measure. We can even change
from an entropy maximization to a cross-entropy minimization method. In short, the model
of equations (3, 4), does not represent the entropy optimization approach, but one particular
entropy approach. We call this particular approach themaximum sum of entropiesor MSE
approach.

We now examine the MSE solution (6, 7). We note first that comparing coefficients within
a column, we have

bi2j > bi1j if and only if λi2 < λi1 .

Since theλi are the same for all columns, this shows that the size order of coefficients is the
same within all columns.

Next, note that the within-column variation in the coefficientsbij itself varies with the col-
umn sumv•j . In the columns with small column sums, the coefficients tend to be clustered
together, close to their average value1/m, while in the columns with large column sums the
coefficients are more widely dispersed. To see this, observe that for any two rowsi1, i2, the
ratio of coefficients

bi2j

bi1j
=

[
exp(−λi2)

exp(−λi1)

]v•j

is close to one for smallv•j , and distant from one for largev•j ; provided only thatλi1 andλi2

are unequal.

This gives us:

Proposition 2 The MSE method leads to more uniform cost structures for smaller industries,
and more differentiated cost structures for larger industries, in this sense: that for columns
j1, j2 such thatv•j2 > v•j1,

if
vi2j1

vi1j1

< 1 then
vi2j2

vi1j2

<
vi2j1

vi1j1

, (9)

if
vi2j1

vi1j1

> 1 then
vi2j2

vi1j2

>
vi2j1

vi1j1

. (10)

Equivalently, since the coefficients sum to one within columns, the MSE solution has this
property: in the columns with small column sums, the coefficients for rows with small row sums
are relatively large, and the coefficients for rows with large row sums, relatively small; while in
the columns with large column sums, the coefficients for rows with small row sums are relatively
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small, and the coefficients for rows with large row sums, relatively large. For an IO table, this
means that the large industries are relatively intensive users of the large commodities, and the
small industries, relatively intensive users of the small commodities. But there is no reason
to expect the larger industries’ cost structures to differ in any particular way from the smaller
industries’. So the differentiation in their cost structures in the MSE solution is undesirable.

We conclude therefore that the MSE solution is inferior to proportional allocation, in that it
differentiates arbitrarily between column structures (and likewise row structures) on the basis
of irrelevant information, namely, column target totals (row target totals).

An example is provided by GJR [11]. Filling in a matrix with row totals
[
80 110 140 145

]′
and column totals

[
56 62 91 266

]
, the proportional allocation method yields the same col-

umn share vector 


0.168
0.232
0.295
0.305


 ,

for each column, while the MSE method yields


0.221 0.218 0.204 0.133
0.246 0.246 0.243 0.221
0.265 0.267 0.274 0.315
0.268 0.270 0.279 0.331




where the cost structure becomes increasingly differentiated as we pass from the first to the last
column (for convenience of display, we have reordered rows and columns in increasing order).
In the first column (the one with the smallest column total), the ratio of the largest column share
element to the smallest is0.268/0.221, or 1.22; but in the last (largest) column it is0.331/0.133,
or 2.49, more than twice as large. Thus in this example the MSE method yields very different
cost structures in the smallest and largest industries, even though there is absolutely no relevant
information on which to discriminate the cost structures.

Why does the MSE solution have this behavior? We can explain this in terms of the objec-
tive function, which is, as will be recalled, the simple sum of the entropies of each column’s
coefficients. Roughly speaking, to maximize the objective function, we try to maximize each
column’s entropy, subject to other considerations such as satisfying the constraints. Now for
each column, the maximum entropy solution is that which puts all coefficients equal,

bij =
1

m
, i = 1, . . . , m.

But we cannot adopt this solution for all columnsj, since that would breach the row sum
conditions (4). A solution that satisfies those conditions is the proportional allocation solution,
but this does not maximize the objective function. Starting with the proportional allocation
solution, we can increase the entropy of the column with the smallest total, by moving the
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coefficients closer to the uniform value1/m. To maintain the row sum conditions, we make
offsetting adjustments in the column with the largest total. Now in the row sum conditions,
the columns are weighted by their totalsvi•. So we can conserve the row sum conditions by
making only large changes in the small-column coefficients but only small changes in the large
coefficients. This gives us a large increase in the entropy of the small-total column, and only
a small decrease in the entropy of the large-total column. Since both those entropies are given
equal weight in the objective function, this leads to a net increase in the objective function. In
short, the use of unweighted entropies in the objective function favors a solution in which the
small-column coefficients are relatively concentrated, while the large-column coefficients are
relatively dispersed.

