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Abstract. We present a new program, gvselect, that helps users perform vari-
able selection in regression. Best subsets variable selection is performed and pro-
vides the user with the best combinations of predictors for each level of model
complexity. The leaps-and-bounds (Furnival and Wilson, 1974, Technometrics 16:
499–511) algorithm is applied using the log likelihoods of candidate models. This
allows the user to perform variable selection on a wide variety of normal and non-
normal regression models. Our method is described in Lawless and Singhal (1978,
Biometrics 34: 318–327).

Keywords: st0413, gvselect, regress, vselect, variable selection

1 Theory and motivation

Redundant predictors in a regression can yield an increase in the log likelihood and less
biased predictions, but they may increase the variance of predictions. In this section,
we will discuss the problem of variable selection and decide which predictors to use in a
regression. Then, we will introduce a new command for performing variable selection,
gvselect. We will follow this with examples of gvselect using real datasets.

In settings with few predictors, the likelihood-ratio (LR) test can be used to deter-
mine whether certain groups of predictors should be included in the model. We divide
the predictors into two groups. One group, “the base group”, will be included in our
model. The other group, “the suspect group”, may or may not be included in the model.
We are not yet sure. We call the regression model containing all predictors in both the
base and suspected groups “the full model”. The regression model containing only the
base predictors is called “the reduced model”.

Let Lf and Lr be the log-likelihood values associated with the full and reduced
models, respectively. Let nf and nr be the respective number of parameters in the
full and reduced models. The LR test statistic is LR = −2 (Lr − Lf ). Under the null
hypothesis that the reduced model is true (all the predictor coefficients for the suspected
group are zero), LR has an χ2 distribution with nf − nr degrees of freedom. Accepting
the null hypothesis leads us to use the reduced model as our regression model.

Rejecting the null hypothesis indicates that we should not ignore the predictors in
the suspected group (at least one of the predictor coefficients is not zero). We can then
reperform the test using subsets of the suspected group to determine which predictors

c© 2015 StataCorp LP st0413
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to include in the model. The LR test may be easily performed in Stata via lrtest (see
[R] lrtest).

This article is about settings with a large number of predictors. When the suspected
predictor list grows large, it is not feasible to use the LR test method to determine the
best regression model.

1.1 Information criteria

The definition of the best, or the optimal, model will vary with the information crite-
ria used for evaluating models. An information criterion is a function of a regression
model's explanatory power and complexity. The model's explanatory power (goodness
of fit) increases the criterion in the desirable direction, while the complexity of the model
counterbalances the explanatory power and moves the criterion in the undesirable di-
rection. Information criteria help us determine an optimal tradeoff between prediction
accuracy and precision.

Akaike’s (1974) information criterion (AIC) is a popular criterion for comparing dif-
ferent models. As AIC decreases, the model becomes more desirable. The explanatory
power of the model is measured by the maximized log-likelihood of the predictor co-
efficients (assuming a normal model) and error variance. The complexity penalization
comes from an addition of the number of parameters p.

AIC = 2(−Lr + p)

The Bayesian information criterion (BIC) was proposed by Schwarz (1978). Raftery
(1995) provides another development and motivation for the criterion. BIC is similar to
AIC but adjusts the penalty term for complexity based on the sample size.

BIC = −2Lr + p log n

AIC and BIC can be estimated within Stata using estat ic. There is debate over
whether AIC should be used in preference to BIC. A comparison of page 46 of Simonoff
(2003) and page 235 of Hastie, Tibshirani, and Friedman (2009) demonstrates this. We
find that selection based on BIC yields more parsimonious models here, but that does
not mean these models are superior to the more complex models that are selected based
on AIC.

The gvselect command calculates only AIC and BIC. Those interested in other
information criteria and linear regression models should investigate the vselect com-
mand. This command was introduced in Lindsey and Sheather (2010b). It performs
linear regression variable selection using the information criteria AIC, corrected AIC

(Hurvich and Tsai 1989), BIC, R2 adjusted (Sheather 2009), and Mallows’s C (Izenman
2008).
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1.2 Variable selection algorithms

A variety of algorithms have been created to perform variable selection using information
criteria like AIC and BIC. These variable selection algorithms take the specification of
the full model and output a reduced model.

