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Estimating the treatment effect in a clinical
trial using difference in restricted mean survival
time

Patrick Royston
MRC Clinical Trials Unit
University College London
London, UK
j.royston@ucl.ac.uk

Abstract. The causal effect of a new medical treatment compared with a standard
regimen is best assessed in a randomized controlled trial setting. When the main
outcome is time to some event of interest, such as death, studies often use the
hazard ratio to describe the treatment effect. Typically, proportional hazards are
assumed. Here I discuss several significant disadvantages of using the hazard ratio,
including its vulnerability to the proportionality assumption, its relative nature,
and its lack of relationship with time-to-event or survival probabilities. I describe
the use of restricted mean survival time as an alternative outcome measure in
time-to-event trials. With this method, the treatment effect is defined as the dif-
ference in restricted mean between the trial arms. I suggest the use of Royston and
Parmar’s (2002, Statistics in Medicine 21: 2175-2197) class of flexible parametric
models, implemented through the command stpm2 (Lambert and Royston [2009,
Stata Journal 9: 265-290] and Andersson and Lambert [2012, Stata Journal 12:
623-638]), to estimate the required quantities. With this approach, proportional
hazards are not assumed. I describe a new command, strmst, for implementing
these calculations. This method supports “direct” adjustment for covariates by us-
ing marginalization over their observed distribution, and it supports estimation of
treatment effects conditional on fixed values of covariates. I illustrate the method-
ology using data from a trial in primary biliary cirrhosis. I provide an example
that demonstrates the importance of understanding the relationship between the
treatment effect, the prognosis of the disease outcome, and the often-neglected
time domain.

Keywords: st0415, strmst, randomized trial, time-to-event data, treatment effect,
restricted mean, flexible parametric model, nonproportional hazards

1 Introduction

In medicine, the causal effect of a new research treatment compared with that of an
existing standard treatment is classically assessed using selected patients in a random-
ized controlled trial. When the main outcome is time to some event of interest, such
as death, the measure usually used to describe the treatment effect is the hazard ratio
(HR). In many trials, past and present, the HR appears reasonably constant during the
follow-up period of the trial, which suggests that it is a useful, time-invariant summary
of a treatment effect.

© 2015 StataCorp LP st0415
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However, the HR has at least two significant drawbacks (Royston and Parmar 2013):
i) it is a relative measure, so it tells us nothing about the absolute improvement in sur-
vival probability or time to event due to the research treatment, and ii) it is supposedly
independent of time, so it effectively suppresses the important time dimension of a trial
as a possible factor in a treatment’s success or failure. Regarding i), a relative measure is
advantageous when one wants to summarize evidence for a treatment effect over several
studies, but it is not easy to interpret in practical terms because it provides no infor-
mation about the effectiveness of a treatment for survival time or survival probability. I
give an example of the latter in the next paragraph. Regarding ii), the treatment effects
in a large trial that lasts one year and in a small trial that lasts much longer may differ
in clinical importance, even when the HRs and numbers of events are the same.

When the survival probability scale is considered, the treatment effect (represented
by a constant HR) for a group whose survival is very high or very low after a given time
interval may be quite different from the treatment effect for a group whose survival is
“in the middle”. For example, following surgery to remove the tumor in primary breast
cancer, axillary node-negative patients may have a five-year overall survival of around
90%. Giving chemotherapy with an HR of 0.75 to such patients would increase the five-
year overall survival to 100 (0.900'75) = 92.4%, which is a rather small increment despite
the impressive 25% reduction in the mortality rate (hazard function). By contrast, the
five-year overall survival for poor-prognosis patients with more than 9 positive lymph
nodes may be about 55%. Chemotherapy with HR = 0.75 would improve this to 64%,
which seems to indicate a much more worthwhile return for the toxicity known to be
associated with the treatment.

I have illustrated the effect of an HR on survival probabilities at a particular time
point. However, survival probabilities are not necessarily easy for patients and physi-
cians to comprehend and compare. Some type of average time to event may be easier.
One option, on which I focus exclusively here, is restricted mean survival time (RMST).