So far, we have argued that the naïve-seeming proportional allocation solution is actually
superior to the sophisticated-seeming entropy optimization solution—or, more accurately, to its
MSE variant. For the proportional allocation model is itself an entropy optimization model.

Proposition 3 Proportional allocation is a maximum entropy model.

For want of space, we omit proof, but indicate briefly three routes by which the result may be
obtained:

• Instead of the simple sum of column entropies in the MSE, use a weighted sum, where
the weights are the column target totals.

• Instead of defining the objective function as a function of several column-specific en-
tropies, use a single, whole-matrix entropy measure.

• Instead of maximizing an entropy measure, minimise inter-column cross entropy.

4 Entropy optimization and the RAS method

Consider now the matrix balancing problem: given initial estimatesuij, i = 1, . . . , m, j =
1, . . . , J, find new estimatesvij as like as can be to the originalv, but consistent with row target
totalsvi• and column target totalsv•j .

Here a traditional approach is the RAS method; find row scaling factorsri and column
scaling factorssj, such that revised estimates

vij = riuijsj (11)
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have the required target totals. In place of this approach GJR [11] propose a cross-entropy
procedure: minimise

CE =
∑

i

∑
j

bij log
bij

aij
,

whereaij denotes the column shareuij/u•j; subject to the constraints∑
j

aijv•j = vi•,

∑
i

aij = 1.

We note that the objective functionCE is not itself a conventional cross entropy measure,
but rather a sum of cross entropies,

CE =
∑

j

CEj =
∑

i

bij log
bij

aij

, (12)

where CEj is the cross entropy between the initial and final estimates for columnj. Combining
these separate cross entropies into a single measure by simple summation is a natural choice,
but not the only one. Recognizing that the GJR procedure is just one of many possible cross
entropies procedures, we refer to it as the minimum sum of cross entropies, orMSCE, approach.

As GJR [11] show, the MSCE problem has solution

bij = Ω−1
j aije

−λiv•j ,

where

Ωj =
∑

i

aije
−λiv•j .

From the solution we see immediately:

Proposition 4 the MSCE revises cost structures more drastically for large industries than for
small, in that, for any two inputsi1, i2, for any two industriesj1, j2 such thatv•j1 < v•j2,

vi2j2

vi1j2

/
ui2j2

ui1j2




<
vi2j1

vi1j1

/
ui2j1

ui1j1
if

vi2j1

vi1j1

/
ui2j1

ui1j1
< 1

=
vi2j1

vi1j1

/
ui2j1

ui1j1
if

vi2j1

vi1j1

/
ui2j1

ui1j1
= 1

>
vi2j1

vi1j1

/
ui2j1

ui1j1
if

vi2j1

vi1j1

/
ui2j1

ui1j1
> 1

In words: if the input ratio decreases between the initial and final estimates for industryj1,
it decreases more for the (larger) industryj2; if the input ratio increases for industryj1, it
increases more for industryj2; if it is constant forj1, it is constant also forj2.
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Another way to put this is that the MSCE model tends to stay closer to the initial estimates
for small industries (that is, for columns with small target totals), and to deviate from them more
for large industries (large target totals). This would be appropriate if one considered the initial
IO estimates more reliable for small industries than for large. In practice, it would seem rarely
appropriate.

In comparing the two methods, we note that for work with non-negative data, the RAS
method has several attractive properties which have no doubt contributed to its popularity and
durability. It is easy to solve; indeed in small applications it is commonly solved using a simple
iterative procedure without resort to optimization methods. Provided the initial estimates are not
too sparse, it always provides a solution; if it does provide a solution, that solution is unique (see,
e.g., Bacharach [1]). It preserves sign, without the need for side conditions; here it contrasts
with alternative methods such as least squares, which in general require side conditions to avoid
negative-valued solutions. And being a rescaling method, it is transparent, in that there is a
simple relation (11) between the final and initial estimates.

