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Abstract. In this article, I present ctreatreg, a command for estimating a dose–
response function when i) treatment is continuous, ii) individuals may react het-
erogeneously to observable confounders, and iii) the selection into treatment may
be endogenous. I implement two estimation procedures: ordinary least squares
under conditional mean independence and instrumental variables under selection
endogeneity. Finally, I present a Monte Carlo experiment to test the reliability of
the proposed command.

Keywords: st0412, ctreatreg, boot drf, treatment effects, dose–response function,
continuous treatment, Monte Carlo

1 Introduction

In this article, I present a command, ctreatreg, for estimating a dose–response function
(DRF) through a regression approach when i) treatment is continuous, ii) individuals may
react heterogeneously to observable confounders, and iii) the selection into treatment
may be endogenous. In this context, the DRF is equal to the average treatment effect
(ATE) given the level of treatment t [that is, ATE(t)], with t representing the continuous
treatment variable. Other causal parameters of interest—such as the unconditional
ATE, the ATE on the treated (ATET), and the ATE on the nontreated (ATENT)—are also
estimated by ctreatreg, along with those effects conditional on the vector (x, t), where
x is a vector of predetermined variables.

In many socioeconomic and epidemiological contexts, interventions take the form
of a continuous exposure to a certain type of treatment. From a program evaluation
perspective, indeed, what is relevant in many settings is not only the binary treatment
status but also the level of exposure (or dose) provided by a public agency. This is
also in tune with the language of epidemiology, where DRFs are usually estimated to
check patients’ resilience to different levels of drug administration (Robertson et al.
1994; Royston and Sauerbrei 2008).

Consider a policy program where the treatment is not assigned randomly (that is, it
is assigned according to some structural rule) and where—after setting who is treated

c© 2015 StataCorp LP st0412



1020 ctreatreg: Command for fitting dose–response models

and who is not—the program provides a different level or exposure to treatment ranging
from 0 (no treatment) to 100 (maximum level of treatment). Two groups of units are
thus formed: untreated, whose level of treatment (or dose) is 0, and treated, whose level
of treatment is greater than 0.

We are interested in estimating the causal effect of the treatment variable t on an
outcome y within the observed sample, assuming that treated and untreated units may
respond differently both to specific observable confounders (that we collect in a vector
x) and to the intensity of the treatment t. We wish to estimate a DRF of y on t,
when the treatment is assumed to be either exogenous (that is, selection into treatment
depends only on factors observable to the analyst) or endogenous (that is, selection into
treatment depends on factors both observable and unobservable to the analyst).

Compared with similar models—and in particular the one proposed by Hirano and
Imbens (2004) implemented in Stata by Bia and Mattei (2008)—this model does not
need a full normality assumption, and it is well-suited when many individuals have a
treatment level of 0. Moreover, it may account for treatment endogeneity by exploiting
an instrumental-variables (IV) estimation in a continuous treatment context.

When many units are not exposed to treatment, the distribution of t has a “spike” or
non-nil probability mass at 0, that is, p(t = 0) > 0. So, assuming that the distribution of
t|x comes from a normal distribution (or mixture of normal distributions), as assumed
in the generalized propensity score (GPS) proposed by Hirano and Imbens (2004), is un-
tenable, because in the presence of a spike at 0 this distribution is clearly discontinuous
and thus nonnormal. Recently, however, Guardabascio and Ventura (2014) have pro-
posed a modification of the Hirano–Imbens model extending the GPS approach to the
case of a nonnormal continuous treatment variable. The authors consider a set of al-
ternative distributions (binomial, Poisson, gamma, inverse Gaussian, etc.) derived from
the exponential family of distributions.

Similarly, Bia et al. (2014) have proposed a generalization of the Hirano–Imbens
model that allows one to estimate semiparametrically the DRF. In their article, the
authors propose to estimate the GPS parametrically under various alternative distribu-
tional assumptions (such as the normal, inverse Gaussian, and gamma distributions)
using as link functions the identity function, the logarithm, and the power function.
Moreover, in the case of a treatment variable assuming values in the (0, 1) interval, a
two-parameter Beta distribution is also implemented.