The RMST concept is not new (Irwin 1949) and has occasionally been used in clinical
trials (for example, Yusuf et al. [1994]). However, following the recent seminal work of
Per Kragh Andersen and others (Andersen, Hansen, and Klein 2004; Andersen and Po-
har Perme 2010; Parner and Andersen 2010; Overgaard, Andersen, and Parner 2015),
RMST has gained new impetus as an alternative approach to the HR as a summary
measure of a treatment effect (Royston and Parmar 2011, 2013). On a related point, it
cannot be overstated how critical it is to prespecify in the trial protocol the statistical
analysis that will be performed on the data, once mature. This is essentially a regula-
tory requirement in the research governance of clinical trials. Hence, in this article, I
stress the prespecification of a flexible parametric model (FPM) with (3,1) degrees of
freedom (d.f.) (possibly accompanied by a sensitivity analysis) as a reasonably robust
route to estimating RMST and its difference. The FPM method is powerful also because it
supports estimation of effects directly adjusted for prognostic and stratification factors,
which is a common requirement in the primary analysis of clinical trials data.
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To understand RMST, let’s suppose we have data from a trial in which all patients
were followed up until death. (Such a trial may not exist!) We might be interested in
comparing the mean survival time of the randomized groups. We could easily do this
using standard methods, for example, by calculating the difference in mean survival
[together with its 95% confidence interval (CI)] and performing a two-sample ¢ test or
Mann—Whitney test. If we were interested in the five-year survival, a natural approach
would be to truncate survival times beyond five years at five years. We could then
perform the same analytic procedures (although we would probably prefer the Mann—
Whitney test to the ¢ test). The resulting means in each group would now be “restricted
means” because they would apply to only the interval [0,5] year. A patient-centered
interpretation of RMST at five years could be as follows: “If T just focus on the next five
years, I can expect to live about four more years, and if I take the new treatment, I
may live about six months longer than if I opt for the standard treatment”.

In a real trial, we have censoring of some times to event. A consequence of this is
that we can no longer correctly compute and compare arithmetic mean survival times.
However, despite the censoring, we can still calculate the RMST. We can do this “non-
parametrically”, for example, by using Kaplan—Meier survival curves or via “pseudo-
observations” (Parner and Andersen 2010). However, for present purposes, we prefer
to work with FPMs, also known as Royston—Parmar models (see Royston and Lambert
[2011]). FPMs provide a unified approach to model fitting and estimation of treatment
effects in a flexible framework. In the next section, I briefly describe how RMST is
calculated with an FPM.

RMST for a given population critically depends on two things: i) the time point
(t*) chosen for evaluation and ii) the shape of the survival curve over time. Difference
in RMST between treatment groups additionally depends on the magnitude of the HR,
whether it be constant or time dependent. It is important to choose a clinically relevant
value of t* that typically reflects the outcome over a key period of exposure to the disease
and treatments, such as five-year survival for some cancers. Because we wish to avoid
extrapolation, t* must be, at the very most, no greater than the largest uncensored
event time in the dataset.

In real trials, it is commonplace to adjust a treatment effect for design features such
as stratification variables and known prognostic factors such as age. This is easily done
when estimating an HR within a Cox model; the features of interest are simply included
as predictors in the model. In this article, I use the method of directly adjusted survival
curves (Royston and Lambert 2011, sec. 9.3) to obtain adjusted RMST values.

I describe a new command, strmst, that estimates the treatment effect accord-
ing to RMST and its difference between trial arms. strmst supplies CIs and can ad-
just for covariates if required. The command routinely incorporates nonproportional
hazards of treatment effects. Note that strmst requires stpm2 (which fits FPMs)
(Lambert and Royston 2009; Andersson and Lambert 2012).

The article is structured as follows. In section 2, I discuss RMST and its difference as
an estimate of the treatment effect. In section 3, I describe a clinical trial in liver disease
that we use as an example. In section 4, I demonstrate flexible parametric modeling of
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the data and how to use strmst to obtain unadjusted and adjusted estimates of RMST.
I show how to plot corresponding unadjusted and adjusted survival curves. Finally, 1
suggest a sensitivity analysis that is intended to accommodate model uncertainty in the
selected FPM. In section 5, I describe the syntax and details of strmst. In section 6, I
conclude with some brief remarks.