The MSCE method has some of the same attractive properties. Provided the data are not too
sparse, it can provide a solution, and the solution if it exists is unique. Like the RAS, it preserves
sign. On the other hand, it is less transparent than the RAS. It is also less readily solved; though
with solution software such as GAMS (Brooke, Kendrick, Meeraus, and Raman [4]), solution
presents little difficulty even to the inexpert user.

There is however one important and desirable property that the RAS method has and MSCE
does not:

Proposition 5 For any pair of inputsi1, i2, the RAS preserves the ordering of input intensities
across industries, in that for any pair of industriesj1, j2,

vi2j2

vi1j2



≤ vi2j1

vi1j1
if ui2j2

ui1j2
≤ ui2j1

ui1j1

=
vi2j1

vi1j1
if ui2j2

ui1j2
=

ui2j1

ui1j1

≥ vi2j1

vi1j1
if ui2j2

ui1j2
≥ ui2j1

ui1j1

In words: if the ratio of usage of inputi2 to usage of inputi1 is smaller in industryj2 than in
industryj1 in the initial estimates, then it is smaller also in the final estimates; if the ratio is
greater in industryj2 than in industryj1 in the initial estimates, then it is greater in the final
estimates; if the ratios are equal in the initial estimates, then they are equal also in the final
estimates. In general, the MSCE estimates do not preserve the intensity ordering.

Before proving the proposition, we discuss why this property matters. Suppose for example
that you have to update an IO table, for an economy in which the capital-labor ratio is increasing
through time. In rebalancing the estimates, you expect then to increase the capital-labor ratios in
individual industries. However you would normally do this in a way that preserves the industry
ordering: the industry with the highest capital-labor ratio in the original data set would have
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the highest capital-labor ratio in the rebalanced data; the industry with the lowest capital-labor
ratio would be the same; and likewise with the intermediate rankings. This is because there
is nothing in the new data to support any reversal in relative input intensities; there cannot be,
since the new data contain no industry-specific information about cost structures. If you use the
RAS to rebalance the data, it is guaranteed that the industry ordering will be preserved; if you
use the MSCE method, changes in the ordering are possible.

Proof. For the RAS, for all columnsj,

vi2j

vi1j

=
ri2ui2jsj

ri1ui1jsj

=
ri2

ri1

ui2j

ui1j
.

So for giveni1, i2, the vector of elementsvi2j/vi1j , j = 1, . . . , J , is a scalar multiple of the
vector of elementsui2j/ui1j, by a positive scaling factorri2/ri1 . So the two vectors have the
same ordering.

This establishes the positive part of the proposition, that concerning the RAS. The negative
part, concerning the MSCE method, is readily established by counterexample. Consider initial
estimates [

0.4142 0.6667
0.5858 1.3333

]

together with target row totals
[
1.9191 1.0809

]′
and target column totals

[
1.0000 2.0000

]
.

The initial column coefficients are [
0.4142 0.3333
0.5858 0.6667

]
,

so initially, the input 2 to input 1 usage ratio is0.5858/0.4142 = 1.414 for industry 1 and
0.6667/0.3333 = 2.000 for industry 2; so the industry 2 to industry 1 relative intensity ratio is
2.000/1.414 = 1.414; so industry 2 is relatively more input-2-intensive than industry 1. After
rebalancing, the RAS yields revised estimates of[

0.6919 1.2272
0.3081 0.7728

]
,

so the revised input-output coefficients are[
0.6919 0.6136
0.3081 0.3864

]
,

the input 2 to input 1 usage ratios are0.3081/0.6919 = 0.4453 for industry 1, and0.3864/
0.6136 = 0.6297 for industry 2, and the industry 2 to industry 1 relative intensity ratio is
0.6297/0.4453 = 0.4142, so again industry 2 is relatively more input-2-intensive than industry
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1; indeed, the relative intensity ratio is unchanged (this holds not just for this example but
generally). In contrast, the MSCE method yields revised estimates of[

0.5858 1.3333
0.4142 0.6667

]
,

so the revised input-output coefficients are[
0.5858 0.6667
0.4142 0.3333

]
,

the input 2 to input 1 usage ratios are0.4142/0.5858 = 0.7071 for industry 1, and0.3333/
0.6667 = 0.5000 for industry 2, and the industry 2 to industry 1 relative intensity ratio is
0.5000/0.7071 = 0.7071, so now industry 2 is relatively less input-2-intensive than industry
1; indeed, the relative intensity ratio takes the reciprocal of its initial value (this is artificially
neat—we specified the problem so as to ensure that exact reciprocity—but reversals in ordering
are possible in realistic as well as in artificial examples).