Another interesting approach modeling a continuous treatment setting is the one
proposed by Adorno, Bernini, and Pellegrini (2007). They propose a nonparametric
two-step matching approach based on the generalized propensity function developed by
Imai and van Dyk (2004). In the first step, they specify a participation decision rule
and match units on the set of covariates that identify such process; in the second step,
by considering only matched units from the first step, they perform another matching
procedure pairing units having similar values only for the covariates explaining the treat-
ment level assignment. Treated and untreated units are thus assumed to be balanced
on both processes (binary selection and level assignment) because the only difference
between the two groups should be in program participation. Although this model con-
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siders the presence of “zeros” in the treatment level variable, it is suitable only under
conditional independence.

The above approaches, relaxing some parametric assumptions, represent important
improvements in the estimation of DRFs. Nevertheless, they still are unsuited to incor-
porate i) a zero-treatment probability mass and ii) the potential treatment endogeneity
in the estimation of the DRF. I try to overcome both of these limitations in the present
article.

However, the approach presented in this article has some of its own limitations.
First, differently from the semiparametric approach adopted by Adorno, Bernini, and
Pellegrini (2007) and Bia et al. (2014), the approach presented here assumes a para-
metric form of the potential outcomes with additive separability. Second, it does not
need an estimation of the GPS, which might be interesting to analyze itself. Third, the
proposed IV estimation uses a Heckman bivariate selection model, which requires addi-
tional distributional assumptions. Fourth, it only considers the presence of observable
heterogeneity, thus neglecting the possible presence of unobservable heterogeneity. The
model is, however, well suited to address DRF estimation when conditions (i) and (ii)
above are present.

The reliability of the model and of its Stata implementation via ctreatreg is then
checked by a Monte Carlo experiment, showing that the model and the command comply
with the expected results and are also robust to departures from the joint normality of
errors. The command also provides an interesting graphical representation of results by
optionally plotting both the conditional effects’ distribution and the DRF along with its
analytical and bootstrapped confidence intervals.

The article is organized as follows. Sections 2 and 3 present the model, its assump-
tions and formulas, and related estimation techniques. Section 4 presents and explains
the use of ctreatreg. Section 5 shows an application of ctreatreg on real data. Sec-
tion 6 sets out the results from a related Monte Carlo experiment to test the command’s
reliability. And finally, section 7 concludes the article.

2 The model

Let us start with some notation. Consider two different and exclusive potential out-
comes: one referring to the unit i when treated, y1i, and one referring to the same unit
when untreated, y0i. Define wi as the treatment indicator, taking value 1 for treated
and 0 for untreated units, and define xi = (x1i, x2i, x3i, . . . , xMi) as a row vector of M
exogenous and observable characteristics (confounders) for unit i = 1, . . . , N . Let N be
the total number of units, N1 be the number of treated units, and N0 be the number
of untreated units, with N = N1 +N0.

Define two distinct functions, g1(xi) and g0(xi), as the unit i’s responses to the
vector of confounding variables xi when the unit is treated and untreated, respectively.
Assume µ1 and µ0 to be two scalars, and assume e1 and e0 to be two random variables
having 0 unconditional mean and constant variance. Finally, define ti—taking values
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within the continuous range [0, 100]—as the continuous-treatment indicator, and define
h(ti) as a general derivable function of ti. In what follows, to simplify notation, we will
get rid of the subscript i when defining population quantities and relations.

Given previous notation, we assume a specific population generating process for the
two exclusive potential outcomes:1

{
w = 1 : y1 = µ1 + g1(x) + h(t) + e1
w = 0 : y0 = µ0 + g0(x) + e0

(1)

where the h(t) function is different from 0 only in the treated status. Given this, we can
also define the causal parameters of interest. Indeed, by defining the treatment effect
(TE) as TE = (y1 − y0), we define the causal parameters of interest as the population
ATEs conditional on x and t; that is,

ATE(x, t) = E(y1 − y0|x, t)
ATET(x, t > 0) = E(y1 − y0|x, t > 0)

ATENT(x, t = 0) = E(y1 − y0|x, t = 0) (2)

where ATE indicates the overall average TE, ATET indicates the average TE on treated,
and ATENT indicates the average TE on untreated units. By the law of iterated expec-
tation, we know that the population unconditional ATEs are obtained as