2 RMST and its difference

The RMST p(t*) at some time horizon t* > 0 for a time-to-event random variable
T is the expectation of the truncated survival time X = min(7,¢t*). It may be
shown that g (t*) is the area under the survival curve S (t) from ¢ = 0 to t = ¢*
(Andersen and Pohar Perme 2010, Irwin 1949); that is,

p(t) = E(X) = E {min (T, t*)} = /O S (t) dt

When T is years to death, we may think of u (t*) as the t*-year life expectancy. In a
two-arm clinical trial with survival functions Sy () and S; (¢) in the control and research
arms, respectively, the difference in RMST between arms is given by

A(t*):/o Sl(t)dt—/o So (¢) dt

-/ " (81 ) - So (1) d

That is, A (t*) is the area between the survival curves. Depending on the pattern of
the survival curves, A (t*) may be negative, zero, or positive. An effective research
treatment will have significant, positive A (t*) for values of ¢* of clinical interest.

Section 4 describes the use of strmst to estimate RMST and A (¢*) according to an
FPM.

With X = min (7,t*) defined as above, we provide the following derivation of its
mean, which is the RMST at t*.

Let P() denote the probability, F' (¢) the distribution function of T', f (¢) the density
of T, and S (t) = 1 — F (t) the survival function. The distribution of min (T, t*) is F (¢)
on the interval [0,¢*] and is the point mass P (T > t*) on t*. The integral giving the
mean, namely,

E(X)=FE{min(T,t")} = /min (T,t*) dF {min (T, t*)}
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is split into the interval [0, ¢*], where min (T,¢*) is T with distribution F (t), and the
point (¢*), where min (T, ¢*) is t* with distribution P (T > t*). Thus

E{min(T,t*)}:/Ot L (8 dt + P (T > )
=F(t*)t" — /t* 1F (¢t)dt +t*P (T > t¥)
0

:t*—/Ot*F(t)dt:/t*{l—F(t)}dt

:/Ot*S(t)dt O

3 Data

Primary biliary cirrhosis (PBC) is a serious liver disease that usually results in liver
failure and death. The effect of the drug azothiaprine on the survival of patients with
PBC was compared with placebo in a multinational, double-blind, randomized clinical
trial (Christensen et al. 1985). Between 1971 and 1977, 248 patients were randomized
to receive either azothiaprine or placebo, with follow-up until 1983. After 41 (17%)
cases with missing values or no patient follow-up were removed, data on 207 patients
(105 deaths) were available for analysis. Relevant prognostic factors were age, log biliru-
bin, and albumin. As Royston, Altman, and Sauerbrei (2006) demonstrated, because of
chance imbalance in the most important prognostic factor (bilirubin) between the arms
of this relatively small trial, adjustment for prognostic factors had an unusually large
influence on estimated treatment effects.
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4 Analysis of the example dataset

4.1 Conventional analysis

Figure 1 shows Kaplan—Meier curves for the research and control arms of the PBC trial.

Kaplan-Meier survival estimates

1.00
0.75-
0.50
0.25+
Placebo
0004 =~~~ Azothiaprine
T T T T T T
0 2 4 6 8 10

Years since randomization
Number at risk
Placebo 98 71 47 20 6 0
Azothiaprine 109 76 55 34 17 9

Figure 1. Kaplan—Meier curves for overall survival in the PBC trial

There is no clear difference between the survival curves. The unadjusted HR [with 95%
c1] is 0.83 [0.57,1.22], P = 0.35. There is minor evidence of nonproportional hazards,
with P = 0.086 according to the Grambsch—-Therneau test, as performed by estat
phtest, rank. The graph suggests that there might be a “late” treatment difference
starting about five years after randomization.

A suitable prognostic model for this dataset includes the variables age, log bilirubin,
and albumin. After one adjusts for the prognostic factors, the HR (CI) is 0.61 [0.41,0.91],
P = 0.016. No significant nonproportionality of the hazards is seen for treatment
(P = 0.3) or for the prognostic factors (P > 0.4). The adjusted result totally changes
the interpretation of the trial outcome. The change is due to a fairly small, nonsignificant
but influential difference in the highly prognostic variable log bilirubin between the arms.