Proposition 6 The RAS is a cross entropy minimization model.

First proof. Instead of combining the column cross-entropies by simple addition, as in equa-
tion (12), combine them as a weighted sum,∑

j

v•j
v••

CEj

=
∑

i

∑
j

v•j
v••

bij log
bij

aij
.

Minimizing this objective function is equivalent to minimizing

∑
i

∑
j

dij log
dij

cij
,

wherecij represents the initial estimateuij/u•• of the share of the(i, j)th element in the matrix
total, anddij the final estimatevij/v••. And that, as discussed immediately below, yields the
RAS model.

Second proof. Rather than combine multiple column-specific cross entropies, we may use a
single cross-entropy measure,

CEU =
∑

i

∑
j

vij

v••
log

vij/v••
uij/u••

=
∑

i

∑
j

dij log
dij

cij

.
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With this objective function, the optimization problem is to minimizeCEU subject to the con-
ditions ∑

i

vij = v•j ,

∑
j

vij = vi•.

Defining a Lagrangian

L =
∑

i

∑
j

dij log
dij

cij
+
∑

i

λi

(∑
j

dij − vi•
v••

)
+
∑

j

µj

(∑
i

dij − v•j
v••

)
,

we obtain first order conditions

log
dij

cij

= −1 − λi − µj,

which, by convexity, ensure a global minimum. By inspection, the solution is of the bipropor-
tional functional form

dij = ricijsj,

so it is the RAS model solution.

As noted in section 2 above, that the RAS is a minimum cross-entropy solution has been
well known for a long time. The “second proof” given above is the traditional one; the “first
proof” is motivated by the IO coefficients interpretation of the problem.

5 Generalized entropy optimization and the RAS

Going beyond maximum entropy and minimum cross entropy as presented so far, GJR [11]
and Golan, Judge and Miller ([10]; henceforwardGJM) present a model they callgeneralised
maximum entropy, GME, or generalised cross entropy, GCE (GJR [11] uses only the former
name, but GJM[10] uses both). The details of the presentation differ slightly, GJR [11] taking
a simpler, and GJM [10] a more general, approach. For the present purpose it is sufficient to
present the simpler (GJR [11]) approach.

In the GJR [11] presentation, each coefficientbij is considered to be the expected value∑
m pmijzm of a random variable with support (range)z =

[
z1 z2 . . . zM

]
and correspond-

ing probabilitiespij =
[
p1ij p2ij . . . pMij

]
. Given prior estimatesqmij of the probability

distributions, the generalised cross entropy model entails minimizing the objective function

H =
∑
m

∑
i

∑
j

pmij log
pmij

qmij
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subject to constraints ∑
m

pmij = 1, (13)

∑
i

∑
m

pmijzm = 1, (14)

∑
j

∑
m

pmijzmv•j = vi• (15)

The coefficientsbij are then recovered:

bij =
∑
m

pmijzm.

It is not entirely clear what these probability distributions represent, or how the derivation
of the IO coefficients as expected values of random variables is to be interpreted. Indeed, their
proponents are not clear on how we ought to take them. On the one hand, GJR [11] suggest that
we should take them seriously as probability distributions:

Note, however, we have estimates of thepmij and this provides information con-
cerning a probability distribution and an uncertainty measure for each of the [bij ].
This is important since RAS techniques do not permit this and questions of this
type are paramount when working with real data

(their emphasis). On the other hand (in a more general context), GJM [10] describe the random
variables in the GME and GCE models as ”merely conceptual devices used to express the prior
and sample knowledge in a mutually compatible format.”

The GME/GCE approach is a large topic for investigation; but we confine ourselves here to
a few preliminary points.

