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Abstract. The problem of instrument proliferation and its consequences—
overfitting of the endogenous explanatory variables, biased instrumental-variables
and generalized method of moments estimators, and weakening of the power of
the overidentification tests—are well known. This article introduces a statistical
method to reduce the instrument count. Principal component analysis is applied
on the instrument matrix, and the principal-component analysis scores are used
as instruments for the panel generalized method of moments estimation. This
strategy is implemented through the new command pca2.

Keywords: st0414, pca2, proliferation of instruments, principal component analy-
sis, panel data, generalized method of moments

1 Introduction

The generalized method of moments (GMM) estimator, in the formulations of Arellano
and Bond (1991), Arellano and Bover (1995), and Blundell and Bond (1998), has gained
a leading role among the dynamic panel-data (DPD) estimators, mainly because of its
flexibility and of the few assumptions it requires about the data-generating process. In
addition, the availability of lags of the endogenous variables provides many instrumen-
tal variables (IVs) directly exploitable for GMM estimation. However, the estimation
of DPD models by GMM with many instruments has its own drawbacks. In his seminal
work, Sargan (1958) stressed that in the context of IV estimation, the marginal improve-
ments from an increase in the number of instruments beyond three are generally small,
whereas they can negatively affect the consistency of the estimates and the reliability
of the specification tests. Since then, the potential distortions in parameter estimates
when the instrument count gets larger have been extensively investigated in the liter-
ature (Kiviet [1995], Anderson and Sørenson [1996], Ziliak [1997], among others). In
particular, instrument proliferation is intrinsic in GMM estimation of DPD models when
all the lags of the endogenous explanatory variables are exploited, as the number of mo-
ment conditions increases with T and with the dimension of the vector of endogenous
regressors. While, in principle, the availability of a wider set of conditions should im-
prove efficiency (Dagenais and Dagenais 1997), the bias due to overfitting is quite severe
as the number of moment conditions expands, which outweighs the gains in efficiency
(Bekker 1994; Newey and Smith 2004; Ziliak 1997). Such tradeoff between bias and
efficiency is exacerbated by the weak instrument problem (Bound, Jaeger, and Baker

c© 2015 StataCorp LP st0414



1076 A strategy to reduce the instrument count in panel GMM

1995, Staiger and Stock 1997) and by the correlation between the sample moments and
the estimated optimal weighting matrix: sampling errors are magnified in the weight-
ing matrix (Altonji and Segal 1996). Poor estimates of the variance–covariance matrix
of the moments lower the power of the specification tests such as the Sargan/Hansen
test for overidentifying restrictions, which suffers from a severe underrejection problem
(Sargan 1958; Anderson and Sørenson 1996; Bowsher 2002).

Overall, such evidence supports the importance of properly addressing instrument
proliferation, although this problem is often overlooked in empirical analyses; indeed,
strategies to reduce the instrument count such as lag truncation and collapse (Roodman
2009a) are used only seldom in empirical applications. In addition to these two oper-
ational strategies, already implemented in Stata, the selection of correct or optimal
instruments from a large set of potential candidates has received attention in a broader,
more theoretical perspective. This latter stream of literature has developed statistically
grounded methods for consistently selecting the GMM conditions and has investigated
the statistical properties of the estimators exploiting the resulting sets of moments.
Relevant contributions in this area include the information criteria methods and down-
ward and upward testing procedures of Andrews (1999) and Andrews and Lu (2001),
the Lasso-type instrument selection of Caner (2009) and Belloni et al. (2012), and the
GMM shrinkage methods of Liao (2013). A recent contribution of Caner, Maasoumi, and
Riquelme (2014) provides an extensive overview and a simulation-based comparison of
moment-selection approaches.

Our aim in this article is to tackle the issue of instrument proliferation by providing a
statistically grounded and directly implementable procedure that reduces the instrument
count. We advocate the use of principal components analysis (PCA) of the instrument
matrix as a way to shrink the available instruments into a set of linear combinations
of the original variables (the scores of the PCA). The weights used in such orthogonal
combinations follow from the main features of the data and reflect the contribution
of each variable to the total observed variability. We label this strategy “principal
components instrumental variables reduction” (PCIVR).1

PCIVR exploits the same tool as that found in Doran and Schmidt (2006), who pro-
pose an eigenvalue-eigenvector decomposition of the GMM weighting matrix to reduce its
dimension; however, our method implies the drop of linear combinations of the instru-
ments rather than of linear combinations of the moment conditions. Moreover, while
the strategy proposed by Doran and Schmidt (2006) is applicable to all overidentified
GMM problems that require a weighting matrix in the estimation procedure, our proce-
dure directly addresses the instrument matrix. Therefore, it can be applied to any IV

estimation problem with many IVs.

The pca2 command directly implements PCIVR by means of an ado-file.2 Thanks
to its flexibility, the pca2 procedure adds useful features to the Stata command pca.
It is straightforwardly applicable in Stata to any type of dataset (cross-section, time

1. A first sketch of a PCA-based reduction of GMM-style IVs can be found in Mehrhoff (2009).
2. The pca option in the user-written xtabond2 (Roodman 2009b) command provides a first applica-

tion of PCA on GMM-style IVs within Stata.
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series, and panel), and in a single command line, it automates, through specific options,
alternative ways to extract the principal components and to select those to be retained
for the computation of the PCA scores. More specifically, pca2 first allows GMM-style in-
struments for one or more variables to be generated, either in levels or in first-differences
(or both), introducing the possibility of defining a specific lag structure for each vari-
able. Then, the procedure extracts the principal components either separately from each
instrument set or from the matrix that jointly includes all the instrumental variables.
Finally, it retains a certain number of principal components according to alternative
criteria specified by the user and predicts the corresponding scores, adding them to the
dataset as new variables to be used as instruments.

The procedure presents several distinguishing features when compared to the existing
strategies to reduce the instrument count developed in the literature, and it extends the
set of tools available to the researcher for the purpose.

First, pca2 acts as a complementary tool with respect to lag truncation and collapse,
which impose a priori restrictions not tailored on the data. The main difference between
these tools and pca2 is that our approach provides a flexible statistical rule for the
selection of nonredundant instruments that adjusts to the empirical problem at hand
and reflects the specific features of the data. Lag truncation assumes that the relevant
information is conveyed only by the most recent (usually one or two) available lags
of the endogenous variables, while the collapsing of the instrument matrix assumes
specific dynamics in the data. Because such assumptions cannot be tested a priori, to
identify potential critical aspects related to the issue at hand, we recommend comparing
the GMM estimates obtained with lag truncation and collapsing with those provided
by PCIVR, which has the advantage of exploiting information from the whole set of
instruments to select the lags that contribute to total variability the most.