4.2 Flexible parametric modeling

Royston and Parmar (2013) suggested that for the analysis of clinical trial data, a good
strategy is to fit a prespecified FPM and use the model to estimate the trial-related
quantities of interest. There are three major reasons: i) flexibility in prediction of
relevant quantities, including adjusted survival curves; ii) transparency, to avoid data-
manipulation bias (“data dredging”); and iii) fit, because the FPM with a possibly
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time-dependent treatment effect will fit the data better than standard survival models.
It is usually necessary to decide and document the analysis approach in the clinical
protocol before obtaining and seeing the data. In my experience, a sensible FPM to use
in this situation is a hazards-scaled model with 3 d.f. for the spline function representing
the baseline log cumulative-hazard function and 1 d.f. for a possible time-dependent
treatment effect. This is called a “(3,1) d.f.” model. The 3 d.f. for the baseline specifies
two knots (polynomial join points) for the restricted cubic spline function, providing
considerable flexibility in the shape of the function. The 1 d.f. for time dependency
means that the regression coefficient for treatment is constrained to be a linear function
of log follow-up time. This simple specification allows the estimated treatment effect to
increase, remain constant, or diminish over time.

I now illustrate the use of strmst to obtain unadjusted and adjusted RMST values
and their between-arm difference in the PBC trial. First, a suitable ¢* must be selected.
Generally, we want to cover most of the follow-up period; otherwise, there is little point
in obtaining long-term follow-up data. Here t* = 10 years is probably too large because
no patient in the placebo arm is still at risk by 10 years (see figure 1). We take t* = 8
years. The analysis with strmst is straightforward.

. use pbc
(Primary biliary cirrhosis)

. generate 1ln_bilirubin = ln(bilir)
. strmst trt, tstar(8)

Log likelihood = -252.89785 Number of obs = 207
Coef . Std. Err. z P>|z]| [95% Conf. Intervall

xb
trt -.056214 .2269794 -0.25 0.804 -.5010854 .3886574
_rcsl 1.254529 .1700067 7.38 0.000 .9213225 1.587736
_rcs2 -.1016293 .0795416 -1.28 0.201 -.257528 .0542693
_rcs3 -.0221963 .0445647 -0.50 0.618 -.1095415 .0651489
_rcs_trtl -.2860466 .2013678 -1.42 0.155 -.6807202 .108627
_cons -1.047456 .1629987 -6.43 0.000 -1.366927 -.7279842

The above table shows the result of fitting the (3,1) d.f. model with strmst. The lin-
ear predictor (xb) has terms for the treatment effect (trt) and its interaction with time
(_rcs_trtl) and terms (_rcsl, _rcs2, _rcs3) corresponding to the three spline basis
functions, the first of which is linear in In (_t), that are required for df (3). The non-
significance (P = 0.155) of the treatment-time interaction term suggests that there are
no substantial nonproportional hazards. Nevertheless, we persist with the prespecified
FPM and refrain from assessing the proportional-hazards (PH) assumption formally.
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The output continues as follows:

Using delta method for SE and CI:

Observed Delta-meth. Normal-based
Est. Std. Err. z P>zl [95% Conf. Intervall
rmstl 4.9587855 .29663131 16.72 0.000 4.377399 5.5401721
rmst2 5.2990036 .28995311 18.28 0.000 4.7307057 5.8673015
dif21 .34021807 .41358548 0.82 0.411 -.47039461 1.1508307

strmst presents a table of the RMST estimates for placebo and azothiaprine (rmst1
and rmst2, respectively) and their difference (dif21, azothiaprine minus placebo). The
delta method (Stata’s predictnl command) is used to obtain standard errors (SEs) via
numerical derivatives. We see that the RMST estimates for placebo and azothiaprine
are 5.0 and 5.3 years, respectively; this means that the average survival time over the
interval (0, 8) years is about 5 years. The RMST difference (dif21) is A (8) = 0.34 (95%
CI, [—0.47,1.15]) years. The p-value of 0.41 comparing dif21 with 0 is not significant
at the 5% level.

We now observe the analysis with direct adjustment for the three important prog-
nostic factors described above. Direct adjustment is done by “marginalization over
the distribution of covariates” (see http://en.wikipedia.org/wiki/Marginal distribution
for an explanation). Here marginalization entails averaging predicted survival curves
across all covariate patterns in the estimation sample and integrating the resulting av-
erage survival curves over (0,%*) to obtain RMST values. The required strmst command
is simple.

