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Abstract This paper presents a tight relationship between evolutionary

game theory and distributed intelligence models. After reviewing some exist-

ing theories of replicator dynamics and distributed Monte Carlo learning, we

make formulations and proofs of the equivalence between these two models.

The relationship will be revealed not only from a theoretical viewpoint, but

also by experimental simulations of the models by taking a simple symmet-

ric zero-sum game as an example. As a consequence, it will be verified that

seemingly chaotic macro dynamics generated by distributed micro-decisions

can be explained with theoretical models.



2 Yuya Sasaki

Key words evolutionary game – replicator dynamics – agent based mod-

els – Monte Carlo learning – recency-weighted learning

JEL-classification: C73, C63.

1 Introduction: significance of the topic

Evolutionary game theory and computational economics1 are two of the

latest fields to account for evolutionary processes of economics. When it

comes to a problem of aggregate behavior, the former seems to have a

limited ability to incorporate micro behaviors of each economic agent, while

the latter often fails in formalizing the processes. Indeed, computational

simulation practitioners empirically know that a collection of rule-based or

learnable autonomous agents usually leads to an emergent outcome that

partially agrees with the theoretically expected one, but the process by

which distributed intelligence translates to such an outcome has been seldom

understood (the difficulty of rigorous analyses is stated by Maes (1995)).

However, the field also exhibits flexibilities which can be associated with

existing theories of dynamics.

In this paper, we present the equivalence between the prototype the-

ory of deterministic evolutionary games and the computational model of

1 Computational economics varies in its sub-fields. For example, there are (i) nu-

merical dynamics, (ii) numerical optimization (iii) heuristic optimization, and (iv)

bottom-up processes by autonomous entities, etc. In this paper, we will narrow-

sightedly refer to only (iv) as “computational economics.”
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distributed-agent Monte Carlo learning. Monte Carlo learning was selected

mainly for two reasons. First, it lays a foundation for many of the other

learning algorithms, especially Q-learning and Sarsa algorithms (Barto and

Singh, 1990; Sutton and Barto, 1998). Second, unlike evolutionary algo-

rithms, its simple form makes it easier to extend the algorithm to be associ-

ated with economic theory. Before discussing the main ideas, let us identify

the relative roles and the historical background of evolutionary game theory,

computational distributed-agent models, and learning.

Several methodologies have been developed to explain aggregate behav-

iors of multiple economic agents where strategic decision-making is involved.

Normal-form theoretical models have played a basic role. While bearing out

the theory of games von Neumann devoted himself to the development of

self-reproductive machines and cellular automata (von Neumann, 1966),

that later was to produce what is called artificial life or ALife (Langton,

1989). Artificial life has in turn motivated computer-based experimental

scientists to model games of complex systems that generate emergent dy-

namics. However, few researchers have made attempts to merge these two

distant fields of von Neumann’s legacy 2.

While some economists were acquiring a new model of games which

stem from the initial developments by Maynard Smith (1974), biologists had

2 Some early 1990s’ pioneering works (eg. Holland and Miller (1991); Arthur

(1993)) have attempted to merge economic theory and autonomous intelligence

models. Judd (1997) and Judd (2001) discuss the potential roles of computational

economics in emerging economic theory.
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started to employ computational and individual-based models (IBMs) to ex-

amine bottom-up behaviors of ecological dynamics (eg. Dewdney, 1984). To-

day, the contributions of IBMs are not restricted to applied problems, but in-

clude theoretical problems in population and community ecology (Haefner,

1996). On the other hand, the theoretical dynamics model of determinis-

tic evolutionary games, or replicator dynamics (Taylor and Johnker, 1978;

Schuster and Sigmund, 1983)3, was shown by Hofbauer (1981) to be equiva-

lent to an ecological dynamics model, namely the Lotka-Volterra equation.

This sequence of events suggests the possibility of merging IBMs into the

formulations of deterministic evolutionary games.

While the deterministic evolutionary games were becoming obsolete for

game theorists, they certainly absorbed economists in the 1990s (Friedman

(1991); and for stochastic version later by Kandori et al et al (1993)). Unlike

the passive being of chromosomes in biological systems, economic agents ex-

hibit active characteristics (ie. learning). It was therefore a natural course

for economists to turn their attention to this dynamic aspect (eg. Roth

and Erev, 1995; Dosi, 1996; Erev and Roth, 1998; Fudenberg and Levine,

1998, etc.). Computational experiments as well as psychological laboratory

experiments complement theory in this aspect. One way to demonstrate

how to use computational experiments in learning is to employ agent-based

3 Extensions and analyses of the replicator dynamics, multi-agent dynamics,

and other derivatives were made by Hofbauer and Sigmund (1988; 1998; 2003),

Cressman (1992), Samuelson and Zhang (1992), Swinkels (1993), Weibull (1997),

etc.
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simulations or agent-based models (ABMs; also called agent-based compu-

tational economics or ACE), a sub-field of computational economics (for an

overview, see Tesfatsion, 2002).

ABMs in economics are the analogues of IBMs in biology. In ABMs,

some other forms of learnable functions (eg. Monte Carlo sampling, statis-

tical learning, reinforcement learning, neural networks, evolutionary algo-

rithms, etc.) are embedded in each economic agent, and the agents behave

autonomously by querying their internal function for the optimal actions

or strategies given the current state of the world. Hence, ABMs conduct

the process of strategy optimization at a micro level. ABMs are usually

employed to explain the sophisticated bottom-up processes of evolution-

ary economics, which would be infeasible with top-down theoretical models

(Tesfatsion, 2000). While it appears that the principles of ABMs researchers

and those of game theorists have diverged more than converged, the concept

of the replicator dynamics roughly agrees with simple learnable ABMs, as

will be shown in later sections.