Second, if compared with the other approaches mentioned at the beginning of this
section, pca2 becomes especially attractive when the large number of potential instru-
ments makes moment selection procedures such as those proposed by Andrews (1999)
and Andrews and Lu (2001) potentially cumbersome to implement. In fact, the high
number of candidate subsets renders the identification of the correct orthogonality con-
ditions based on the J-statistic (Liao 2013) computationally intensive. At the same
time, it may be sometimes challenging to apply the GMM shrinkage estimators proposed
by Liao (2013): the problem at hand may not provide strong enough prior beliefs to split
the IVs in the two distinct sets that allow separation of “credibly” valid and potentially
invalid moment conditions.

Third, a broader perspective suggests that a unified framework can be conceived to
address the problem of instrument as well as regressor or predictor proliferation using
alternative selection algorithms (for example, least-angle regression, forward stagewise
regression, and lasso estimation) that involve a prescreening of the variables of interest
to extract the subset of those that are correlated the most with the target variable. In
the Stata framework, the user-written lars.ado command by Mander (2006) imple-
ments these alternative algorithms for the selection of a subset of targeted variables.
More specifically, in an instrumental variable estimation context, the lars command
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can implement the approach of Belloni et al. (2012), which estimates optimal IVs in
linear models with many valid instruments by selecting those that convey the strongest
information about the target (endogenous) variables. This prescreening approach can
be seen as the first step of a sequential strategy that combines targeted IVs and a sub-
sequent PCA on the selected instruments. By following this approach, the researcher
can improve the overall efficiency of instrument-reduction procedures and move a step
toward the identification of better IVs. This is for instance in line with the findings of
Bai and Ng (2008) in the forecasting context. They show that the extraction of prin-
cipal components from a set including fewer but more informative predictors leads to
the selection of better ones than those obtained by applying PCA to the original set. In
this perspective, the use of pca2 can be seen as a complementary tool with respect to
the lars procedure and can be applied once the IVs have already been prescreened.

The rest of the article is organized as follows. Section 2 summarizes the main
methodological underpinnings of the strategy we present: section 2.1 reviews the GMM

estimation of DPD models, and section 2.2 describes the extraction of principal compo-
nents from a matrix of instruments. Section 3 details the syntax of pca2 and its options
and also provides some empirical examples. Section 4 carries out a guided example
of robustness analysis in the context of published research on the determinants of the
discretionary fiscal policy in the Euro-area countries.

2 The methodological framework

2.1 GMM estimation of DPD models

Consider the general two-way error component DPD model

yit = αyit−1 + β′xi,t + φt + υit , υit = ηi + εit (1)

where i = 1, . . . , N , t = 1, . . . , T , x is an m-dimensional vector of potentially endoge-
nous or predetermined regressors, the φt are the time effects, the ηi are the individual
effects, and εit is a zero-mean idiosyncratic error, allowed to be heteroskedastic but not
serially correlated. The standard assumptions are E(ηi) = E(εit) = E(ηiεit) = 0 and
predetermined initial conditions E(yi1εit) = 0.

The Arellano–Bond and Arellano–Bover/Blundell–Bond estimators are linear GMM

estimators for the model in (1) in first-differences (DIF GMM) or in levels (LEV GMM) or
both (SYS GMM); the instrument matrix Z includes the lagged values of the endogenous
variables. The columns of Z correspond, respectively, to two different sets of meaningful
moment conditions.

The Arellano–Bond DIF GMM estimator exploits the following moment conditions
for the (1) in first-differences,

E{(Zi
dif)′∆υi} = E{(Zi,t−l

dif)′∆υit} = 0 for t ≥ 3, l ≥ 2 (2)

where l denotes the lag depth.



M. E. Bontempi and I. Mammi 1079

The Blundell–Bond SYS GMM estimator also exploits the additional nonredundant
orthogonality conditions for the (1) in levels:3

E{(Zi
lev)′υi} = E{(Zis

lev)′υiT } = 0 for s = 2, . . . , T − 1 (3)

Because DPD GMM uses lags of the explanatory variables as IVs, according to Han
and Phillips (2006, 149), “the phenomenon of moment condition proliferation is far from
being a theoretical construct and arises in a natural way in many empirical econometric
settings”. The dimension of the GMM-type instrument matrix grows as the number of
time periods and endogenous regressors expands.

2.2 Extracting principal components from the matrix of instruments

The adoption of PCA or factor analysis to extract a small number of factors from a large
set of variables has become popular in macroeconometrics, forecasting being the main
field of application. Stock and Watson (2002) prove consistency of the factors as the
number of original variables gets sufficiently large so that the principal components are
estimated precisely enough to be used instead of the original variables in subsequent
regressions. Kloek and Mennes (1960) and Amemiya (1966) first propose the use of
principal components in the IV estimation. Important recent contributions, among
the others, are Kapetanios and Marcellino (2010), Groen and Kapetanios (2009), and
Bai and Ng (2010).4

The issue of instrument proliferation can be addressed by extracting the principal
components from the instrument matrix Z. The aim of PCIVR is to reexpress the infor-
mation conveyed by highly correlated variables in terms of a set of optimal orthogonal
linear combinations of the original variables and then to retain a smaller number of
them.

In detail, with Z defined as the general p-columns GMM-style instrument matrix,
we extract p eigenvalues λ1, λ2, . . . , λp ≥ 0 from the correlation or covariance matrix of
Z, ordered from the largest to the smallest, and derive the corresponding eigenvectors
(principal components) u1,u2, . . . ,up. Our new instruments will be the scores from
PCA that are defined as

sk = Zuk for k = 1, 2, . . . , p

If we write Z = (z1 . . . zj . . . zp) with zj being the jth column of the instrument matrix,
the score sk corresponding to the kth component can be rewritten as

sk = uk1z1 + · · ·+ ukjzj + · · ·+ ukpzp

where ukj is the jth element of the principal component uk. With the matrix of PCA

loadings defined as V = (u1 . . .uk . . .up) and the matrix of PCA scores defined as S, we

3. The LEV GMM estimation considers, for each endogenous variable, time period, and lag distance,
all the available lags for the equation in levels because they are nonredundant.