Stepwise selection algorithms use backward elimination or forward selection and
add or remove predictors iteratively. They may yield a reasonable model but are not
guaranteed to select an information criterion’s optimal model.

The algorithm implemented in gvselect is guaranteed to select the best models
for BIC and AIC. At each level of complexity (number of parameters p), the optimal
model is the model with the largest log likelihood. gvselect applies the leaps-and-
bounds algorithm (Furnival and Wilson 1974) to the log likelihoods of the candidate
models. The algorithm outputs the model with the largest log likelihood for each level
of complexity. This approach is described in Lawless and Singhal (1978). The AIC and
BIC of these final models can then be compared. Furnival and Wilson (1974) focus on
doing variable selection for linear regression models, and residual sums of squares are
used instead of log likelihoods. Lawless and Singhal (1978) generalized their method to
nonnormal regression models, using log likelihood instead of residual sum of squares to
choose models.

As Furnival and Wilson (1974) explain, the leaps-and-bounds algorithm organizes all
the possible models in tree structures and scans through them, skipping (or “leaping”)
over those that are definitely not optimal. The original description of the algorithm is
done with large amounts of Fortran code. Ni and Huo (2005) provide an easier descrip-
tion of the original algorithm. They use a pair tree where each node has two subsets of
predictors.

When the algorithm examines a node, it compares the regressions of each pair of
predictor lists with the optimal regressions of each predictor size that have already been
conducted. Depending on the results, all or some of the descendants of that node can
be skipped by the algorithm. The initial ordering of the predictors and their smart
placement in sets within the nodes ensures that the algorithm completes after finding
the optimal predictor lists and examining only a fraction of all possible regressions.

The predictor lists in the pair tree are created based on an automatic ordering of
all the predictors by their χ2 test statistic value in the original regression. The first
node, (φ, {1, . . . , k}), contains the empty set and all k predictors. Let (Ω1,Ω2) be a
node in the pair tree. If (Ω1,Ω2) is not the first child of its parent, then it has children.
Denote the first child of (Ω1,Ω2) as (Ω11,Ω21). The subset Ω11 is obtained by removing
the last predictor from Ω2. The subset Ω21 is obtained by removing the second-to-last
predictor from Ω2. For i = 2, . . . , k, denote child i of (Ω1,Ω2) as (Ω1i,Ω2i). The subset
Ω1i is obtained by removing the ith from the last through the last predictor of Ω2. So
two predictors are removed for a second child, three for a third, etc. The subset Ω2i is
obtained by removing the i+1th from the last predictor of Ω2. Figure 1 shows the pair
tree for a regression with five predictors.
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Figure 1. Pair tree for five predictors

We traverse the tree from the root node down and left to right. Let Li be the
maximum log likelihood for i predictors that has so far been calculated in the traversal.
We denote the log likelihood under the predictors in Ωa by LΩa

. If Ωb ⊆ Ωa, then
LΩb

≤ LΩa
. Using this inequality and the pair tree definition, we obtain two rules of

traversal. In the first rule, if LΩ2
< L|Ω1|, then we can skip all the descendants of

(Ω1,Ω2). None of the descendant models have larger likelihoods than those that have
already been found. In the second rule, we can skip the first i descendants of (Ω1,Ω2) if
L|Ω2|−i−1 < LΩ2

≤ L|Ω2|−i. Using these rules, we can find the models with the highest
log likelihood for every complexity level and avoid fitting all possible models.

1.3 Model validity and cross-validation

Note that the output of the leaps-and-bounds algorithm and the LR test are not very
meaningful unless the full model is a valid regression model. A regression model is
valid if the assumptions to perform its significance tests are met. The assumptions
for linear regression models can be assessed using residual plots, scale-location plots,
etc. Details can be found in Sheather (2009). Diagnostics for logistic regression models
are discussed in Hosmer, Lemeshow, and Sturdivant (2013). Diagnostics for categorical
models are discussed in Agresti (2013).

Marginal model plots were proposed by Cook and Weisberg (1997). They are a
graphical diagnostic tool that can be applied to many regression models. They allow
visual comparison of the parametric model fit of the conditional mean with a non-
parametric estimate of the conditional mean. The proper specification of the model
is corroborated when the two estimates correspond. When they differ, it suggests the
model is misspecified. The mmp command, developed in Lindsey and Sheather (2010a),
can be used to draw marginal model plots in Stata.
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We must also note that inference on the models produced by the leaps-and-bounds
algorithm is not equivalent to the inference on the same models that the users find inde-
pendently without consulting the algorithm. Each step of a variable selection algorithm
will fit one or more models and then make an inference on the next step using informa-
tion from these models. So, in addition to inferences made using the final model, many
preliminary inferences are made during variable selection.