In this paper we begin by briefly reviewing the basis of existing theo-

ries of deterministic evolutionary games and the algorithm of distributed

Monte Carlo learning (Sec. 2). Then, our discussion moves on to formula-

tions and proofs of the equivalence of evolutionary game theory and multi-

agent Monte Carlo learning (Sec. 3). Our method does not rely on the field’s

convention of using the hypothetico-deductive approach, but will instead

start with the somewhat farfetched connection of the two models’ formu-
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lations. In Sec. 4, experimental results of ABMs will be compared to the

theoretical dynamics model to graphically verify their common behavioral

patterns. The end product is the theoretical and experimental verifications

of the relationship between these two models. This will also enable some

explanations about how micro behaviors translate to macro dynamics.

2 Background of theory and algorithm

We begin with some definitions and a description of the tools to be used for

the succeeding analyses. Assume that the number of participating agents in

the game world is finite and fixed. Assume also that the number of strategies

or actions that these agents can take is finite and fixed. Let n denote the total

number of available strategies, and let xi denote the relative frequency of

agents that take strategy i, such that
∑n

i=0 xi = 1, xi ≥ 0∀i. Note that x =

(x1, x2, · · · , xn) represents the distribution vector4 of strategy frequencies,

whereas x in a normal-form game would represent the distribution vector

of strategy probabilities. Let Γ n denote the subset of Rn
+ defined as Γn =

{x ∈ R
n
+ |

∑n

i=1 xi = 1, x ≥ 0}. Point x can move only on Γ n, the strategy

space. The aggregate pure states are represented by the vertices of Γ n, and

the aggregate mixed states by all the points off the vertices. The core rule

of the game is determined by a payoff matrix An×n = (aij), where aij or,

eiAej , is the payoff for taking pure strategy i when all the agents in the

4 The vector notation used throughout this paper ignores the row/column dis-

tinctions. Thus, xAx means xTAx.
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game world would take pure strategy j. In general, the payoff for taking pure

strategy i is given by eiAx. Additionally, xAx gives the average payoff to

agents in the game world, since x is the distribution of frequencies. At an

individual level, the task of strategy optimization is to choose the strategy i

such that i = argmaxk ekAx. This strategy will surely be a pure strategy for

the individual5, meaning that the optimal strategy for an individual cannot

occur in intΓ n. Given this, let us define the individuals’ (pure) strategy set

P = {i ∈ N
1 | ei ∈ Γn}. However, the Nash equilibrium and stable points

may occur at x ∈ intΓ n in the “aggregate” level. By definition, the Nash

equilibrium is the state x* where

x∗Ax∗ ≥ xAx∗ ∀x ∈ Γn. (1)

All these definitions are consistent with those of normal-form games, except

that frequency is substituted for probabilities.

2.1 A brief review of prototype deterministic evolutionary games

It is usually feasible to analyze local behaviors of dynamics even without

complete solutions, as we may identify the ω-limit (α-limit) of a dynamics

if the stability (unstability) exists around the equilibrium. An important

concept used in evolutionary games is the evolutionarily stable state (ESS)

By definition, the necessary and sufficient condition for the state x∗ to be

5 In evolutionary games and its derivatives, it is at the aggregate level that a

state (rather than strategy) can be mixed.
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the ESS is for the inequality

x∗Ax > xAx (2)

to hold for all x 6= x∗ in the neighborhood of x∗ in Γn. When an ESS, x∗,

is to be intruded by a state x 6= x∗ with meta-frequency ε, the inequality

εx∗Ax + (1− ε)x∗Ax∗ > εxAx + (1− ε)xAx∗

must be satisfied for x∗ to dominate the intruder x. By rewriting this, we

find

(1− ε) [x∗Ax∗ − xAx∗] + ε [x∗Ax− xAx] > 0. (3)

In the limit as ε approaches zero, (3) becomes equivalent to inequality (1),

the definition of the Nash equilibrium. In a special case of the Nash equilib-

rium where x∗Ax∗ = xAx∗ for some x 6= x∗, (3) becomes equivalent to in-

equality (2), which is the definition of the ESS. Intuitively, if some frequency

distribution other than the Nash equilibrium’s frequency distribution is as

optimal on the equilibrium, then the Nash equilibrium’s frequency distri-

bution must be superior to the other distribution on all the neighborhood

points so that the state will be brought back to the equilibrium.

To allow this model to involve dynamics, evolutionary game theorists

often employ the replicator equation (Taylor and Johnker, 1978; Schuster

and Sigmund, 1983). The rate of growth (or of adoption) of a certain strategy

is defined by the relative optimality of the performance of strategy i, namely

the payoff for taking pure strategy i minus the mean payoff in the game
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world. Hence, it is expressed as

˙(logxi) = eiAx− xAx, (4)

or equivalently,

ẋi = xi(eiAx− xAx). (5)

This represents the standard form of the replicator equation when the payoff

function is linear with matrix A. From (4), we get

˙(logxi)− ˙(log xj) = eiAx− ejAx.

Thus,

˙
(
xi

xj

) = (
xi

xj

)(eiAx− ejAx), (6)

provided xj 6= 0. In the equilibrium, the ratio of a strategy’s frequency to

the other’s frequency stays constant, or the time differential of the ratio is

zero. So (6) indicates that x will be an equilibrium in intΓ n if and only if

it satisfies

eiAx = ejAx ∀i, j where x ∈ Γ n. (7)

The concepts presented so far concerns the dynamics in continuous time.