4. A review of the literature on factor-IV and factor-GMM estimations is in the introduction of
Kapetanios and Marcellino (2010).
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obtain S = ZV. Instead of the moment conditions in (2), we will therefore exploit the
following restrictions in GMM DIF:

E{(Sdif)′∆υ} = E{(ZdifV)′∆υ} = 0 (4)

Similarly, in the GMM SYS, we will also exploit the following additional orthogonality
conditions instead of those in (3):

E{(Slev)′υ} = E{(ZlevV)′υ} = 0 (5)

Because the aim of the PCIVR is the reduction of the dimension of the instrument matrix,
a criterion to select the scores to be retained has to be adopted. The idea is retaining
only (m + 1) ≤ q < p principal components, where m is the number of endogenous
regressors other than the lagged dependent variable; thus only the q corresponding
score vectors will form the new transformed instrument matrix in both (4) and (5).

One possibility is to retain the q principal components corresponding to eigenvalues
above the average of the eigenvalues (“average criterion”); alternatively, one may keep
those accounting for a given percentage of the variance of the data, generally 70% to
90% (“variance criterion”).

The number of moment restrictions resulting from the PCIVR depends on the nature
of the data at hand. If q < (m+1), the equation of interest is not identified. For instance,
this can happen when the variables are highly persistent (near unit-root processes): in
this case, the PCA is driven by spurious trends, and very few principal components are
retained.

3 The pca2 command

3.1 Syntax

The user-written command pca2 implements the PCIVR procedure presented above:
in a unique step, it extracts the principal components from the variables in varlist
according to the preferences specified through its options; then it computes the scores
corresponding to the principal components retained on the basis of the selection criterion
chosen by the researcher. These scores can be used in any IV/GMM estimation command
in Stata in place of the original IVs.

The extraction of principal components through the pca2 command exploits the
Stata pca command. Its innovative feature consists of augmenting the pca command
with specific options for the creation of GMM-style IVs, for the selection of principal
components, and for the computation of the scores.
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The syntax of pca2 is

pca2 varlist
[
if
] [

in
] [

, nt(timevar | panelvar timevar) variance(#) avg

covariance prefix(string) see gmmliv(# |# #) gmmdiv(# |# #)

lagsl(varlistl, ll(# |# #)) lagsd(varlistd, ll(# |##)) togvar togld

retain
]

Time-series and panel data must be tsset before using pca2. See [TS] tsset for
more information. pca2 does not allow time-series operators in varlist; to use lags of
the variables in varlist, you must generate them using Stata time-series operators before
applying the pca2 command; see help tsvarlist.

3.2 Options

nt(timevar | panelvar timevar) is required in time series and panel data to create GMM-
style instruments and to apply PCA on them. If this option is omitted, the dataset
is treated as a cross-section, and all the observations are pooled.

variance(#) allows you to apply the variance criterion (default criterion); that is, only
those principal components that account for at least the chosen percentage of the
variability in the original data are retained for the computation of the scores. The
number defining the percentage must be an integer greater than 0 and lower or equal
to 100. The default is variance(90).

avg selects the principal components to be kept for score computation according to the
average criterion; that is, only those eigenvectors whose corresponding eigenvalues
are above the average of the eigenvalues are retained. Note that when the avg option
is chosen, pca2 also computes the scores according to the default 90% variance
criterion and saves both of them in the dataset: the scores obtained according to
the two criteria can thus be compared.

covariance performs PCA of the covariance matrix. The default is to perform PCA on
the correlation matrix; see help pca.

prefix(string) specifies the prefix for the name of the scores generated by the pca2

command corresponding to the retained principal components. For example, if you
write prefix(sys), you will obtain sys varscore* and sys avgscore*. This op-
tion is particularly useful when the pca2 command is repeated many times on the
same dataset to create different scores from different instrument sets, eventually ac-
cording to different criteria. The default prefix is BM, which retains the scores with
labels such as BM varscore* and BM avgscore*.

see asks Stata to display the outcome of the PCA.

gmmliv(# |# #) generates the GMM-style instruments in levels (for the equations in
first-differences) for all the variables included in the pca2 varlist. If only one argu-
ment is specified (for example, gmmliv(k)), all the available lags from t− k back to
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the initial observation for each variable in varlist of the pca2 command are used. If
two arguments are specified (for example, gmmliv(k1 k2) with k1 ≤ k2 ), the lags
from t − k1 to t − k2 are considered. The PCA is performed on all the specified
GMM-style lags in levels of each variable taken separately. If the togvar option
(full description below) is also added, the PCA is performed on all the generated
GMM-style lags in levels of all the variables in varlist considered together. With this
option, the lag structure is the same for each variable.

gmmdiv(# |# #) generates the GMM-style instruments in first-differences (for the equa-
tions in levels) for all the variables included in the pca2 varlist. If only one argument
is specified (for example, gmmdiv(k)), all the available lags from t − k back to the
initial observation for each variable in varlist of the pca2 command are used. If two
arguments are specified (for example, gmmdiv(k1 k2) with k1 ≤ k2), the lags from
t− k1 to t− k2 are considered. The PCA is performed on all the specified GMM-style
lags in first-differences of each variable taken separately. If the togvar option (full
description below) is also added, the PCA is performed on all the generated GMM-
style lags in first-differences of all the variables in varlist considered together. With
this option, the lag structure is the same for each variable.

lagsl(varlistl, ll(# |# #)) generates the GMM-style instruments in levels for a spe-
cific varlistl. It is a more flexible alternative to the gmmliv() option because it
allows for a different lag structure of each variable. The lagsl() option may be
used more than once: different lag structures may thus be defined for the variables
in each varlistl. The ll() suboption specifies the lag structure of the variables in
each varlistl: if only one argument is specified (for example, ll(k), all the available
lags from t − k back to the initial observation for each variable in varlistl are used.
If two arguments are specified (for example, ll(k1 k2) with k1 ≤ k2), the lags from
t− k1 to t− k2 are considered. The PCA is performed on all the specified GMM-style
lags in levels of each variable taken separately. If the togvar option (full description
below) is also added, the PCA is performed on all the generated GMM-style lags in
levels of all the variables in varlistl considered together. lagsl() cannot be used
with the gmmliv() option, while it is allowed with either the lagsd() option or the
gmmdiv() option. When lagsl() is used alone or with lagsd(), the number of vari-
ables in both varlistl and varlistd must be at least equal to the number of variables
in varlist of the pca2 command. The lagsl() option can have fewer variables than
those included in varlist of the pca2 command only when associated with gmmdiv().