This will affect the significance levels of the final model. The situation is similar to
performing multiple comparisons on the factor means after an analysis of variance tells
you there is a significant effect. Each of these comparisons should be evaluated at a
different significance level than that of the original factor effect.

Cross-validation methods can be used to handle this multiple-inference difficulty.
These methods generally perform variable selection on subsets of the data and then use
an average measure of the results on these subsets to find the final model. They may
also split the data into two parts, performing variable selection on one part (train) and
using the other for evaluating the resulting model (test). Details of this method and
a general discussion of the multiple-inference problem in variable selection are given in
Sheather (2009). The variable selection method that we use here may be applied under
certain cross-validation techniques.

In the next section, we will provide the full syntax of the gvselect command.
Then, we will demonstrate how to use gvselect with two real-world examples. First,
we determine the optimal linear regression model for measuring diabetes progression.
Second, we find the best Poisson regression model for predicting the number of doctor
visits an individual will have in a two-week period.

2 Use and examples

The gvselect command has the following syntax:

gvselect <term> varlist
[
, nmodels(#)

]
: est cmd

est cmd is a call to an estimation command that returns a log-likelihood numeric
result. est cmd contains instances of <term>. These are replaced by variables in varlist
to determine the best subsets of varlist for fitting the model of interest. If the nmodels()
option is specified with value #, the best # models are reported for each level of model
complexity.

The gvselect command is straightforward in use. We will first demonstrate on a
dataset highlighted in Ni and Huo (2005), the diabetes data, which were introduced in
Efron et al. (2004). Then, we will use gvselect on data from Cameron and Trivedi
(1986) to perform variable selection for a Poisson regression predicting the number of
doctor visits made in a two-week period.
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2.1 Diabetes data

The diabetes study data (Efron et al. 2004) contain information on 442 diabetes pa-
tients. They are measured on 10 baseline predictor variables and a measure of disease
progression. The predictors are age, sex, body mass index (bmi), blood pressure (bp),
and six serum measurements (s1–s6). The progression variable, prog, is our models’
response and was recorded a year after the 10 baseline predictors. We will estimate the
parameters of the linear regression of prog on the 10 predictors.

Evaluation of the residual plots and other diagnostics do show the full model is
valid. But, as we see in the variance inflation factors, there are serious multicollinearity
problems. In particular, s1–s5 all exhibit variance inflation factors that exceed 8.

. use diabetes

. regress prog age-s6

Source SS df MS Number of obs = 442
F(10, 431) = 46.27

Model 1357023.32 10 135702.332 Prob > F = 0.0000
Residual 1263985.8 431 2932.68168 R-squared = 0.5177

Adj R-squared = 0.5066
Total 2621009.12 441 5943.33135 Root MSE = 54.154

prog Coef. Std. Err. t P>|t| [95% Conf. Interval]

age -.0363613 .2170414 -0.17 0.867 -.4629526 .3902301
sex -22.85965 5.835821 -3.92 0.000 -34.32986 -11.38944
bmi 5.602962 .7171055 7.81 0.000 4.193503 7.012421
bp 1.116808 .2252382 4.96 0.000 .6741061 1.55951
s1 -1.089996 .5733318 -1.90 0.058 -2.21687 .0368782
s2 .7464501 .5308344 1.41 0.160 -.296896 1.789796
s3 .3720042 .7824638 0.48 0.635 -1.165915 1.909924
s4 6.533831 5.958638 1.10 0.273 -5.177772 18.24543
s5 68.48312 15.66972 4.37 0.000 37.68454 99.28169
s6 .2801171 .273314 1.02 0.306 -.257077 .8173111

_cons -334.5671 67.45462 -4.96 0.000 -467.148 -201.9862

. estat vif

Variable VIF 1/VIF

s1 59.20 0.016891
s2 39.19 0.025515
s3 15.40 0.064926
s5 10.08 0.099246
s4 8.89 0.112473
bmi 1.51 0.662499
s6 1.48 0.673572
bp 1.46 0.685200
sex 1.28 0.782429
age 1.22 0.821486

Mean VIF 13.97
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Now, we invoke gvselect on the data. Our model choices match those of Ni and Huo
(2005). The choices of best model predictor sizes were 5 for BIC and 6 for AIC. The
6-predictor model seems like a prudent choice, given the closeness of the optimal BIC

value to the BIC value under 6 predictors.