Dekel and Scotchmer (1992) and Cabrales and Sobel (1992) present the

versions for discrete time. The formula

xt+1
i = xt

i

eiAxt + ξt

xtAxt + ξt
(8)

can be considered as the least objectionable candidate for the replicator

equation in discrete time. A constant ξt is selected so that eiAxt + ξt will

always be positive. Yet, our interpretation of ξt will be rather different,
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as will be discussed later (see Theorem 2). This discrete version of the

replicator equation does not convey all the properties of the continuous

version. Like the case where we compute ordinary differential equations

using the Euler’s method, periodic cycles which would be observed in (5) will

be lost and the trajectories will converge to bdΓ n when (8) is substituted

for (5). However, (8) plays an important role when the theory discussed in

this section is associated with ABMs involving Monte Carlo learning. The

main reason is that ABMs intrinsically assume discrete time.

2.2 Agent-based models with Monte Carlo learning

Computational economics that uses ABMs has borrowed an idea from arti-

ficial intelligence, in that an agent perceives the state of the world, processes

the information using internal functions, and returns a strategy - “action” is

the term in AI - that optimizes the current and/or delayed payoff to himself

(most general AI textbooks start with this concept, eg. Russell and Norvig,

1995). The algorithms for agents’ internal functions vary. It could be sim-

ple condition-action rules, network-based regressions, statistical learning,

or evolutionary algorithms. In our study, Monte Carlo learning is analyzed

because of its strong relationship with the theory discussed in the previous

section. When multiple agents are put in the game world, an agent’s inter-

action with the world implicitly means his interaction with other agents.

This logic justifies the use of ABMs for experimentations of games.
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An agent could choose the optimal strategy, i, for the next time step

such that

i = argmax
j∈P

∫

x
t+1∈Γ n

pdf(xt+1) · ejAxt+1,

where pdf(·) is probability density function. However, the problem here is

that he may not have perfect information of pdf(xt+1) for all xt+1 ∈ Γn,

which he would roughly learn from life experiences. In our model, a simple

AI is used for agents to learn directly the mapping of strategy-state pairs

into expected payoff set6 in the following way. Let Ω = {(i,xt) | i ∈ P,xt ∈

Γn} be the set of (n + 1)-tupple parameters of strategy-state pairs, and

V = {vt+1 ∈ R
1 } be the set such that vt+1 is the prediction of the value of

eiAxt+1. Generally, an agent’s internal function will be given in the form

F : Ω → V. (9)

This can be considered as prediction, since the agent expects that strategy i

will cause the next period’s payoff of eiAxt+1 to turn out, having observed

xt in the current period. Alternatively, a recency-weighted observation of

(1−λ)
∑t

k=1 λ
t−k−1xk may be substituted for xt of Ω in (9). While this sort

of function is often realized by regression models or neural networks, let us

adopt a discretized state model (tabular state space) for simplicity. Suppose

that Γn is separated into non-overlapping subsets such that
⋃

l Γ
n
l = Γn and

Γn
l ∩ Γ

n
m = ∅ for all m 6= l, which obviously implies Γ n

l ⊂ Γ
n∀l. Preferably,

6 It is sound to believe that real human agents learn the direct mapping rather

than probability. In Bayesian updating, learning for probability rather than direct

mapping is concerned.
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each Γn
l should have equal size. Define the new set Ω̄ = {(i, l) | i ∈ P, Γ n

l ⊂

Γn}, and with a discrete indexing by l, (9) can be rewritten as

F̄ : Ω̄ → V. (10)

This function exhibits a minor weakness, in that all the states x belonging

to category l are considered identical. However, it has an advantage when

learning occurs from sampling. Given the function, agents will take strat-

egy i = arg maxk F̄ (k, l). Occasional explorations of not taking the optimal

strategies are also important, for the reason that agents have to experi-

ence all the i-l combinations so that they enable F̄ to be effective for most

situations, if not all.

Learning, in this context, refers to the process of modifying function (10)

so that it will return more and more accurate prediction values. To make

writing simple, let vi,l = F̄ (i, l) denote the predicted value returned by the

function F̄ (i, l). That is, if the learning is fast enough (and if the equilibrium

is not very unstable), we expect that vi,l eventually converges to eiAxt+1

for xt ∈ Γn
l in the limit as t approaches positive infinity. To introduce Monte

Carlo learning, assume for the moment that an agent always perceives l and

takes strategy i. With this assumption, the estimated value of vi,l at time t

by average of samples is

vt
i,l =

t
∑

k=1

eiAxk/t.

This is straightforward, yet the agent may run up his memory in this case,

ie. he has to memorize all the payoffs in the past t time steps. An alternative
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learning rule equivalent to the above one is

vt
i,l =

1

t
[eiAxt − vt−1

i,l ] + vt−1
i,l . (11)

Now, the agent needs to memorize only two terms for learning. (11) executes

equally weighted averaging of all the past payoffs. This algorithm works

well if the world is deterministic in that the transition from xt to xt+1 is

guaranteed. However, the learning with (11) will be always obsolete if the

world is stochastic. To make (11) a recency-weighted learning, we substitute

a constant α ∈ (0, 1) for 1/t in (11) so we have

vt
i,l = α[eiAxt − vt−1

i,l ] + vt−1
i,l . (12)

The larger the value of α, the more recency-weighted is learning. This is

evidenced by the following logic:

vt
i,l = α[eiAxt − vt−1

i,l ] + vt−1
i,l

= αeiAxt + (1− α)αeiAxt−1 + (1− α)2αeiAxt−2 + · · ·

≈
t

∑

u=1

α(1− α)t−ueiAxu.