lagsd(varlistd, ll(# |# #)) generates the GMM-style instruments in first-differences
for a specific varlistd. It is a more flexible alternative to the gmmdiv() option because
it allows for a different lag structure of each variable. The lagsd() option may be
used more than once: different lag structures may thus be defined for the variables
in each varlistd. The ll() suboption specifies the lag structure of the variables in
each varlistd: if only one argument is specified (for example, ll(k)), all the available
lags from t− k back to the initial observation for each variable in varlistd are used.
If two arguments are specified (for example, ll(k1 k2) with k1 ≤ k2), the lags from
t − k1 to t − k2 are considered. The PCA is performed on all the specified GMM-
style lags in first-differences of each variable taken separately. If the togvar option
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(full description below) is also added, the PCA is performed on all the generated
GMM-style lags in first-differences of all the variables in varlistd considered together.
lagsd() cannot be used with the gmmdiv() option, while it is allowed with either
the lagsl() option or the gmmliv() option. When lagsd() is used alone or with
lagsl(), the number of variables in both varlistl and varlistd must be at least equal
to the number of variables in varlist of the pca2 command. The lagsd() option can
have fewer variables than those included in varlist of the pca2 command only when
associated with gmmliv().

togvar specifies that the PCA be performed on the matrix that includes all the variables
in varlist and not on each variable separately. For example, the syntax pca2 x z,

togvar implies that the PCA is performed jointly on the variables x and z. This
option must be specified to apply the PCA to GMM-style lags of more than one
variable taken together instead of the lags of each variable taken separately. For
example, pca2 x z, gmmliv(2) togvar implies that the principal components are
extracted from the matrix that includes all the available lags for the variables x and
z in levels from t− 2, t− 3, and so on.

togld specifies that once instruments in levels and first-differences are generated, the
PCA is applied to the matrix that includes all of these instruments together for each
variable in varlist of pca2. If the togld option is used with the togvar option,
the principal components are extracted from the matrix that includes all the lags in
first-differences and in levels of all the variables in varlist.

retain adds the generated GMM-style IVs as new variables to the dataset. These IVs
are named GMMLvarnamePERIODlag and GMMDvarnamePERIODlag; for example,
GMMLn1978L2 stands for the t− 2 observation in levels for the variable n in the year
t = 1978.

3.3 The use of the pca2 command: An example

We illustrate the pca2 command through an empirical example based on abdata.dta

used in Arellano and Bond (1991) and Blundell and Bond (1998).

We fit the Blundell and Bond (1998) model, a simple autoregressive distributed lags
model of labor demand,

nit = αnit−1 + β0wit + β1wit−1 + γ0kit + γ1kit−1 + ηi + φt + νit (6)

where nit, wit, and kit are the log of employment, the log of the real product wage,
and the log of the capital stock in firm i in year t, respectively. The sample is an
unbalanced panel of 140 UK-listed manufacturing companies with between 7 and 9
annual observations over the period 1976–1984.

First, we replicate the original DIF GMM results in column 3 of table 4 in Blundell
and Bond (1998); then, we fit the same model by DIF GMM estimates, exploiting the set
of IVs resulting from the PCA.
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To do so, we run the command

pca2 n w k, nt(id year) gmmliv(2) retain avg

This syntax generates the GMM-style instruments in levels for each of the n, w, and k

variables. These variables are labeled GMML* and will be used as instruments for (6) in
first-differences. In this case, the gmmliv(2) option specifies the same lag structure for
all the variables, and the IVs are generated from lag t − 2 up to the last lag available.
By specifying the retain option, we add the GMML* instruments as new variables in the
dataset.

Then, we separately extract the principal components for each variable from its
own lags. Next, because we use the avg option, we retain the principal components
according to both selection criteria (that is, the default variance criterion and the average
criterion). Finally, we save the corresponding scores in the dataset as new variables
labeled BM var* and BM avg*, where var and avg refer to the selection criterion.

As shown below, the output of the pca2 command reports information about the lag
structure of the GMM-style IVs and summary statistics for the extraction of the principal
components.

. use http://fmwww.bc.edu/ec-p/data/macro/abdata.dta
(Layard & Nickell, Unemployment in Britain, Economica 53, 1986 from Ox dist)

. xtset id year

(output omitted )

. quietly tabulate year, generate(tauyear)

. pca2 n w k, nt(id year) gmml(2) retain avg
General description of the dataset

panel variable: id (unbalanced)
time variable: year, 1976 to 1984

delta: 1 unit
The prefix is: _BM_
You are creating GMM-style IVs in levels for a panel
_____ variable: n _____
Lag selection in GMML(): from t-2 to the last available lag
_____ variable: w _____
Lag selection in GMML(): from t-2 to the last available lag
_____ variable: k _____
Lag selection in GMML(): from t-2 to the last available lag
_____ PCA LEV VAR BY VAR: n
You are applying PCA to GMM-style LEV lags of one or more than one variable,
keeping the variables separated with the same lags structure
_________ Some information about PCA of IV in levels for n __________

Trace of the matrix:
> 28
By default percentage of selected variability to be explained:
> 90%
Percentage of variance explained by the variability criterion:
> 92.943733%
Number of retained scores according to the variability criterion:
> 8
Percentage of variance explained by the average criterion:
> 86.399506%
Number of retained scores according to the average criterion:
> 6
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_____ PCA LEV VAR BY VAR: w
You are applying PCA to GMM-style LEV lags of one or more than one variable,
keeping the variables separated with the same lags structure
_________ Some information about PCA of IV in levels for w __________

Trace of the matrix:
> 28
Percentage of variance explained by the variability criterion:
> 90.305677%
Number of retained scores according to the variability criterion:
> 7
Percentage of variance explained by the average criterion:
> 87.588082%
Number of retained scores according to the average criterion:
> 6
_____ PCA LEV VAR BY VAR: k
You are applying PCA to GMM-style LEV lags of one or more than one variable,
keeping the variables separated with the same lags structure
_________ Some information about PCA of IV in levels for k __________

Trace of the matrix:
> 28
Percentage of variance explained by the variability criterion:
> 90.223503%
Number of retained scores according to the variability criterion:
> 7
Percentage of variance explained by the average criterion:
> 86.652737%
Number of retained scores according to the average criterion:
> 6

To get the original DIF GMM estimates for the model in (6), we can use the user-
written xtabond2 command (see Roodman [2009b]) with its native syntax:

. quietly xtabond2 n l.n l(0/1).(w k) tauyear3-tauyear9,
> ivstyle(tauyear3-tauyear9, equation(diff))
> gmmstyle(n, laglimits(2 .) equation(diff))
> gmmstyle(w, laglimits(2 .) equation(diff))
> gmmstyle(k, laglimits(2 .) equation(diff))
> h(2) noleveleq robust nodiffsargan
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However, to illustrate how to exploit the instrumental variables obtained through the
pca2 command (in this case, the GMML* IVs just added to the dataset), we can repro-
duce the same estimates by typing the following, where the new variables are used as
traditional IVs through the option ivstyle(). The two commands generate the same
output.