ATE = E(x,t){ATE(x, t)}
ATET = E(x,t>0){ATE(x, t > 0)}

ATENT = E(x,t=0){ATE(x, t = 0)} (3)

where Ez(·) identifies the mean operator taken over the support of a generic vector of
variables z. By assuming a linear-in-parameters parametric form for g0(x) = xδ0 and
g1(x) = xδ1, the ATE conditional on x and t becomes

ATE(x, t, w) = w × {µ+ xδ + h(t)}+ (1− w)× (µ+ xδ)

where µ = (µ1 − µ0) and δ = (δ1 − δ0). The unconditional ATE related to model (1) is
equal to

ATE = p(w = 1)×
(
µ+ xt>0δ + ht>0

)
+ p(w = 0)× (µ+ xt=0δ)

where p(·) is a probability and ht>0 is the average of the response function taken over
t > 0. Because we have, by law of iterated expectation, that ATE = p(w = 1)×ATET+
p(w = 0)× ATENT, we obtain from the previous formula that





ATE = p(w = 1)
(
µ+ xt>0δ + ht>0

)
+ p(w = 0) (µ+ xt=0δ)

ATET = µ+ xt>0δ + ht>0

ATENT = µ+ xt=0δ

(4)

1. Such a model is the representation of a treatment random coefficient regression as shown by
Wooldridge (1997, 2003). See also Wooldridge (2010, chap. 21).
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where the DRF is given by averaging ATE(x, t) over x,

ATE(t) =

{
ATET+ {h(t)− ht>0} if t > 0
ATENT if t = 0

(5)

that is, the DRF is a function of the treatment intensity t. The estimation of (5) under
different identification assumptions is the main purpose of section 3.

3 The regression approach

In this section, we will consider the conditions for a consistent estimation of the causal
parameters defined in (2) and (3) and thus of the DRF in (5). What is needed first,
however, is a consistent estimation of the parameters of the potential outcomes in (1)—
the “basic” parameters—because both the ATEs and the DRF are functions of these
parameters.

Under previous definitions and assumptions, and in particular the form of the po-
tential outcomes in model (1), to be substituted into Rubin’s (1974) potential outcome
equation yi = y0i+w(y1i−y0i), the following baseline random-coefficient regression can
be obtained (Wooldridge 1997, 2003):

yi = µ0 + wi × ATE+ xiδ0 + wi × (xi − x)δ + wi ×
{
h(ti)− h

}
+ ηi (6)

where ηi = e0i + wi × (e1i − e0i).

Equation (6) provides the baseline regression for estimating the basic parameters
(µ0, µ1, δ0, δ1, ATE) and then all the remaining ATEs. A semiparametric or parametric
approach can be used as soon as a parametric or nonparametric form of the function h(t)
is assumed. In both cases, however, to get a consistent estimation of basic parameters,
we need some additional assumptions. We start by first assuming unconfoundedness
or conditional mean independence (CMI), showing that it is sufficient to provide pa-
rameters’ consistent estimation. We then remove this assumption and introduce other
identifying assumptions.

3.1 Estimation under unconfoundedness

According to Rubin (1974), unconfoundedness states that, conditional on the knowl-
edge of the true exogenous confounders x, the conditions for randomization2 are re-
stored and causal parameters become identifiable. Given the set of random variables
{y0i, y1i,xi, wi, ti} as defined above, unconfoundedness (or CMI) implies in this specific
case that

E(yji|wi, ti,xi) = E(yji|xi) with j = {0, 1}

This form of the CMI assumption is a sufficient condition for identifying ATEs and the
DRF in this context. Indeed, this assumption entails that, given the observable variables

2. In program evaluation literature, assuming randomization is equivalent to assuming probabilistic
independence between potential outcomes and treatment (Rubin 1974).
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collected in x, both w and t are exogenous in (6). Thus we can write the regression line
of the response y simply as

E(yi|wi, ti,xi) = µ0 + wi × ATE+ xiδ0 + wi × (xi − x)δ + wi ×
{
h(ti)− h

}
(7)

and ordinary least squares (OLS) can be used to retrieve consistent estimation of all
parameters. Once a consistent estimation of the parameters in (7) is obtained, we can
estimate ATE directly from this regression; we can estimate ATET, ATENT, and the
DRF by plugging the estimated basic parameters into (4) and (5). This is possible be-
cause these parameters are functions of consistent estimates and thus are consistent
themselves. Standard errors for ATET and ATENT can be correctly obtained via boot-
strapping (see Wooldridge [2010, 911–919]).