This parameter for the degree of recency-weighting, α, may be associated

with what Roth and Erev (1995) would refer to as the degree of “forgetting,”

though their views might be slightly different. Besides, it also accounts for

what Friedman (1998) refered to as “inertia” which is one of the most sig-

nificant properties of evolutionary games. From another viewpoint, α works

as the parameter to control the behaviors observed in macro dynamics, as

will be discussed later. Conversely, we may calibrate α by the backward

computation from the data of an observed macro dynamics.
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It is unrealistic to assume that an agent always perceives l and takes

strategy i. Unlike (11), recency-weighted learning (12) relaxes this assump-

tion. Thus, it is safe to apply the general game representations to the

recency-weighted Monte Carlo learning. In summary, an agent queries his

function F̄ for the expected payoff of taking strategy i in state l, and chooses

such i that maximizes vt
i,l, which is his estimate of eiAxt+1. At the same

time, he modifies F̄ by using (12) so that it will return more accurate values

in the future.

3 Connecting multi-agent Monte Carlo learning to the replicator

equation

In the previous section, agents’ learning was formalized at an individual

level. We need a slight modification of the model in order to extend the al-

gorithm to the analyses of aggregate behaviors. With the assumption that

one-step transition among Γ n
1 , Γ

n
2 , · · · makes small differences, the negative

effects from eliminating our distinction of vt
i,l by l will be offset by the in-

troduction of distribution-based notation of vt
i .

Definition 1. We define the estimated payoff of strategy i ∈ P weighted

by its frequency as the total value estimate of strategy i. Let v̄t
i denote the

total value of vt
i , which is the estimate of the total value of eiAx, namely

xieiAx.

(The following describes the rationale for employing the total value esti-

mates for the aggregate model. It is only among that frequency of popula-
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tion, xt
i , that strategy i is “believed” to be the maximizer of eiAxt. Hence,

the population of at least and at most this frequency (xt
i) will encounter

the payoff of eiAxt and update the function F̄ of (10) with the error given

by eiAxt− vt
i for each agent. Hence, the aggregate error of this population

can be defined as xt
i [eiAxt − v̄t

i

xt
i

] (= xt
ieiAxt − v̄t

i).) With the individual

Monte Carlo learning (12) being modified for the total value estimate, the

aggregate Monte Carlo learning can be defined as

v̄t+1
i := α[xt

ieiAxt − v̄t
i ] + v̄t

i . (13)

For these definitions of aggregated Monte Carlo learning, we put the follow-

ing sound assumptions:

Assumption 1: i = arg maxj ejAxt ⇒ xt
i <

1
n

Assumption 2: miniv̄
t
i <

∑

j
v̄t

j

n

The first assumption states that the strategy that causes the least payoff will

attract less than the average frequency. The second assumption states that

the total value estimate of the smallest payoff is less than the average of total

value estimates. Now, let variable δ(v̄t) as a function of v̄t = (v̄t
1, v̄

t
2, · · · , v̄

t
n)

denote some value that is related to the distribution of v̄t. With this def-

inition, the following formula can be hypothesized as an estimate of state

transition for the aggregate behavior of Monte Carlo agents.

xt+1
i :=

v̄t+1
i + δ(v̄t)

∑

j(v̄
t+1
j + δ(v̄t))

. (14)

The endogenous variable δ(v̄t) must satisfy the condition that v̄t+1
i + δ(v̄t)

be positive for all i.
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Given the definition of the aggregate recency-weighted Monte Carlo

learning (13), the hypothesized rule (14) will transform as follows.

xt+1
i :=

v̄t+1
i + δ(v̄t)

∑

j(v̄
t+1
j + δ(v̄t))

=
αxt

i · eiAxt + (1− α)v̄t
i + δ(vt)

∑

j(αx
t
j · ejAxt + (1− α)v̄t

j + δ(vt))

= xt
i ·

eiAxt +
(1−α)v̄t

i+δ(v̄t)
αxt

i

xtAxt +

∑

j
(1−α)v̄t

j
+nδ(v̄t)

α

. (15)

Let us define φt and ψt as

φt =
(1− α)v̄t

i + δ(v̄t)

αxt
i

and

ψt =

∑

j(1− α)v̄t
j + nδ(v̄t)

α
, (16)

thus enabling (15) to be written in the simple form

xt+1
i = xt

i ·
eiAxt + φt

xtAxt + ψt
. (17)

The update rule (17) thus resembles the discrete replicator equation (8).

Lemma 1 (8) and (17) (and thus (14)) are equivalent if and only if φt =

ψt = ξt

Proof Substitute ξt for φt and ψt in (17), and the sufficiency is obvious.

Necessity by contrapositive: if ξt 6= φt ∨ ξt 6= ψt, then (8) and (17) cannot

be equivalent. ut

Since (8) is (merely) suggested as a candidate (Hofbauer and Sigmund,

1998), (17) would still represent the discrete replicator equation even if

φt 6= ψt as long as appropriate normalization is executed on xt+1. Yet, our
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study sticks to the case where φt equals ψt. By equating φt to ψt in (16),

we get the endogenous variable

δ(v̄t) = (α − 1)
v̄t

i − x
t
i

∑

j v̄
t
j

1− xt
in

. (18)

For (17) to be equivalent to (8), this equation of the endogenous variable

(18) must be equal for a given t for all i.

Lemma 2 The endogenous variable (18) for a given t is equal for all i ∈ P

in the game.

In order to prove this lemma, consider two cases: (a) x is an equilibrium at

the center of Γ n; and (b) other cases. (case (b) covers (a) as well.)

Proof - Case (a): x is an equilibrium at the center of Γ n

If the frequency distribution is an equilibrium, eiAx = ejAx (= c) holds

from (7), where we use c to denote the corresponding value. With the def-

inition of the aggregate recency-weighted Monte Carlo learning (13), this

translates to v̄t
i − (1−α)v̄t−1

i = αxic for all i. Using this equation, (18) can

be rewritten as

δ(v̄t) = (α− 1)(1− α)
v̄t−1

i − xt
i

∑

j v̄
t−1
j

1− xt
in

+ xiα(α− 1)c

= (α− 1)(1− α)2
v̄t−2

i − xt
i

∑

j v̄
t−2
j

1− xt
in

+xiα(α− 1)(1− α)c+ xiα(α − 1)c

...