. xtabond2 n l.n l(0/1).(w k) tauyear3-tauyear9,
> ivstyle(tauyear3-tauyear9, equation(diff))
> ivstyle(_GMML_n_*, equation(diff) pass)
> ivstyle(_GMML_w_*, equation(diff) pass) ivstyle(_GMML_k_*, equation(diff) pass)
> h(2) noleveleq robust nodiffsargan
Favoring space over speed. To switch, type or click on mata: mata set matafavor
> speed, perm.

Dynamic panel-data estimation, one-step difference GMM

Group variable: id Number of obs = 751
Time variable : year Number of groups = 140
Number of instruments = 91 Obs per group: min = 5
Wald chi2(12) = 1163.33 avg = 5.36
Prob > chi2 = 0.000 max = 7

Robust
n Coef. Std. Err. z P>|z| [95% Conf. Interval]

n
L1. .7074701 .0841788 8.40 0.000 .5424827 .8724576

w
--. -.7087965 .117102 -6.05 0.000 -.9383122 -.4792809
L1. .5000149 .1113282 4.49 0.000 .2818157 .7182141

k
--. .4659776 .101044 4.61 0.000 .267935 .6640203
L1. -.2151309 .0858525 -2.51 0.012 -.3833987 -.0468631

tauyear3 .0057636 .0166077 0.35 0.729 -.0267868 .038314
tauyear4 .0136366 .0193748 0.70 0.482 -.0243374 .0516106
tauyear5 -.0071557 .0213479 -0.34 0.737 -.0489969 .0346855
tauyear6 -.0340692 .0264327 -1.29 0.197 -.0858763 .0177379
tauyear7 -.0059175 .0272325 -0.22 0.828 -.0592922 .0474573
tauyear8 .0187213 .0288529 0.65 0.516 -.0378294 .075272
tauyear9 .0352279 .0331578 1.06 0.288 -.0297603 .1002161

Instruments for first differences equation
Standard

_GMML_k_1978L2 _GMML_k_1979L2 _GMML_k_1979L3 _GMML_k_1980L2 _GMML_k_1980L3

(output omitted )

_GMML_n_1984L6 _GMML_n_1984L7 _GMML_n_1984L8
D.(tauyear3 tauyear4 tauyear5 tauyear6 tauyear7 tauyear8 tauyear9)

Arellano-Bond test for AR(1) in first differences: z = -5.60 Pr > z = 0.000
Arellano-Bond test for AR(2) in first differences: z = -0.14 Pr > z = 0.891

Sargan test of overid. restrictions: chi2(79) = 125.19 Prob > chi2 = 0.001
(Not robust, but not weakened by many instruments.)

Hansen test of overid. restrictions: chi2(79) = 88.80 Prob > chi2 = 0.211
(Robust, but weakened by many instruments.)
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We now fit the model in (6) by DIF GMM on the set of instruments that results from
PCIVR. The pca2 command run above saves the PCA scores BM varscoreDIF* and
BM avgscoreDIF* as new variables in the dataset. Therefore, we can get the estimates
on the new set of instruments by using, for example, the variables BM var* in xtabond2

as new instruments instead of the standard ones as follows:

. xtabond2 n l.n l(0/1).(w k) tauyear3-tauyear9,
> ivstyle(tauyear3-tauyear9, equation(diff))
> ivstyle(_BM_var*n*, equation(diff) pass)
> ivstyle(_BM_var*w*, equation(diff) pass)
> ivstyle(_BM_var*k*, equation(diff) pass)
> h(2) noleveleq robust nodiffsargan
Favoring space over speed. To switch, type or click on mata: mata set matafavor
> speed, perm.

Dynamic panel-data estimation, one-step difference GMM

Group variable: id Number of obs = 751
Time variable : year Number of groups = 140
Number of instruments = 29 Obs per group: min = 5
Wald chi2(12) = 1146.02 avg = 5.36
Prob > chi2 = 0.000 max = 7

Robust
n Coef. Std. Err. z P>|z| [95% Conf. Interval]

n
L1. .8021886 .1255146 6.39 0.000 .5561845 1.048193

w
--. -.8621674 .2094745 -4.12 0.000 -1.27273 -.4516048
L1. .2224614 .2941419 0.76 0.449 -.3540461 .798969

k
--. .5783907 .2253891 2.57 0.010 .1366362 1.020145
L1. -.4108413 .1947894 -2.11 0.035 -.7926216 -.029061

tauyear3 -.0202252 .0272124 -0.74 0.457 -.0735604 .03311
tauyear4 -.0114123 .0355594 -0.32 0.748 -.0811074 .0582829
tauyear5 -.0209936 .0374262 -0.56 0.575 -.0943475 .0523603
tauyear6 -.034543 .049461 -0.70 0.485 -.1314848 .0623988
tauyear7 .0148526 .0524715 0.28 0.777 -.0879897 .1176949
tauyear8 .0556274 .0447092 1.24 0.213 -.032001 .1432558
tauyear9 .0688565 .0555122 1.24 0.215 -.0399454 .1776584

Instruments for first differences equation
Standard

_BM_varscoreLEVkN1 _BM_varscoreLEVkN2 _BM_varscoreLEVkN3

(output omitted )

_BM_varscoreLEVnN7 _BM_varscoreLEVnN8
D.(tauyear3 tauyear4 tauyear5 tauyear6 tauyear7 tauyear8 tauyear9)

Arellano-Bond test for AR(1) in first differences: z = -3.41 Pr > z = 0.001
Arellano-Bond test for AR(2) in first differences: z = -0.61 Pr > z = 0.544

Sargan test of overid. restrictions: chi2(17) = 32.49 Prob > chi2 = 0.013
(Not robust, but not weakened by many instruments.)