. strmst trt, tstar(8) adjust(ln_bilirubin age albumin)

Log likelihood = -191.27809 Number of obs = 207
Coef.  Std. Err. z P>|z]| [95% Conf. Intervall

xb
trt -.4489923  .2186604 -2.056  0.040 -.8775587  -.0204258
In_bilirubin 1.168652  .1225971 9.53  0.000 .9283657 1.408937
age .0379697  .0120093 3.16  0.002 .014432 .0615074
albumin -.0421403  .0180153 -2.34 0.019 -.0774497 -.0068309
_rcsl 1.479009  .1743993 8.48  0.000 1.137193 1.820825
_rcs2 -.2682558  .0883365 -3.04 0.002 -.4413921  -.0951194
_rcs3 -.109121 .0582466 -1.87 0.061 -.2232822 .0050402
_rcs_trtl -.2104133  .2163135 -0.97 0.331 -.6343799 .2135533
_cons -5.96387 1.24408 -4.79  0.000 -8.402222  -3.525517
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Using delta method for SE and CI:

Observed Delta-meth. Normal-based
Est. Std. Err. z P>zl [95% Conf. Intervall
rmstl 4.7989807 .20651278 23.24 0.000 4.3942232 5.2037382
rmst2 5.4985933 .19608389 28.04 0.000 5.1142759 5.8829107
dif21 .69961262 .26784077 2.61 0.009 .17465433 1.2245709

We see that the effects of the three prognostic factors are significant (P < 0.02),
particularly that for log bilirubin. The RMST values at t* = 8 years are now 4.8 and 5.5
years, with A (8) = 0.70 (0.17,1.22) years. The treatment effect has more than doubled
compared with the unadjusted analysis. Furthermore, the p-value for testing A (8) = 0
is smaller than that for testing In(HR) = 0 in the corresponding adjusted Cox model
(0.0091 versus 0.016). The result suggests that the FPM analysis may have more power
here.

We conclude that after we consider important prognostic factors, there is an im-
portant difference in RMST at eight years favoring azothiaprine treatment. Patients

appeared to survive on average 0.7 years longer over the first 8 years with azothiaprine
treatment than with placebo.

4.3 Conditional estimation

In the introduction, I alluded to the fact that the magnitude of a treatment effect on
the survival scale depends on prognostic information. For example, after several years’
follow-up, patients with a good breast cancer prognosis may benefit less from chemother-
apy than those with a poor prognosis. The same may apply to RMST difference, as shown
in the following example for the PBC trial.
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Figure 2 shows the RMST difference A (8) as a function of centiles of the observed
distribution of log bilirubin, adjusted for age and albumin.

2.01

8yr
&
1

0.5+

RMST difference at t*

0.0+

0 20 40 60 80 100
Log bilirubin centile

Figure 2. RMST difference at t* = 8 years, with pointwise 95% CI, according to cen-
tiles of the distribution of log bilirubin. Estimates are from the (3,1) d.f. model, each
conditional on one value of log bilirubin, and are adjusted for age and albumin.

Patients with larger bilirubin values (who have worse survival prospects) gain larger
survival increments from azothiaprine. However, the treatment effect peaks at about
the 70th centile and declines for larger values. This is due to the “floor effect”, as
illustrated in figure 3.
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Figure 3. Predicted survival probability at t* = 8 years in each treatment group,

according to centiles of the distribution of log bilirubin. Estimates are from the (3,1)
d.f. model and are adjusted for age and albumin.

The survival difference at 8 years narrows as log bilirubin increases above about the
50th centile. It follows that the values of the integrated survival curves (that is, the
RMST) also get closer together, accounting for the smaller treatment effect. For patients
with bilirubin above the 70th centile, the prognosis is so poor that by 8 years, there
is little survival time left for azothiaprine to “buy”. We would expect a less extreme
result at earlier times, when there is more survival time to “buy”, and this is precisely
what occurs (data not shown). At t* = 4 years, for example, the treatment-effect curve
peaks at the 90th centile of log bilirubin.

This example illustrates some of the complexities that an appraisal of a treatment
effect fuller than one HR can provide. Appropriate handling of the time domain in such
trials is crucial for obtaining an adequate understanding of the quantitative effect of
treatment on survival and its relation to prognosis. Conditional estimation may play
an important role here.