. gvselect <term> age-s6: regress prog <term>

Optimal models:

# Preds LL AIC BIC
1 -2454.019 4912.038 4920.221
2 -2411.199 4828.398 4840.672
3 -2402.613 4813.226 4829.591
4 -2397.481 4804.963 4825.419
5 -2390.132 4792.264 4816.811
6 -2387.302 4788.603 4817.243
7 -2386.66 4789.32 4822.051
8 -2386.12 4790.241 4827.062
9 -2386.007 4792.015 4832.928

10 -2385.993 4793.986 4838.99

predictors for each model:

1 : bmi
2 : bmi s5
3 : bmi bp s5
4 : bmi bp s5 s1
5 : bmi bp s5 sex s3
6 : bmi bp s5 sex s1 s2
7 : bmi bp s5 sex s1 s2 s4
8 : bmi bp s5 sex s1 s2 s4 s6
9 : bmi bp s5 sex s1 s2 s4 s6 s3
10 : bmi bp s5 sex s1 s2 s4 s6 s3 age

Using the 6-predictor model on the 442-patient dataset, we still find some high
variance-inflation factors between the first and second serum variables. Note that they
are far lower in magnitude than under the full model.

. estat vif

Variable VIF 1/VIF

s1 8.81 0.113561
s2 7.37 0.135750
s5 2.20 0.454745
bmi 1.47 0.678813
bp 1.34 0.743677
sex 1.23 0.815832

Mean VIF 3.74

If we are concerned about this multicollinearity, we can try the 5-predictor model,
which BIC chose.



C. Lindsey and S. Sheather 1053

. estat vif

Variable VIF 1/VIF

s5 1.46 0.684663
s3 1.46 0.685455
bmi 1.44 0.692867
bp 1.35 0.742260
sex 1.24 0.807833

Mean VIF 1.39

2.2 Poisson model for doctor visits

The doctor visits dataset was examined in Cameron and Trivedi (1986). It contains
data on the number of doctor visits in the past 2 weeks for a sample of 5,190 adults
in the Australian Health Survey 1977–1978 (Australian Burea of Statistics 1978). We
will model the number of doctors visits using a Poisson regression on 12 predictors,
which include gender, mean-adjusted age, age squared, income, and insurance status.
Private insurance is indicated by the binary variable private. Insurance provided by the
government because of low income is indicated by the binary variable inslow. Insurance
provided by the government for retirees, the disabled, and veterans is indicated by the
binary variable insrdv. The variable hscore is a health questionnaire score. The
number of illnesses reported in the last week (illness) and whether the individual has
had days of reduced activity because of illness or injury (daysred) are also included
as predictors. Finally, indicators of whether an individual has a chronic condition that
either limits his or her activity (chcondlim) or does not (chcondnlim) are included as
predictors.

We estimate the parameters of the full model with poisson and then use the mmp

command to draw marginal model plots to check the model’s validity. The mean pre-
diction for poisson, n is specified in predict(). We use a lowess estimate of the
conditional mean by specifying lowess in the smoother() option. We draw a marginal
model plot for the linear form and all continuous predictors by specifying linear and
predictors, respectively.

. use docvisits
(Doctor visits)

. poisson docvis sex age agesq income private inslow insrdv illness hscore
> chcondlim chcondnlim daysred

Iteration 0: log likelihood = -3358.2094
Iteration 1: log likelihood = -3310.9148
Iteration 2: log likelihood = -3310.8564
Iteration 3: log likelihood = -3310.8564
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Poisson regression Number of obs = 5,190
LR chi2(12) = 1344.68
Prob > chi2 = 0.0000