= (α− 1)(1− α)t
v̄0

i − x
t
i

∑

j v̄
0
j

1− xt
in

− xiαc
t

∑

k=1

(1− α)k

= −(1− α)t+1
v̄0

i − x
t
i

∑

j v̄
0
j

1− xt
in

− xic[(1− α)− (1− α)t+1].



18 Yuya Sasaki

Since limt→∞(1− α)t+1 = 0, this eventually can be simplified to

δ(v̄t) = −xic(1− α). (19)

For the case where x is at the center of Γ n, we have xi = xj(=
1
n
) for

all i and j. The endogenous variable δ(v̄t) turns out to be independent of

strategy if x is an equilibrium at the center of intΓ n. ut

From (14) in conjugate with (18) and (19), any underestimated total values

of payoff on average (v̄t
i ∀i) cannot fall short of eiAx(1− α)/n.

Proof - Case (b): other cases

First, define βij such that v̄t
j = v̄t

i · βij for all i and j. Obviously, βij equals

β−1
ji . Then, (18) can be written as

δ(v̄t) = (α− 1)v̄t
i ·

1− xt
i

∑

j βij

1− xt
in

.

Variable δ(v̄t) is equal for all the n strategies if and only if

v̄t
i ·

1− xt
i

∑

j βij

1− xt
in

= v̄t
k ·

1− xt
k

∑

j βkj

1− xt
kn

, (20)

for all i and k. By the way, the next two equations are true from our defi-

nitions.

v̄t
i

v̄t
k

=

∑

j βkj
∑

j βij

and

∑

i

xt
i = 1. (21)

One way to ensure our argument is to show that (21) is sufficient for (20). We

will show this only for the case of n = 2. Since we have (21) or 1−xt
1−x

t
2 = 0,

v̄t
1(1− x

t
1 − x

t
2) = v̄t

2(1− x
t
1 − x

t
2) = 0 or
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v̄t
1(1 + xt

1 − 2xt
1 − x

t
2) = v̄t

2(1 + xt
2 − x

t
1 − 2xt

2) or

v̄t
1 + xt

1(v̄
t
1 + v̄t

2)− 2v̄t
1x

t
1

v̄t
1 + v̄t

2

=
v̄t
2 + xt

2(v̄
t
1 + v̄t

2)− 2v̄t
2x

t
2

v̄t
1 + v̄t

2

or

v̄t
1 + xt

1(v̄
t
1 + v̄t

2)− nv̄
t
1x

t
1

v̄t
1 + v̄t

2

=
v̄t
2 + xt

2(v̄
t
1 + v̄t

2)− nv̄
t
2x

t
2

v̄t
1 + v̄t

2

. (22)

Now, in order to eliminate v̄t
1 and v̄t

2 from (22), we use the following equa-

tions derived from our definition.

v̄t
1 + v̄t

2

v̄t
1

=
v̄t
1

v̄t
1

+
v̄t
2

v̄t
1

=
∑

j

β1j , and similarly,

v̄t
1 + v̄t

2

v̄t
2

=
∑

j

β2j .

Given this, (22) can be rewritten as

1 + xt
2(

∑

j β1j − n)
∑

j β1j

=
1 + xt

1(
∑

j β2j − n)
∑

j β2j

or

(
∑

j

β2j)(1− x
t
2 − x

t
1

∑

j

β1j) = (
∑

j

β1j)(1− x
t
1 − x

t
2

∑

j

β2j) or

(
∑

j

β2j)(1− x
t
2 − x

t
1

∑

j

β1j + xt
1x

t
2n

∑

j

β1j)

= (
∑

j

β1j)(1 − xt
1 − x

t
2

∑

j

β2j + xt
1x

t
2n

∑

j

β2j) or

∑

j β2j
∑

j β1j

=
1− xt

2

∑

j β2j

1− xt
1

∑

j β1j

·
1− xt

1n

1− xt
2n
.

By relating (21) and the above equation, we get

v̄t
1

v̄t
2

=
1− xt

2

∑

j β2j

1− xt
1

∑

j β1j

·
1− xt

1n

1− xt
2n

or

v̄t
1 ·

1− xt
1

∑

j β1j

1− xt
1n

= v̄t
2 ·

1− xt
2

∑

j β2j

1− xt
2n

,

which exhibits exactly the same form as (20). ut

Since ξt has the domain (−mini eiAxt, ∞), we can have φt = ψt = ξt if

and only if the proposition of the following lemma is true.
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Lemma 3 We have eiAxt +φt > 0, eiAxt +ψt > 0∀i for those conditions

specified in Table 1.

Proof Since the implication of Lemma 2 is φt = ψt ∀i, we can use (18)

for this proof, and we only need to show eiAxt + φt > 0 ∀i. It is clear

that eiAxt + φt > 0 ∀i ⇐⇒ mini eiAxt + φt > 0. Let subscript i denote

arg minj ejAxt + φt. By substituting (18), the value of φt in (16) will be

φt =
1

α(1− xt
in)

[(1− α)
∑

j

v̄t
i − (1− α)nv̄t

i ].

The addition of eiAxt to the above equation yields

eiAxt + φt =
1

α(1− xt
in)

[α(1− xt
in)eiAxt + (1− α)(

∑

j

v̄t
j − nv̄

t
i)]

=
αẽt

i + (1− α)φ̃t
i

α(1− xt
in)

,

where ẽt
i = (1 − xt

in)eiAxt and φ̃t
i =

∑

j v̄
t
j − nv̄

t
i . By Assumption 1, the

denominator is positive, implying the equivalence between the positivity of

eiAxt +φt and that of αẽt
i + (1−α)φ̃t

i (numerator). Besides, this tells that

ẽt
i

>
<

0⇔ et
iAxt >

<
0. Similarly, by Assumption 2, φ̃t > 0 holds.