4.4 Plotting survival curves

To calculate the RMST using the methods described above, one must estimate the un-
adjusted or directly adjusted survival curves. The curves are then integrated on [0, ¢*]
to give RMST values. The survival curves are themselves informative.
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Figure 4 compares the Kaplan—Meier estimates with unadjusted estimates from the
(3,1) d.f. FPM, which includes a term for the nonproportional hazard of the treatment

effect.

1.00+

o

N

a
1

0.50 1

o

o

o
1

Predicted survival probability

0.00

Placebo (Kaplan-Meier)
Azothiaprine (Kaplan-Meier)
Placebo (unadjusted)
Azothiaprine (unadjusted)

T T

2 4 6 8
Years since randomization

Figure 4. Survival curves estimated by the Kaplan—Meier method (solid lines) and by
a (3,1) d.f. FPM (broken lines), not adjusted for prognostic factors

The shape of the “observed” survival curves is well approximated by the FPM curves,

which cross about two years

after randomization. After that, survival on azothiaprine

appears slightly better than placebo.
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In figure 5, a different picture is obtained with adjustment.
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Figure 5. Survival curves estimated by (3,1) d.f. FPMs: solid lines, adjusted for prog-
nostic factors; broken lines, unadjusted for prognostic factors

The adjusted survival curve for azothiaprine dominates that for placebo for all ¢ > 0.
Because we have not altered the parts of the model representing the treatment effect,
the change is due only to adjustment. The separation between the unadjusted curves
“catches up” with the adjusted curves by about ¢t = 8 years.

4.5 Sensitivity of the RMST estimates to model specification

Because the estimates of the RMST are model dependent, one may wish to investigate
how stable the estimates are with respect to possible variations in the FPM. Here we
perturb the d.f. for the baseline spline (d.f.;) and for the treatment-time interaction
spline (d.f.;). Recall that the prespecified model has (d.f;,d.f;) = (3,1). We also
assess model fit in terms of the Akaike information criterion (AIC) and the Bayesian
information criterion statistics for the fitted FPMs.
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Figure 6 shows A (8) plotted against d.f.;, the time-dependent d.f.
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Figure 6. RMST difference at t* = 8 years estimated by various more or less complex
FPMs, (d.f.p,d.f.;) d.f., with differing values of d.f.;, and d.f.;. All models are adjusted
for three prognostic factors. Labels affixed to points denote values of d.f.,. The x
axis shows d.f.;. The horizontal line shows the default estimate. The four models with
d.f.; = 0 have PH of the treatment effect.

The labels affixed to the points denote d.f.;, the baseline spline d.f. There is some
variation in the estimate of A (8), depending on the precise model that is used. The
default model (d.f., = 3,d.f.; = 1) gives an estimate that is somewhat higher than most
of the other models. However, the CI for each estimate is rather wide—(0.17,1.22) for the
(3,1) d.f. model. A strategy to incorporate additional, between-model variation in the
estimate of A (8) and its CI would be to use model uncertainty techniques (for example,
see Buckland, Burnham, and Augustin [1997]). If we apply Buckland’s method with
AIC weights, we obtain A (8) = 0.695 (SE 0.273) years, nearly identical to the default
estimate of A (8) = 0.700 (SE 0.268). This sensitivity analysis does not raise concerns
about use of the default (3,1) d.f. FPM here.

According to minimum AIC, the best-fitting model is the PH model (d.f., = 3,
d.f.; = 0), for which AIC = 399.52. The default model is the second best (AIC = 400.56).

We conclude that allowing for model uncertainty hardly changes the estimated treat-
ment effect or its uncertainty, which gives some confidence in the default values.
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5 The strmst command

5.1 Syntax

The syntax of strmst is as follows:

strmst trt_varlist [zf] [m] , tstar(#) [ﬂust (adj_varlist) at (Catlist)
bootopts (options) bootstrap(#) df (#) dftvc(#) nint(#) nt(#)
saving (ﬁlename[ , replace}) scale(scalename) showsettings

surv (surv [ t} ) ]

Important note: Before strmst can be used, stpm2 must first be installed. Ver-
sion 1.5.4 or later of stpm?2 is required.

The options for strmst are described below.

5.2 Description

strmst computes the RMST for each member of ¢ri_varlist, which is a set of one or
more binary dummy variables indicating treatment groups in a randomized controlled
trial with a time-to-event outcome variable. The RMST is estimated at a prespecified
time horizon, t*, within a suitable FPM, which includes at least the dummy variables in
trt_varlist.