Log likelihood = -3310.8564 Pseudo R2 = 0.1688

docvis Coef. Std. Err. z P>|z| [95% Conf. Interval]

sex .115277 .0562067 2.05 0.040 .0051138 .2254401
age .8193558 .4051036 2.02 0.043 .0253674 1.613344

agesq .0164819 .7585332 0.02 0.983 -1.470216 1.50318
income -.1828918 .0873301 -2.09 0.036 -.3540557 -.011728
private .1019069 .0714919 1.43 0.154 -.0382146 .2420285
inslow -.4774047 .1802192 -2.65 0.008 -.8306278 -.1241816
insrdv .134944 .0922363 1.46 0.143 -.0458357 .3157238
illness .1338196 .0188996 7.08 0.000 .096777 .1708623
hscore .0527531 .009596 5.50 0.000 .0339453 .0715609

chcondlim .1804489 .0812719 2.22 0.026 .021159 .3397389
chcondnlim .0842826 .0661212 1.27 0.202 -.0453124 .2138777

daysred 1.442045 .0557248 25.88 0.000 1.332826 1.551264
_cons -2.07373 .1174598 -17.65 0.000 -2.303947 -1.843513

. mmp, mean(n) smoother(lowess) linear predictors
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Figure 2. Marginal model plots for full model

Figure 2 contains six marginal model plots. The model fit and the alternative fit are
generally close for each continuous regressor and the linear form estimate. The model
fit line is a lowess estimate of the conditional mean estimate from the model on the
horizontal axis variable. The alternative fit line is a lowess estimate of the response
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(observed number of doctor visits) on the vertical axis variable. The closeness of the
model and alternative fit lines corroborates the validity of the full model.

Now, we will use gvselect to fit the optimal model.

. gvselect <term> sex age agesq income private inslow insrdv illness hscore
> chcondlim chcondnlim daysred: poisson docvis <term>

Optimal models:

# Preds LL AIC BIC
1 -3482.672 6969.344 6982.453
2 -3394.773 6795.546 6815.21
3 -3343.585 6695.169 6721.387
4 -3326.782 6663.564 6696.336
5 -3322.142 6656.285 6695.611
6 -3317.884 6649.768 6695.649
7 -3315.092 6646.185 6698.621
8 -3313.097 6644.194 6703.185
9 -3312.132 6644.263 6709.808

10 -3311.671 6645.343 6717.442
11 -3310.857 6645.713 6724.367
12 -3310.856 6647.713 6732.921

predictors for each model:

1 : daysred
2 : daysred illness
3 : daysred illness age
4 : daysred illness hscore age
5 : daysred illness hscore sex age
6 : daysred illness hscore inslow sex age
7 : daysred illness hscore inslow income sex age
8 : daysred illness hscore inslow chcondlim income sex age
9 : daysred illness hscore inslow chcondlim income sex age chcondnlim
10 : daysred illness hscore inslow chcondlim income sex age insrdv private
11 : daysred illness hscore inslow chcondlim income sex age insrdv private

chcondnlim
12 : daysred illness hscore inslow chcondlim income sex age insrdv private

chcondnlim agesq

The model with 8 predictors is favored by AIC, while the model with 5 predictors
is favored by BIC. The AIC model includes the variables of the BIC model, income, the
indicator for chronic conditions with activity limitation, chcondlim, and the indicator
for government health insurance for those with low income, inslow.

We will examine the effect of the 8-predictor model chosen by AIC on the dataset
with 5,190 adults. Recalling our discussion of cross-validation, we do not show the
results of the model fit in poisson, because the significance levels would be misleading.
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. quietly poisson docvis daysred illness hscore inslow chcondlim income sex age

. mmp, mean(n) smoother(lowess) linear predictors
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Figure 3. Marginal model plots for 8-predictor model

The marginal model plots in figure 3 support the validity of the 8-predictor model.
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Now, we examine the 5-predictor model chosen by BIC.

. quietly poisson docvis daysred illness hscore sex age

. mmp, mean(n) smoother(lowess) linear predictors
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Figure 4. Marginal model plots for 5-predictor model

The marginal model plots in figure 4 support the validity of the model. If one does
not favor BIC over AIC, or vice versa, you could choose this model for its parsimony.

3 Conclusion

We explored both the theory and practice of best subsets variable selection in regression.
Using real datasets, we have demonstrated the use of the leaps-and-bounds algorithm
in selecting regressors in normal and nonnormal models.

We fully defined the gvselect command as a method for performing regression
variable selection in Stata and demonstrated its use with two different datasets.
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