• If we choose to take the probability distributions seriously as probability distributions
and not merely as conceptual devices (for example, if we are fortunate enough to possess
some information about the distribution of the IO coefficients), then we need to consider
the merits of the GME/GCE approach relative to traditional econometric approaches (see
further Preckel [17]).

• If we choose to take the probability distributions as mere conceptual devices, we need
to consider the merits of the GME/GCE approach relative to other methods of differen-
tially weighting information, such as Byron’s [6] method incorporating weights into the
objective function.

14



• Unless we possess actual information about the coefficient distributionspmij , we need
to synthesize them. If we have prior coefficient estimatesaij , then we can use them to
impose expected value restrictions∑

m

pmijzm = aij , (16)

but in general the distributions remain underdetermined. Derivation of such distributions
subject to the expected value restrictions (16) is a natural task for maximum entropy
methods. For the GCE model as formulated by GJR [11], for example, a maximum
entropy approach leads naturally to the Maxwell-Boltzmann distribution,

pmij = Ω−1
ij e−µzm ,

where

Ωij =
∑
m

eµijzm ,

andµij is a parameter determined implicitly by the restriction (16) (see, e.g., Kapur and
Kesavan [12, subsection 3.2.1]).

• Taking as given the decision to adopt a GCE-like approach, deriving the IO coefficients
as expected values of random variables, one may still question that feature of the GCE
model that treats the variables underlying the different coefficients as independent. But
by definition, the coefficientsaij are subject to the restrictions∑

i

aij = 1,

so arguably the corresponding random variables should be subject to like restrictions.
More precisely, a single vector-valued random variableAj =

[
A1j . . . AIj

]′
should

underly the coefficients
[
a1j . . . aIj

]′
, with the property∑

i

Aij = 1.

• In light of the discussion in previous sections of the relative merits of the RAS and MSCE
models, we may find it more convenient and fruitful to apply a GCE-like approach to the
entire use matrix, rather than on a column-by-column basis.

Consistent with these observations, we may define a ”generalised generalised cross entropy”
(generalised GCE) approach to the matrix balancing problem. With this approach, we treat
the initial and final complete coefficient matricescij , dij as expectations of random variables
Cij, Dij with probability distributionspm, qm over a supportz =

[
z1 . . . zM

]
, where

zm =




zm11 . . . zm1J
...

...
zmI1 . . . zmIJ


 ,
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subject to the restrictions ∑
i

∑
j

Cij ≡ 1,

∑
i

∑
j

Dij ≡ 1,

that is, for allm, ∑
i

∑
j

zmij = 1,

∑
i

∑
j

zmij = 1.

We associate with the random variablesy, z probability distributionsp, q wherepm denotes the
probability thatC assumes the valuezm, andqm denotes the probability thatD assumes the
valuezm. We require that the expected value ofC be equal toc, that is, for alli, j,∑

m

pmzmij = cij . (17)

The model then entails constructing coefficientsdij as expectations of random variablesDij

minimizing the cross-entropy

CE =
∑
m

qm log
qm

pm

subject to the restrictions ∑
m

∑
i

pmzmij =
v•j
v••

= d•j,

∑
m

∑
j

pmzmij =
vi•
v••

= di•.

Now constructing suitable prior probability distributions for this generalized generalized
model might seem at first a daunting task. But in fact nothing could be easier; and as a bonus,
doing it in the easiest way leads us directly to:

Proposition 7 The RAS is a generalised GCE model.

Proof. Let zgh denote the matrix with(g, h)th element equal to 1 and all other elements equal
to 0, and letz11, . . . , z1J , . . . , zI1, . . . , zIJ be the support forC andD. Note that, puttingzghij

for the(i, j)th element ofzgh, we have

zghij =

{
1, g = i andh = j,
0, otherwise.
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Then the condition (17) on the expectation of the prior estimates is satisfied uniquely by

pgh = cgh, g = 1, . . . , I, h = 1, . . . , J,

and the generalised GCE model becomes: minimize

CE =
∑

g

∑
h

qgh log
qgh

pgh

subject to the constraints ∑
g

∑
h

∑
i

pghzghij =
∑

i

pij= d•j ,

∑
g

∑
h

∑
j

pghzghij =
∑

j

pij = di•.

But this is just the cross-entropy formulation of the RAS model.