By default, the FPM that is fit includes time-dependent treatment effects. Thus
proportionality of the treatment effects on the scale of the model is not assumed. In
particular, the model can accommodate nonproportional hazards of the treatment ef-
fects. Proportionality for the treatment variables can be imposed by specifying the
dftvc(0) option.

strmst also calculates the difference in the RMST between each treatment group (as
coded in trt_varlist) and the lowest level (all dummy variables in tri_varlist set to 0),
which represents the control or reference group of the trial. The difference is an estimate
of the treatment effect for each group compared with the control.

The analyst can avoid adjustment by omitting the adjust() option or adjust for
covariates in adj_varlist in the FPM. strmst calculates and presents SEs for RMST values
and their differences by using the delta method and, optionally, bootstrap resampling.

If adjust () is supplied, the RMST estimates are adjusted for covariates in adj_varlist.
By default, proportionality on the scale defined by scale() is assumed to be PH. The
FPM used to estimate survival curves in the various treatment groups includes treat-
ment dummies from ¢rt_varlist and the members of adj_varlist. The method known as
direct adjustment is used; see section 9.3 of Royston and Lambert (2011) for an expla-
nation of the method, which, essentially, involves marginalizing survival curves over the
distribution of observed covariates.
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Note that factor variables are not allowed in either trt_varlist or adj_varlist. However,
the xi: command may be used in conjunction with the usual prefix i. to convert
categorical variables to corresponding dummy variables on the fly.

5.3 Options

tstar (#) specifies the time horizon at which the RMST is to be calculated. This time
is typically near the end of the follow-up period of the trial. tstar() is required.

adjust (adj_varlist) specifies adjustment of estimates for variables in adj_varlist. These
may be a mixture of binary and continuous variables.

at (atlist) computes the RMST fixing values of covariates in adj_varlist according to
atlist, which has syntax varname # [vamame #o... ] For example, at(x1 1 x3
50) would evaluate the RMST at x1 = 1 and x3 = 50. Note that x1 and x3 must
appear in adj_varlist. Note also that the use of at () does not alter the model being
fit. The model fit is not restricted to the subset implied by the at() condition.
Default behavior in the absence of at () is to marginalize survival curves and hence
the RMST values over the observed distribution of covariates in adj_varlist.

bootopts (options) specifies options of the bootstrap command. It applies only if the
bootstrap() option is used.

bootstrap(#) provides bootstrap estimates of SEs and confidence limits in addition to
those from the default delta method. # specifies the number of bootstrap replications
to be created. A reasonable suggestion for # is 200, but more than 200 can be used
for more precise reproducibility of the estimated SE. The default is bootstrap(0),
meaning no bootstrap calculations are done.

df (#) specifies the degrees of freedom for the baseline spline function in the flexible
parametric survival model to be used to estimate survival functions and hence the
RMST. The default is df (3).

dftvc (#) specifies the degrees of freedom for spline functions for time-dependent treat-
ment effects in the FPM. If # is set to 1 or more, a time-dependent treatment effect
is included that is increasingly complex as # increases. If # is set to 0 or less, no
time dependency of the treatment effect is included—that is, proportionality of the
treatment effects on the chosen scale is imposed. For scale(hazard) models (the
default), the result with # = 0 is a PH model. The default is dftvc(1), meaning a
simple type of nonproportional hazards model is fit.

nint (#) specifies the number of integration time points for calculating the RMST from
estimated survival curves. This option is rarely needed. The minimum # is 10, and
the default is nint (1001).

nt (#) specifies the number of time points for calculating the estimated survival curves.
The corresponding times are created on an equally spaced grid of # values from 0
to tstar() inclusive. The minimum # is 2. There is no default. nt() requires
saving() also to be specified.
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saving( ﬁlename[ , replace ]) saves the predicted (adjusted) survival curves and cor-
responding times on the interval [0,t*] to a file called filename.dta. The survival
curves are stored under default variable names survl, surv2, etc., corresponding
to the ordering of the treatment variable. When filename.dta is merged with the
original data, the combined contents can be useful for plotting and comparing with
unadjusted predicted or Kaplan—Meier curves. saving() requires nt() also to be
specified. See also the nt () option.