To complete the identification of ATEs and the DRF, we finally assume a polynomial
parametric form of degree m for h(t):

h(ti) = λ1ti + λ2t
2
i + λ3t

3
i + · · ·+ λmtmi

where λi(i = 1, . . . ,m) are among the parameters to be estimated in regression (7).

Under CMI, an OLS estimation of (7) produces consistent estimates of the parameters

we indicate as µ̂0, δ̂0, ÂTE, δ̂, λ̂1, . . . , λ̂m. For the sake of simplicity, assume that m = 3,
λ1 = a, λ2 = b, and λ3 = c. With a consistent estimation of these parameters at hand,
we can finally estimate consistently the DRF as

ÂTE(ti) = w

{
ÂTET+ â

(
ti −

1

N

N∑

i=1

ti

)
+ b̂

(
t2i −

1

N

N∑

i=1

t2i

)
+ ĉ

(
t3i −

1

N

N∑

i=1

t3i

)}

+ (1− w) ̂ATENT

where
ÂTET(ti) = ÂTE(ti)ti>0

A simple plot of the curve ÂTE(ti)ti>0 over the support of t returns the pattern of
the DRF. Moreover, for each level of the dose t, it is also possible to calculate the α-
confidence interval around the dose–response curve. Indeed, by defining T1 = t−E(t),
T2 = t2 − E(t2), and T3 = t3 − E(t3), the standard error of the DRF is equal to3

σ̂
ÂTE(t)

=
(
T 2
1 σ̂

2
a + T 2

2 σ̂
2
b + T 2

3 σ̂
2
c + 2T1T2σ̂a,b + 2T1T3σ̂a,c + 2T2T3σ̂b,c

)1/2

The α-confidence interval of ÂTE(t) for each t is then given by
{
ÂTE(t)± Zα/2 × σ̂

ÂTE(t)

}

which can be usefully plotted along the dose–response curve to visually detect the
statistical significance of the TE along the support of the dose t.

3. This comes from the variance–covariance properties where T1, T2, and T3 are taken as constant
and a, b, and c are taken as random variables.
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Of course, the derivative of the DRF also can be estimated. The formula of this
function is

∂ATE(t)

∂t
= â+ 2b̂t+ 3ĉt2

with
σ̂ ∂ATE(t)

∂t

= (σ̂2
a + 4t2σ̂2

b + 9t4σ̂2
c + 2tσ̂a,b + 3t2σ̂a,c + 6t3σ̂b,c)

1/2

The α-confidence interval of ÂTE(t) for the derivative of each t is then given by
{
∂ATE(t)

∂t
± Zα/2 × σ̂ ∂ATE(t)

∂t

}

which can be drawn as a function of t.

3.2 Estimation under treatment endogeneity

When w (and thus t) are endogenous, the CMI assumption no longer holds, and the OLS

estimate of regression (7) becomes inconsistent. This occurs because the orthogonality
condition implied by unconfoundedness fails, so

E(ηi|wi, ti,xi) = E{e0i + wi × (e1i − e0i)|wi, ti,xi} 6= 0

where it is clear that inequality depends on the endogeneity of wi (and ti), with xi

assumed to be predetermined. In such a case, however, an IV estimation may be imple-
mented to restore consistency. To this aim, it is sufficient to express the previous model
in a semistructural form; that is,

yi = µ0 + xiδ0 + wiATE+ wi(xi − x)δ + wiT1i + bwiT2i + cwiT3i + ηi (8.1)

w∗
i = xw,iβw + ǫw,i (8.2)

t
′

i = xt,iβt + ǫt,i (8.3)

where T1i = ti −E(ti), T2i = t2i −E(t2i ), and T3i = t3i −E(t3i ); w
∗
i represents the latent

unobservable counterpart of the binary variable wi (for instance, w∗
i might be seen as

the net benefit—cost minus return—of an agency choosing to finance specific subjects);
ti is fully observed only when wi = 1 (and ti = t

′

i) and otherwise is supposed to be
unobserved (although put equal to 0); xw,i and xt,i are two sets of exogenous regressors;
and ǫw,i, ǫt,i, and ηi are error terms that are supposed to be freely correlated with one
another with 0 unconditional mean. Equation (8.2)—the selection equation—defines
the regression explaining the net benefit indicator w∗. The vector of covariates xw,i are
the selection criteria used, for instance, by an agency to set the treated and untreated
groups. In turn, (8.3)—the treatment-level equation—defines how the level of unit
treatment is decided, and it only considers units that were eligible for treatment. Finally,
the vector of covariates xt,i are those exogenous variables thought of as determining the
treatment level.