(A) when eiAxt > 0: Since αẽt
i + (1 − α)φ̃t

i is a convex set in R
1 with ẽt

i

and φ̃t
i as end points, we have eiAxt > 0⇒ ẽt

i > 0⇒ eiAxt + φt > 0. This

satisfies the first column of Table 1.

(B) when eiAxt ≤ 0 and α is relatively low: The inequality αẽt
i+(1−α)φ̃t

i >

0 is equivalent to α <
φ̃t

i

φ̃t
i
−ẽt

i

. Thus, all α <
φ̃t

i

φ̃t
i
−ẽt

i

(that are relatively low, but

greater than 0) will satisfy eiAxt + φt > 0 for the condition corresponding

to the first row - second column of Table 1.
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mini eiAxt

> 0 ≤ 0

relatively low Yes Yes

α
relatively high Yes Yes/No

Table 1 The conditions in which Lemma 3 and Theorem 1 do and do not hold.

(C) when eiAxt ≤ 0 and α is relatively high: From (B), all α ≤ φ̃t
i

φ̃t
i
−ẽt

i

fail

to satisfy eiAxt + φt > 0. If
φ̃t

i

φ̃t
i
−ẽt

i

≤ 1, we have “No” for the second row -

second column of Table 1. However, if
φ̃t

i

φ̃t
i
−ẽt

i

is greater than one or is outside

of the domain of α, then we have “Yes” for all the entries of Table 1. ut

Finally, we arrive at the following theorem, which is the main claim of this

paper.

Theorem 1 The discrete replicator equation (8) and the aggregate model

of distributed Monte Carlo learning (14) are equivalent for those conditions

specified in Table 1.

Proof Since ξt in (8) is the parameter to be freely selected in (−mini eiAxt,∞),

it holds that φt = ψt > −mini eiAxt =⇒ ∃ξt : φt = ψt = ξt. Lemma 2

implies φt = ψt ∀i. Given this and Lemma 3, there exists some value of ξt

such that φt = ψt = ξt > −mini eiAxt for those conditions specified in

Table 1. Hence, from Lemma 1, we conclude the truth of the proposition of

Theorem 1. ut

Equation (14) with the endogenous variable defined in (18) represents the

aggregate Monte Carlo rule that is equivalent to the discrete replicator
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equation (8) for those conditions specified in Table 1. Equation (14) may

be considered as the medium of the agent based models and the replica-

tor equation that, we expect, will give rise to a formal process in which

computational and theoretical models will be fused. Surely, it relies on the

assumptions made at the beginning of this section.

4 Experiments: how aggregate fluctuations are related to the

degree of individuals’ recency-weighting

Having seen the theoretical aspect of the relationship between the two mod-

els, one might be tempted to observe and compare the simulation results

of them. Let us take a simple zero-sum game as an example. The payoff

matrix is defined as

A =

















0 1 −1

−1 0 1

1 −1 0

















. (23)

In this case, it is concluded from (4) that

˙(logx1) + ˙(logx2) + ˙(logx3) = 0 or

d

dt
(logx1x2x3) = 0 or

x1x2x3 = constant. (24)

Hence, the trajectories draw periodic cycles around the equilibrium point

in intΓ 3 with x1x2x3 being a constant of motion. Fig. 1 (a) depicts typical

motions of periodic cycle in intΓ 3. If we assume continuous time, equation

(5) can be used to simulate the dynamics of (23). An experiment with the
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Fig. 1 (a) Trajectories of periodic cycles where the game is a special case of zero-

sum game. (b) A result of simulation using the continuous replicator equation

with fourth-order Runge Kutta method.

fourth-order Runge-Kutta method gives a result illustrated by Fig. 1 (b).

Clearly, it follows a periodic cycle that agrees with (24) and Fig. 1 (a).

However, as briefly mentioned earlier, the assumption of discrete time

makes the consequences quite different. Let us assume that the parameter

ξ is sufficiently large such that eiAx be positive for all i. Note that xAx is

always zero for (23). The Nash equilibrium (1/3, 1/3, 1/3) is not the ESS

since x∗Ax− xAx = 0 (see (2)). Now, let us define the function

V (x) =

3
∏

i=1

x
x∗

i

i ,

and we have

V̇

V
=

3
∑

i=1

x∗i
ẋi

xi

. (25)

While equation (25) assumes continuous time, we can approximate the value

of ẋi for the discrete version (8) by using the leapfrog method, as

ẋi ≈
1

2
(xt+1

i − xt−1
i )
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=
1

2
[xt

i

eiAxt + ξt

xtAxt + ξt
− xt

i

xt−1Axt−1 + ξt−1

eiAxt−1 + ξt−1
]

=
xt

i

2
[
eiAxt

ξt
+

eiAxt−1

eiAxt−1 + ξt−1
].

Substitute this in (25), and we get

V̇

V
≈

1

2

3
∑

i=1

x∗i [
eiAxt

ξt
+

eiAxt−1

eiAxt−1 + ξt−1
]

=
1

6

3
∑

i=1

eiAxt−1

eiAxt−1 + ξt−1
.

Since

3
∑

i=1

eiAxt−1

eiAxt−1 + ξt−1
< 0 ∀ξt−1 > −min

i
eiAxt−1, x 6= x∗,

it turns out that

V̇

V
< 0, V̇ < 0.