Hansen test of overid. restrictions: chi2(17) = 23.43 Prob > chi2 = 0.136
(Robust, but weakened by many instruments.)



1088 A strategy to reduce the instrument count in panel GMM

Because the aim of the PCIVR is the reduction in the instrument count, as expected,
the Hansen test has 79 degrees of freedom in the standard DIF GMM estimates, while they
fall to 17 when the scores relative to the principal components are extracted according
to the variance criterion.

So far, we have focused on the syntax for the GMM-style instruments and PCA

scores in the DIF GMM estimation. In addition, we can use pca2 to create IVs and
PCA scores to be used in SYS GMM; we can thus replicate the results in column 4 of
table 4 in Blundell and Bond (1998) and get SYS GMM estimates with the PCA scores
as instruments.

The syntax

. use http://fmwww.bc.edu/ec-p/data/macro/abdata.dta, clear
(Layard & Nickell, Unemployment in Britain, Economica 53, 1986 from Ox dist)

. xtset id year

(output omitted )

. quietly tabulate year, generate(tauyear)

. pca2 n w k, nt(id year) gmml(2) gmmd(1 1) retain avg

(output omitted )

creates both the instruments in levels from t − 2 up to the last lag available and
first-differences for the first available lag. The IVs in levels (that is, the GMML* vari-
ables) and the instruments in first-differences (that is, the GMMD* variables) are in-
cluded in the dataset as new variables.5 The PCA is run on the instruments in first-
differences and on the instruments in levels for each variable separately; the scores rel-
ative to the retained principal components ( BM varscoreDIF* and BM avgscoreDIF*,
BM varscoreLEV* and BM avgscoreLEV*) are also added to the dataset.

5. When the pca2 command is run more than once, the researcher can exploit the prefix() option to
define the names of the new scores to be added in the dataset, thus also maintaining in the dataset
the ones created previously. Of course, it is not possible to save GMM-style IVs already present in
the dataset: when the researcher needs to regenerate and store the same IVs again, those created
previously have to be canceled by typing, for example, drop GMM*.
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Following the same line of reasoning, we can get the standard SYS GMM estimates
by using xtabond2 with the GMMD* and GMML* variables as instruments through the
following command:

. xtabond2 n l.n l(0/1).(w k) tauyear3-tauyear9,
> ivstyle(tauyear3-tauyear9, equation(both))
> ivstyle(_GMML_n_*, equation(diff) pass)
> ivstyle(_GMML_w_*, equation(diff) pass)
> ivstyle(_GMML_k_*, equation(diff) pass)
> ivstyle(_GMMD_n_*L1, equation(lev)) ivstyle(_GMMD_w_*L1, equation(lev))
> ivstyle(_GMMD_k_*L1, equation(lev)) h(1) robust nodiffsargan
Favoring space over speed. To switch, type or click on mata: mata set matafavor
> speed, perm.

Dynamic panel-data estimation, one-step system GMM

Group variable: id Number of obs = 891
Time variable : year Number of groups = 140
Number of instruments = 113 Obs per group: min = 6
Wald chi2(12) = 4147.85 avg = 6.36
Prob > chi2 = 0.000 max = 8

Robust
n Coef. Std. Err. z P>|z| [95% Conf. Interval]

n
L1. .8108394 .0579982 13.98 0.000 .6971649 .9245138

w
--. -.7945394 .0971517 -8.18 0.000 -.9849532 -.6041257
L1. .55012 .151645 3.63 0.000 .2529012 .8473388

k
--. .4285055 .0763361 5.61 0.000 .2788895 .5781215
L1. -.2802184 .0776689 -3.61 0.000 -.4324466 -.1279903

tauyear3 .0077488 .0200664 0.39 0.699 -.0315806 .0470781
tauyear4 .020829 .0236973 0.88 0.379 -.025617 .0672749
tauyear5 -.0002589 .0252166 -0.01 0.992 -.0496826 .0491648
tauyear6 -.0271456 .02961 -0.92 0.359 -.0851801 .030889
tauyear7 .0012306 .026954 0.05 0.964 -.0515983 .0540596
tauyear8 .014436 .0254967 0.57 0.571 -.0355367 .0644087
tauyear9 .0003278 .0307739 0.01 0.992 -.059988 .0606436

_cons 1.006162 .430149 2.34 0.019 .1630853 1.849238

Instruments for first differences equation
Standard

_GMML_k_1978L2 _GMML_k_1979L2 _GMML_k_1979L3 _GMML_k_1980L2 _GMML_k_1980L3

(output omitted )

D.(tauyear3 tauyear4 tauyear5 tauyear6 tauyear7 tauyear8 tauyear9)
Instruments for levels equation

Standard
_GMMD_k_1978L1 _GMMD_k_1979L1 _GMMD_k_1980L1 _GMMD_k_1981L1 _GMMD_k_1982L1

(output omitted )

tauyear3 tauyear4 tauyear5 tauyear6 tauyear7 tauyear8 tauyear9
_cons
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Arellano-Bond test for AR(1) in first differences: z = -6.49 Pr > z = 0.000
Arellano-Bond test for AR(2) in first differences: z = -0.08 Pr > z = 0.934

Sargan test of overid. restrictions: chi2(100) = 113.34 Prob > chi2 = 0.171
(Not robust, but not weakened by many instruments.)

Hansen test of overid. restrictions: chi2(100) = 115.73 Prob > chi2 = 0.135
(Robust, but weakened by many instruments.)

Similarly, we can get the SYS GMM estimates with the set of PCA scores from PCIVR

( BM varscoreDIF* and BM avgscoreDIF*, BM varscoreLEV* and BM avgscoreLEV*)
as follows:

. xtabond2 n l.n l(0/1).(w k) tauyear3-tauyear9,
> ivstyle(_BM_varscoreLEVn*, equation(diff) pass)
> ivstyle(_BM_varscoreLEVw*, equation(diff) pass)
> ivstyle(_BM_varscoreLEVk*, equation(diff) pass)
> ivstyle(_BM_varscoreDIFn*, equation(lev) pass)
> ivstyle(_BM_varscoreDIFw*, equation(lev) pass)
> ivstyle(_BM_varscoreDIFk*, equation(lev) pass)
> ivstyle(tauyear3-tauyear9, equation(both)) h(1) robust nodiffsargan
Favoring space over speed. To switch, type or click on mata: mata set matafavor
> speed, perm.