In (8.1), wi, T1i, T2i, and T3i are endogenous, with the latter three being functions of
the endogenous t. In general, with two endogenous variables, the identification of system
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(8.1–8.3) would require the availability of at least two IVs, zw,i and zt,i, supposed to be

directly correlated with w∗
i and t

′

i but not with yi (exclusion restriction), and supposed
to be uncorrelated with ǫw,i, ǫt,i, and ηi (exogeneity). This leads naturally to the
following specification of the exogenous confounding variables in system (8.1–8.3):

xw,i = (xi, zw,i)

xt,i = (xi, zt,i)

Practical estimation of system (8.1–8.3) starts from recognizing that (8.2) and (8.3)
together represent a bivariate sample-selection model or type-2 tobit model (Heckman
1979).4 This model is usually fit by invoking some distributive assumptions regarding
the error terms. We assume that the error terms in (8.2) and (8.3) are jointly normally
distributed and homoskedastic:

[
ǫw,i

ǫt,i

]
∼ N

[[
0
0

]
:

[
1 σw,t

σw,t σ2
t

]]

where the normalization σw = 1 is used because only the sign of w∗
i is observed. Given

this additional assumption, all the ingredients are available to provide a procedure for
estimating system (8.1–8.3) consistently:

1. Fit (8.2)–(8.3) jointly by a type-2 tobit model.

Comment. This can be achieved by a Heckman two-step procedure (Heckman
1979). The Heckman two-step procedure performs a probit of wi on xw,i in the
first step, using only the N1 selected observations. In the second step, it performs
an OLS regression of t

′

i on xt,i, augmented by the Mills’ ratio obtained from the
probit in the first step, using all the N observations as predictions are also made
for the censored data. However, because of the errors’ joint normality, a maximum
likelihood estimation also can be used, leading to more efficient estimates of βw

and βt.

2. Compute the predicted values of wi (that is, p̂wi) and ti (that is, t̂i) from the
previous type-2 tobit estimation. Then perform a two-stage least squares (2SLS)
for (8.1) using as instruments the following exogenous variables: {xi, p̂wi, p̂wi(xi−
x), p̂wiT̂1i, p̂wiT̂2i, p̂wiT̂3i}.

4. It is not clear which is the link between the definition of the local ATE as proposed by
Imbens and Angrist (1994) and the IV approach as proposed in this article. The problem is that
local ATE identifies the causal effect of w on y in a setting where the instrument z is binary.
Although extensions have been provided to the case in which w can be multivalued and more than
one binary z is available (Angrist and Pischke 2009, 173–186), no comparable findings have been
found in the literature thus far for the case in which both the treatment and the instrument take
values on a continuous support. The use of IV under heterogeneous effects will, however, identify a
causal effect for a subpopulation and not for the (complete) population. This is irrespective of the
precise characterization of the subpopulation (for example, compliers in the binary setting). This
certainly represents a trade-off when moving to the use of IV when there is effect heterogeneity
based on unobservables.
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Comment. This 2SLS approach provides consistent estimation of the basic coeffi-
cients µ0, δ0, ATE, δ, a, b, and c (Wooldridge 2010, 937–951).5

3. Once the previous step consistently estimates the basic parameters in system (8.1–
8.3), the causal parameters of interest—ATEs and the DRF—can be consistently
estimated by the same plug-in approach used for the OLS case.

Because this third step uses generator regressors, the standard errors must be
adjusted for this. Bootstrapping standard errors may be a valid alternative, and
ctreatreg allows for calculating the DRF bootstrapped standard errors via the
postestimation command boot drf.

3.3 Estimation of comparative DRFs

Aside from the DRF and other causal parameters of interest as defined above, the pre-
vious model also allows for calculating the average comparative response at different
levels of treatment (as in Hirano and Imbens [2004]).