Function V is a negative gradient-like Lyapunov function. Thus, all non-

equilibrium states in intΓ 3 will converge to bdΓ 3. However, this may not

be the case when ξt takes a large value, since we have

lim
ξ→∞

V̇ = 0. (26)

For a reasonably large value of ξt, the discrete replicator dynamics will

behave like the continuous version. Additionally, we find

d

dξt−1
(
V̇

V
) = −

1

6

3
∑

i=1

eiAxt−1

(eiAxt−1 + ξt−1)2

> 0 ∀ξt−1 > −min
i

eiAxt−1, x 6= x∗.

Since V̇ /V < 0, this means that the larger values of ξt will lead to flatter

gradients.
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Fig. 2 Results of simulation using the discrete replicator equation (a) for ξt =

5.0, and (b) for ξt = 25.0.

Fig. 2 (a) is a result of (23) with the discrete replicator equation (8)

for ξt = 5.0, and Fig. 2 (b) for ξt = 25.0. States gradually converge to the

boundary subset of Γ 3, and the period of cycles becomes longer as time

passes. Smaller value of ξt causes more rapid convergence. More formally,

we arrive at the following theorem.

Theorem 2 The parameter ξt of the discrete replicator equation (8) is

likely to be inversely related with the degree of agents’ recency-weighting, α.
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Proof We ideally need the assumption that the total value estimates are not

affected by α, as if they were exogenous (Appendix B presents the difficulty

without this assumption; however, this assumption is valid for many cases,

as presented in Appendix B). Then, from (16), we have

∂φt

∂α
= −xt

i[v̄
t
i + δ(v̄t)]/(αxt

i)
2

≈ −xt
i[v̄

t+1
i + δ(v̄t)]/(αxt

i)
2 < 0, and similarly

∂ψt

∂α
= −

∑

j

[v̄t
j + δ(v̄t)]/α2

≈ −
∑

j

[v̄t+1
j + δ(v̄t)]/α2 < 0.

Since Theorem 1 and Lemma 1 hold, we are likely to have ∂ξt/∂α < 0 too.

ut

Intuitively, smaller ξt causes agents to respond more sensitively to the

current state (obvious from (8)), and agents with greater degree of recency-

weighting, α, behave in a similar way. Theorem 2 in conjugate with V̇ < 0

and d
dξt (

V̇
V

) > 0 for the special case of (23) implies that a group of more

recency-weighting agents tends to generate rapid growth of wave amplitude,

which is graphically evidenced by Fig. 2 and Fig. 3. This makes sense also

from the following example. Assume that the states {x | x1 > x2 ≈ x3}

continue for some duration (eg. t = 100 to 110). At t = 111, the ordering of

v3 > v1 > v2 will prevail among most (if not all) agents if they put heavy

weights on the recent experiences due to (12). On the other hand, less

recency-weighting agents do not necessarily make such temporarily biased

ordering depending on what experiences they had from t = 0 to 99. In this
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Fig. 3 Results of simulation using multi-agent Monte Carlo learning (a) for more

recency-weighting parameter (α = 0.5), (b) for less recency-weighting parameter

(α = 0.1), and (c) for the least recency-weighting parameter (α = 0.00001).
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case, a group of more recency-weighting agents tends to lean toward e3 more

than a group of less recency-weighting agents. In the next phase, this will

be the case with e2, and so on. Hence, as stated in Sec. 2.2, α can be used

as a controlable parameter that affects macro dynamics, and conversely, we

can calibrate α from the data of an observed meso or macro scale dynamic.

Similar phenomena can be observed in multi-agent simulation. Fig. 3

(a) shows a typical result of the simulation with multi-agent Monte Carlo

learning for α = 0.5, and Fig. 3 (b) for α = 0.1 . The trajectories are not such

neat lines as numerical solutions because decision-making is made by each of

autonomous agents, and the frequency vector only reflects the consequences

of bottom-up processes. However, its pattern of convergence to bdΓ t and

periods of cycles resemble those of the discrete replicator dynamics. Notice

that Fig. 2 (a) and (b) are analogous to Fig. 3 (a) and (b), respectively.

This, again, evidences the relationship between parameter ξt and the agents’

degree of recency-weighting α, the proposition of which is found in Theorem

2. Additionally, (26) and Theorem 2 imply that an extremely small value of

α generates periodic cycles, almost like the continuous replicator dynamics.

This is also evidenced by a result of the simulation with multi-agent Monte

Carlo learning for α = 0.00001, shown in Fig. 3 (c). Notice that Fig. 3 (c)

is analogous to Fig. 1 in its appearance7, rather than Fig. 2. Hence, the

7 For the convenience to restrict our concern to the deterministic evolutionary

game, it is stated so. However, if the topic were extended to include stochastic

evolutionary games, this result would need to be associated with the stochastic

dynamics presented by Foster and Young (1990).
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distributed Monte Carlo learning model can be related not only with the

discrete replicator equation (8), but also with the continuous version (5).

5 Conclusions and discussions

A tight relationship between the multi-agent simulation with Monte Carlo

learning and the prototype evolutionary game theory with replicator equa-

tions was proved and experimentally evidenced. This not only shows the

similarity of the dynamics in these two models. It also formalizes the process

by which micro behaviors of autonomous agents translate to the aggregate

dynamics of a society at large (ie. fluctuation pattern in macro dynamics

was derived from micro factors of recency-weighting.). This result provides

a basis for prospective theories bridging micro and macro dynamics models.

Moreover, it demonstrates that the experimental results of simulations with

distributed intelligence can be backed up by theories to a reasonable extent.

An additional contribution of the proofs of Theorem 1 and Theorem 2 is to

illustrate the intuitively mysterious constant ξt in (8). The relationship be-

tween the ABMs and the replicator model has added an interpretation of ξt

as being associated with the degree of agents’ recency-weighting. This sug-

gests the possibility that the seemingly chaotic behaviors of ABMs may be

explained by theoretical models with varying degrees of recency weighting.