If one must apply the GCE in its original formulation, then it appears impossible to derive
the RAS model as a special case. Comparison of GCE models with the RAS remains a subject
for future research.

6 Useful uses of entropy optimization principles

As noted above, entropy optimization methods do not supersede the RAS; on the contrary, the
RAS is itself an entropy optimization method. For the most commonly encountered cases in
matrix balancing, it is probably the method of choice.

This does not mean however that the entropy-theoretic approach to matrix balancing is bar-
ren, or that the entropy-theoretic foundations of the RAS are an intellectual curiosity of no
practical importance. Knowledge of these foundations is useful, not in superseding the RAS,
but in extending it. Knowledge of the entropy-theoretic foundation enables us to taylor methods
to problems, rather than forcing into the RAS framework problems that do not well fit into it.

For example, one candidate for this treatment is an extension of the use matrix balancing
problem. Suppose we have two variants of the matrix, one at tax-exclusive and the other at
tax-inclusive prices. We have target totals for total costs (tax-inclusive) and total sales (tax-
exclusive) for each sector. Accordingly, we wish to rebalance the matrices to impose target
column totals in the tax-inclusive matrix, and target row totals in the tax-exclusive matrix, while
maintaining the tax rates implicit in the original pair of matrices.

One entropy-theoretic approach is to minimize a cross-entropy type objective function

I =
∑

i

∑
j

vX
ij log

vX
ij

uX
ij

+
∑

i

∑
j

vI
ij log

vI
ij

uI
ij

,
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wherevX
ij denote final tax-exclusive values,vI

ij , final tax-inclusive values, anduX
ij anduI

ij the
corresponding initial estimates. This leads to a solution of the form

vX
ij =

1

ΩX
ij

e−λi−tijνijuX
ij ,

vI
ij =

1

ΩI
ij

e−µj+νijuI
ij,

wheretij are powers of taxes (ratios of tax-inclusive to tax-exclusive values), and the parameters
λi, µj, andνij are given by the conditions∑

j

vX
ij = vX

i• ,

∑
i

vI
ij = vI

•j ,

tijv
X
ij = vI

ij .

This is easier, simpler, and a better fit to the problem than the alternative RAS-based approach,
applying the RAS to the tax-exclusive and tax-inclusive matrices separately, since that requires
construction of tax-exclusive column totals and tax-inclusive row totals, values that lie outside
the original problem and that cannot well be estimated in advance of the matrix balancing.

As an other example, consider the problem of disaggregating an IO use matrix, given data
for disaggregate row and column totals, and initial estimates for the disaggregate matrix (these
might be data from another period, or even from another country). We call the original matrix
thecontrol matrix, and the initial disaggregate estimates thereference matrix. We require that
the final estimates meet thereaggregation condition, that on reaggregating sectors, we recover
the control matrix. Here the entropy-theoretic approach leads to a tri-proportional model, in
which each element of the final matrix is related to the corresponding element of the reference
matrix by three factors: a row scaling factor, a column scaling factor, and a block scaling factor,
where the block scaling factor is shared by all elements in the block of elements corresponding
to a single element of the control matrix (see further the forthcoming PhD thesis by Jing Liu,
Purdue University).

Using the entropy-theoretic approach and suitable, models suited to such problems can be
formulated and implemented remarkably readily. Not only are they easily developed, but they
are also remarkably transparent; using a general formula such as GJM (eq. 3.3.3), a scaling
factor characterization of the solution can often be written down merely by inspection (this is
true for the examples above). In bringing to the attention of economists further relevant works
in the non-economic literature, GJR and GJM have helped put a powerful toolkit in the hands
of economic data base developers.
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7 Conclusions

To summarize the foregoing:

• The RAS is an entropy optimization method, and has long been known to be so.

• For the matrix filling problem, in general, the entropy optimization method of choice is
proportional allocation.

• For the matrix balancing problem, in general, the entropy optimization method of choice
is the RAS.

• If, following the GCE approach, we treat matrix elements as expected values of discrete
random variables, the method of choice (in the absence of distributional data) is equivalent
to the RAS.

• Entropy theory may fruitfully be used, not in attempting to supplant the RAS, but in
extending and adapting it to problems that do not well fit the traditional matrix balancing
framework.
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