Dynamic panel-data estimation, one-step system GMM

Group variable: id Number of obs = 891
Time variable : year Number of groups = 140
Number of instruments = 51 Obs per group: min = 6
Wald chi2(12) = 5587.27 avg = 6.36
Prob > chi2 = 0.000 max = 8

Robust
n Coef. Std. Err. z P>|z| [95% Conf. Interval]

n
L1. .9016193 .0477017 18.90 0.000 .8081257 .995113

w
--. -.742429 .1542546 -4.81 0.000 -1.044763 -.4400956
L1. .4643432 .1950932 2.38 0.017 .0819675 .8467189

k
--. .53362 .096368 5.54 0.000 .3447423 .7224978
L1. -.4411184 .1025934 -4.30 0.000 -.6421978 -.240039

tauyear3 -.0025501 .0226948 -0.11 0.911 -.0470312 .041931
tauyear4 .0129266 .0272024 0.48 0.635 -.0403891 .0662423
tauyear5 .0004112 .0272325 0.02 0.988 -.0529634 .0537858
tauyear6 -.0197377 .0340792 -0.58 0.562 -.0865317 .0470564
tauyear7 .0179079 .0346922 0.52 0.606 -.0500877 .0859034
tauyear8 .0328657 .0278118 1.18 0.237 -.0216443 .0873758
tauyear9 .0287 .0339306 0.85 0.398 -.0378027 .0952028

_cons .9899051 .3951924 2.50 0.012 .2153422 1.764468
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Instruments for first differences equation
Standard

D.(tauyear3 tauyear4 tauyear5 tauyear6 tauyear7 tauyear8 tauyear9)

(output omitted )

_BM_varscoreLEVnN7 _BM_varscoreLEVnN8
Instruments for levels equation

Standard
tauyear3 tauyear4 tauyear5 tauyear6 tauyear7 tauyear8 tauyear9

(output omitted )

_cons

Arellano-Bond test for AR(1) in first differences: z = -5.56 Pr > z = 0.000
Arellano-Bond test for AR(2) in first differences: z = -0.27 Pr > z = 0.785

Sargan test of overid. restrictions: chi2(38) = 57.54 Prob > chi2 = 0.022
(Not robust, but not weakened by many instruments.)

Hansen test of overid. restrictions: chi2(38) = 57.60 Prob > chi2 = 0.022
(Robust, but weakened by many instruments.)

Even in this case, we observe a drop in the degrees of freedom of the Hansen test
that fall from 100 in the standard SYS GMM estimates to 38 when the scores relative to
the principal components are extracted according to the variance criterion.

To further clarify the syntax and the options, we provide additional examples for
the creation of instrumental variables and scores.

The syntax

pca2 n w k, nt(id year) lagsl(n, ll(2)) lagsl(w k, ll(3))

creates PCA scores according to the variance criterion (90%) for each variable taken
separately: the principal components are extracted both from the set of instruments in
levels for n, which includes lags from t−2 up to the last lag available, and from the two
sets of instruments in levels, respectively, for w and k, which include lags from t− 3 up
to the last lag available.

The syntax

pca2 n w k, nt(id year) gmmdiv(2) lagsl(n w k, ll(2 3))

applies the PCA on the sets of instruments in first-differences from t− 2 up to the last
lag available for each variable taken separately and on the set of instruments in levels
from t− 2 to t− 3 for each variable.

The syntax

pca2 n w k, nt(id year) lagsd(n w k, ll(2)) gmmliv(2) togvar togld ///
variance(80) avg

runs the PCA on the set of instruments that includes the lags of interest both in levels
and in first-differences of all the variables taken together. The principal components
are retained according to both the average and the variance (80%) criteria.
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It is worth noticing that the syntax

pca2 n w k

pools all the observations and runs the PCA on the three-column matrix of n, w, and k.
It retains the principal components according to the variance criterion. The difference
with respect to the syntax pca n w k is that pca2 also selects the principal components
to be retained and computes the corresponding scores without the need of additional
command lines.

4 pca2 at work: An application to the estimation of a

fiscal policy rule

In this section, we illustrate more in detail the empirical implications and the opera-
tional advantages of the proposed procedure by applying it to the estimation of fiscal
policy rules, as discussed in the article by Golinelli and Momigliano (2009)—GM hence-
forth. The authors assess the robustness of the estimates of a fiscal policy rule on a
panel of 11 Eurozone countries over the post-Maastricht period (that is, 1994–2008) by
using alternative model specifications and exploiting data from different sources (Eu-
ropean Commission, International Monetary Fund, and Organisation for Economic Co-
operation and Development [OECD]) and data vintages (latest available and real-time
data). Of main interest here, GM run a number of alternative regressions to estimate the
parameters of the rule by SYS GMM and provide extensive motivations for their choice,
which, in this case, comes out as the most appropriate, in line with well-established
indications in the literature.6 However, we have stressed in previous sections that when
the cross-sectional dimension is smaller than the time dimension, there is the risk of get-
ting biased estimates in case of a high number of overidentifying restrictions. Because
GM’s dataset spans over N = 11 and T = 15, their analysis lacks robustness checks with
respect to the number of orthogonality conditions exploited by the SYS GMM.

In this section, we estimate the discretionary policy rule reported in GM (2009, 45),

∆CAPBit = µi + τt + β1GAPi,t−1 + β2CAPBi,t−1 + β3DEBTi,t−1 + εit (7)

where the dependent variable is the change in the cyclically adjusted primary balance
on potential gross domestic product measured with the latest available data (that is,
the best measure over time of the fiscal policy stance). The explanatory variables are
the output gap (GAP), which accounts for the economic cycle, the cyclically adjusted
primary balance (CAPB), and the debt (DEBT) as ratios on potential gross domestic
product, the last two capturing the fiscal initial conditions. The explanatory variables
are specified in t−1 and measured with real-time data (that is, the information available
at the time when the fiscal policy is set). Finally, µi are country fixed effects, τt are
time fixed effects, and εit are random policy shocks assumed to be independent and
identically distributed.

6. The empirical analysis exploits the user-written command xtabond2.
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Table 1 reports estimates for (7) under alternative specifications of the overidentify-
ing restrictions exploited by SYS GMM. First, we fit the model, including all the available
lags (column 1); then, we reduce the instrument set by lag-truncation (columns 2 and 3)
and collapse (column 4); finally, we exploit as new IVs the scores from PCIVR on the
full set of instruments (column 5), on the truncated set (column 6), and on all lags of
all the endogenous variables considered together (column 7).