The consequence of this paper poses an interesting question. The ABMs’

side of the evolution is considered active, since learning based on expected

payoff optimization is the result of intentional computation. On the other
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hand, the nature of prototype evolutionary game is considered to be passive

at the micro level, due to the premise made by most biologists and ecologists

that natural selection drives evolution that relies mostly on chance. If the

results presented in this paper are valid (ie. the definition and assumptions

made in Sec. 3 are appropriate), then this implies that active behaviors of

economic agents and passive being (such as genes) give rise to the equiva-

lent dynamics. At this point, there is no sufficient logic with this to affect

the recent disputes on the validity of biological metaphors in evolutionary

economics. As far as economics is concerned, we could argue that the dom-

inance of evolutionary process might vanish the macro effects of agent-wise

activeness. In this case, the question arises “how big of a role does micro

activeness play in determining the macro dynamics?” This clearly depends

on the complexity of agent interactions, or the network structure. We have

analyzed the effects of a micro factor, α, on macro dynamics. However, this

is far from all.

As mentioned previously, Monte Carlo learning is one of the most fun-

damental algorithms to decide the process of agent learning. For example,

Sutton and Barto (1998) extended Monte Carlo learning to develop major

reinforcement learning algorithms, such as Q-learning and Sarsa. With com-

putational reinforcement learning, an agent can learn the future-cumulative

payoff of a strategy by bootstrapping the expected values of those states

that the strategy he chose will stochastically lead to. With this property

of reinforcement learning, agents will cope more effectively with repeated
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games than Monte Carlo agents can. Interestingly, a slight modification to

equation (12) with a flavor of the Bellman equation or dynamic program-

ming (Bellman, 1957) will realize some reinforcement learning algorithms.

Thus, the aggregate reinforcement learning will be easily defined with some

forms similar to (15). Our study leaves open extensions to these and many

other learning algorithms. It is expected that a series of such works on com-

plex systems will help bridge the computational and theoretical fields, and

as well as micro and macro dynamics models.

Appendix A: The Algorithm of Agent-Based Monte Carlo Learn-

ing

A simplified pseudocode for the agent-based Monte Carlo learning is pre-

sented below. The characters and symbols used here are consistent with

those in the text.

A.1. Model program

- repeat until program terminates

- for each strategy i do

- xt−1
i ← xi

- xi ← 0

- end do

- for each agent do

- i ← agent:chooseStrategy( {xt−1
1 , xt−1

2 , · · · , xt−1
n } )

- xi ← xi + 1.0 / totalNumberOfAgents
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- end do

- for each strategy i do

- eiAx ←
∑

j aij × xj

- end do

- for each agent do

- agent:learn( {e1Ax, e2Ax, · · · , enAx} )

- end do

- end repeat

A.2. Strategy choice by an agent

- agent:chooseStrategy(state)

- l ← categorize(state)

- bestPayoff ← −∞

- for each strategy i do

- if vil > bestPayoff then

- bestPayoff ← vil

- strategy ← i

- end if

- end do

- return strategy

- end

A.3. Learning by an agent

- agent:learn(payoffSet)

- for each strategy i do
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- if i = strategy then

- vil ← α[(eiAx← payoffSet)− vil] + vil

- end if

- end do

- end

Appendix B: Path-Dependence Consideration on the Relationship

between ξt and α

Since Lemma 1 and Theorem 1 hold, we treat ξt, φt, and ψt as identical

parameters. Let us take φt as representative, and consider it as a function

of α. Before analyzing the sensitivity of φt to α, we need to take a look at

that of v̄t
i . From (13), we derive

∂v̄t
i

∂α
= [xt−1

i eiAxt−1 − v̄t−1
i ] + (1− α)

∂v̄t−1
i

∂α

= [xt−1
i eiAxt−1 − v̄t−1

i ]

+(1− α)[xt−2
i eiAxt−2 − v̄t−2

i ] + (1− α)2
∂v̄t−2

i

∂α
...

≈
t

∑

k=0

(1− α)k [xt−k−1
i eiAxt−k−1 − v̄t−k−1

i ].

Intuitively, this value represents the recency-weighted cumulative errors of

aggregate estimates, or aggregate reminiscence of past errors. Here, the

errors are in terms of the degree of underestimates. Let ARPEt
i (standing

for Aggregate Reminiscence of Past Errors) denote the value of ∂v̄t
i/∂α.
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ARPE is truely chaotic and path-dependent unless α = 1− or the dynamics

is at least locally stable.

Now let us turn to the sensitivity of φt to α. From (16), we derive

∂φt

∂α
= −

xt
i[v̄

t
i + δ(v̄t)]

(αxt
i)

2
+

1− α

αxt
i

[
∂v̄t

i

∂α
−

∑

j

1− xt
j

1− nxt
j

∂v̄t
j

∂α
]

= −
xt

i[v̄
t
i + δ(v̄t)]

(αxt
i)

2
+

1− α

αxt
i

[ARPEt
i −

∑

j

1− xt
j

1− nxt
j

ARPEt
j ].

We know limα→1 dφ
t/dα = 0. Thus, it is necessary that d2φt/dα2 < 0 for

the domain of α to have the inverse relationship with ξt. However, d2φt/dα2

depends more sophisticatedly on the path-dependent terms of ARPE’s.

Hence, we simply make a weak argument as presented in Theorem 2. For-

tunately, we may find many cases where ARPEt
i eventually vanishes, such

as the dynamics with exponential stability, oscillatory stability, and expo-

nential unstability due to the boundedness of Γ n (major counter-examples

are oscillatory unstability and limit cycles). In such cases, Theorem 2 will

be stronger.
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