scale(scalename) specifies the scale on which the FPM is to be fit. The default is
scale(hazard).

scale(hazard) fits a model on the log cumulative-hazard scale, that is, the scale of
In{—InS(¢)}. If no time-dependent effects are specified, the resulting model has
PHSs.

scale(odds) fits a model on the log cumulative-odds scale, that is, In[{1 — S(¢)}/
S(t)]. If no time-dependent effects are specified, the resulting model has propor-
tional odds.

scale(normal) fits a model on the normal equivalent deviate scale, that is, a probit
link for the survival function, invnormal (1 — S(¢)). If no time-dependent effects
are specified, the result is a type of probit model.

scale(theta) fits a model on a scale defined by the value of theta for the Aranda-
Ordaz family of link functions, that is, In[S(¢f)~*#** —1/theta]. Note that
theta = 1 corresponds to a proportional odds model and theta = 0 to a pro-
portional cumulative hazards model.

showsettings displays the type of model being fit and whether or not proportionality
of the treatment effects on the given scale is assumed.

surv (surv [t]) defines names for variables containing predicted survival probabilities
and times stored with the saving() option. For example, if there were three treat-
ment groups, there would correspondingly be three survival curves, and these would
be stored in file filename.dta with the variable names survl, surv2, and surv3. The
time variable would be stored in the same file with name ¢. The defaults are surv for
surv and t for t. surv() applies only when saving() has been specified. Otherwise,
it is ignored.

5.4 Examples

. sysuse cancer
. tabulate drug, generate(d)

. strmst d2 d3, tstar(20)

. xi: strmst i.drug, tstar(20)

. xi: strmst i.drug, adjust(age) tstar(20) at(age 49)

. xi: strmst i.drug, adjust(age) tstar(20) dftvc(0) showsettings

. recode age 47/54=1 55/59=2 60/67=3, gen(ageg)

. xi: strmst i.drug, adjust(i.ageg) tstar(20)

. xi: strmst i.drug, adjust(age) tstar(20) dftvc(0) bootstrap(500)
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. xi: strmst i.drug, adjust(age) tstar(30) df(2) saving(survi) surv(s_adj t_adj)
. xi: strmst i.drug, tstar(30) df(2) saving(surv2) surv(s_unadj t_unadj)

6 Comments

I have described the definition, derivation, estimation, and use of RMST, principally in
the context of randomized controlled trials (for example, in cancer). However, RMST
is a potentially useful summary statistic in any study with a time-to-event outcome.
Such an application is prognostic modeling, in which the aim is to predict the clinical
course of a disease or other condition from the “prognostic factors” measured at baseline
(t = 0). Chapter 6 of Royston and Lambert (2011) gives some examples. RMST can be
calculated for any type of prediction within this context by specifying the rmst option
of predict following model estimation with stpm2.

A rich set of standard parametric survival models has been implemented through the
official Stata command streg. Implementation of RMST for such models has not been
done, nor has it been included in strmst. It would require out-of-sample prediction of
suitable survival curves, as needed for numerical integration of the survival probabilities
over a fine, equally spaced grid of times covering (0,¢*). To provide direct adjustment for
covariates, one would need to average predicted survival curves over covariate patterns.
Because it is not a standard feature of predict following streg, averaging would need
to be coded specifically. As already noted, however, three standard parametric models
(Weibull, loglogistic, and lognormal) are already available with stmrst or stpm2 using
the df (1) option. More “exotic” variants, such as frailty models, have not (yet) been
implemented in stpm2.

One point about the role of ¢* may need clarification. One might think that by
selecting a time horizon t*, we effectively discard or right-censor all events occurring
after ¢*, which therefore cannot impact the RMST. This is a misunderstanding; such a
procedure would indeed waste information. We fit the FPM using all the data and then
compute the RMST for a selected t* based on the parameter estimates. In this way,
all observations contribute to the estimates, but the FPM need be fit only once. The
resulting parameter estimates can be used for any desired t* within the range of the
observed times.

I believe that the strmst program will help statisticians working in clinical trials to
realize that RMST is a viable and useful measure of the treatment effect. RMST is also
available for more general settings with the predict, rmst command following model
estimation with stpm2. A detailed account of the theory and applications of FPMs is
given by Royston and Lambert (2011).
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