In particular, the estimates reported in the first column follow the same approach
as in GM and are obtained by instrumenting all the explanatory variables with all the
available lags as in GM (2009, table 3, column 5, “OECD-HP”).7 These outcomes are in
line with those of GM: overall, the authors interpret their evidence as indicating that
the fiscal initial conditions do affect policy choices, while the counter cyclicality of fiscal
policies comes out to be only slightly significant. It is worth noticing that in column 1,
the number of overidentifying restrictions (152) is very close to the number of observa-
tions (165) and that the p-value of the Sargan test is almost 0.7: in light of Sargan’s
caveats and of the discussion of the previous sections, we argue that the outcome of the
test for overidentifying restrictions may be weakened by the high instrument count with
respect to the number of observations.

To assess the robustness of GM’s findings, columns 2 through 7 of table 1 report
estimates where the number of overidentifying restrictions is reduced by adopting alter-
native approaches.

Table 1. Estimation of a fiscal policy rule

Dependent variable: ∆CAPB
(1) (2) (3) (4) (5) (6) (7)

Variable all lags lags 2–3 lag 2 collapse PCIVR PCIVR PCIVR
all lags 2–3 tog

L.CAPB coeff
sd
t

L.DEBT coeff
sd
t

L.GAP coeff
sd
t

Constant coeff
sd
t

−0.317 −0.306 −0.303 −0.382 −0.318 −0.306 −0.334
0.058 0.06 0.064 0.089 0.062 0.067 0.08

−5.43 −5.12 −4.72 −4.3 −5.13 −4.6 −4.15
0.017 0.016 0.014 0.017 0.014 0.014 0.021
0.004 0.005 0.005 0.017 0.005 0.006 0.009
3.91 3.41 2.76 0.96 2.73 2.58 2.38
0.146 0.131 0.128 0.238 0.16 0.097 0.21
0.096 0.099 0.107 0.137 0.1 0.114 0.146
1.52 1.32 1.2 1.74 1.6 0.85 1.44

−0.757 −0.635 −0.532 −0.703 −0.496 −0.556 −1.03
0.454 0.46 0.485 1.221 0.478 0.512 0.694

−1.67 −1.38 −1.1 −0.58 −1.04 −1.09 −1.48
N × T 165 165 165 165 165 165 165
N 11 11 11 11 11 11 11
T 15 15 15 15 15 15 15
Sargan test:
degrees of freedom 152 132 87 48 117 83 46
p-value 0.6928 0.6246 0.1612 0.2276 0.2691 0.2048 0.1451

7. These estimates do not perfectly match those in GM, because here the DEBT is not considered as
strictly exogenous.
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More precisely, in column 2, the lag depth of the instruments is truncated to include
only the lags for t−2 and t−3; in column 3, only the lags for t−2 are considered. Finally,
the estimates in column 4 exploit a collapsed instrument matrix. Not surprisingly, the
p-values of the Sargan test decrease with the instrument count, but this drop is also
associated with substantial changes in the overall picture that emerges from the original
GM estimates and from those in column 1 of table 1. Strikingly, the two most frequently
used approaches to reduce the instrument count contrast the GM findings in opposite
directions. Indeed, the lag-truncation leads to estimates that strengthen the evidence of
a-cyclicality of the fiscal policy because the GAP parameter is not significant; the collapse
of the instrument matrix does not give significant coefficient estimates for the DEBT,
while the GAP parameter reaches a significance level of 10% and appears somewhat
supportive of the counter cyclicality of fiscal policies.

Such mixed evidence substantiates our concerns over the importance of introducing
more compelling robustness checks in the cases when the instrument count is high and
needs to be reduced.

To investigate the issue further, we see that the last three columns in table 1 report
results for the estimating equation when the IVs count is reduced using the PCIVR

strategy, as implemented through the pca2 command. In column 5, the SYS GMM

estimator exploits as IVs the PCA scores relative to the principal components of the
matrix that includes all the available lags, retained according to the average criterion.
This strategy is less parsimonious than the collapsing in terms of number of moment
restrictions, and it provides results in line with those obtained on the whole instrument
set. In column 6, the principal components to be retained according to the average
criterion for the computation of the scores are extracted from the instruments matrix
that includes only the lags relative to t − 2 and t − 3. Note also that the number of
degrees of freedom of the Sargan test is larger than that obtained from the collapsing.
To reduce the instrument count to a number in line with that of the collapse, in the
estimates of column 7, we extract the principal components from both the instrument
matrix that includes all the lags in levels of all the variables taken together and from
that with all the IVs in first-differences.8

Overall, the empirical exercise performed in this section conveys important indica-
tions. First, we see that the estimates on the sets of instruments obtained through the
pca2 command are in line with the findings of columns 1–3, providing both a lower
instrument count and a higher reliability of the Sargan test, which is consistently char-
acterized by a lower p-value. The results corroborate the idea that the PCIVR, being a
purely statistical way to tackle the issue of the excess of IVs, has the advantage of doing
that without imposing heavy (and somewhat arbitrary) restrictions on the data struc-
ture. This feature emerges in particular from column 7, whose outcome closely mirrors
the one in column 1 but is now obtained with a number of overidentifying restrictions
that is only one-third the number of the latter.

8. This is done by specifying the togvar option for the pca2 command. The data and the do-file with
the commands to replicate table 1 are provided as complementary material.



M. E. Bontempi and I. Mammi 1095

Finally, with respect to the policy implications of the GM study, we have shown
that estimates based on collapsed instruments would have changed the view over the
determinants of the policy rules because the stock of debt is found as nonsignificant in
contrast with the significant coefficient across all the other specifications. Thanks to
the newly implemented pca2 procedure, we have shown that this shift is not directly
driven by the reduction in the number of IVs (also carried out by lag-truncation and
PCIVR); rather, it is due to the restrictions imposed on the instrument matrix.

5 Summary

This article introduces a new command for creating GMM-style instruments for dynamic
panel-data models, for running principal component analysis on these instruments, and
for obtaining the PCA scores to be used as new instruments in GMM estimation. The
command pca2 adds important features to the Stata command pca: in particular, it
allows for the selection of principal components to be retained according to alternative
criteria and for the extraction of principal components from different sets of GMM-style
instruments at the same time.
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