ATE(x,∆) = E{y(t+∆)− y(t)} (9)

Equation (9) identifies the ATE between two states (or levels of treatment): t and t+∆.
Given a level of ∆ = ∆, we can get a particular ATE(t,∆) that can be seen as the
treatment function at ∆.

4 The ctreatreg command

The command ctreatreg estimates DRFs under CMI and under treatment endogeneity.6

A description of all available options is provided in the ctreatreg help file. Here, I
report the syntax and comment on the functionality of just the main options.

4.1 Syntax of ctreatreg

ctreatreg outcome treatment
[
varlist

] [
if
] [

in
] [

weight
]
, model(modeltype)

ct(treat level) m(number) s(number)
[
hetero(varlist h) estype(model)

iv t(instrument t) iv w(instrument w) delta(number) ci(number) graphate

graphdrf conf(number) vce(robust) heckvce(vcetype) const(noconstant)

head(noheader)
]

ctreatreg is straightforward to use and provides suitable graphical representations
of results. In particular, it provides a plot of the DRF (along with its confidence interval
curves) and of the density of ATE(x, t), ATET(x, t), and ATENT(x, t).

5. Observe that the instruments used in 2SLS are based on the orthogonal projection of wi and ti on
the vector space generated by all the exogenous variables of system (8.1–8.3).

6. For a Stata implementation when the treatment is binary, see Cerulli (2014).
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4.2 Options

model(modeltype) specifies the treatment model to be fit, where modeltype must be one
of ct-ols or ct-iv. model() is required.

ct(treat level) specifies the treatment level (or dose). This variable takes values in the
[0, 100] interval, where 0 is the treatment level of nontreated units. The maximum
dose is thus 100.7 ct() is required.

m(number) sets the polynomial degree of the DRF equal to number. m() is required.

s(number) sets a specific value of the continuous treatment variable where the DRF is
evaluated. The value of ATE(s) is reported in the return scalar e(ate s). s() is
required.

hetero(varlist h) specifies the variables for which to calculate the idiosyncratic ATE(x),
ATET(x), and ATENT(x), where x = varlist h. hetero() is optional for all models.
When this option is not specified, the command fits the specified model without the
heterogeneous average effect. varlist h should be the same set or a subset of the
variables specified in varlist, and only numerical variables may be considered.

estype(model) specifies the type of estimation method to use for fitting the type-2 tobit
model in the endogenous treatment case. model may be twostep to implement a
Heckman two-step procedure or ml to implement a maximum likelihood estimation.
estype() is required only for ct-iv.

iv t(instrument t) specifies the variable to use as the instrument for the continuous
treatment variable t in the type-2 tobit model. iv t() is required only with ct-iv.

iv w(instrument w) specifies the variable to use as the instrument for the binary treat-
ment variable w in the type-2 tobit model. iv w() is required only with ct-iv.

delta(number) identifies the ATE between two states: t and t+ delta. For any chosen
delta, we can obtain the response function ATE(t, delta) = E{y(t)− y(t+ delta)}.

ci(number) sets the significance level for the DRF, where number may be 1, 5, or 10.

graphate requests a graphical representation of the density distributions of ATE(x, t),
ATET(x, t), and ATENT(x, t). It provides an outcome only if variables are specified
in hetero().

graphdrf requests a graphical representation of the DRF and its derivative. By default,
it also plots the 95% confidence interval of the DRF and its derivative over the dose
levels. When graphdrf is specified, you must also specify ci().

Finally, ctreatreg generates some useful variables for postestimation analysis and
returns the estimated TEs in scalars to get, for instance, bootstrapped standard errors
for ATET and ATENT that do not have a standard analytical form (see the ctreatreg

help file).

7. If the continuous treatment variable does not naturally lie between 0 and 100, one can use a suitable
transformation to ensure that it falls within this interval.
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4.3 Bootstrapped standard errors with boot drf

Sometimes, it might be useful to also obtain bootstrapped standard errors for the
DRF. To this aim, I provide a ctreatreg postestimation command called boot drf,
which calculates such standard errors and graphs the result automatically after running
ctreatreg normally.

Syntax of boot drf

boot drf, rep(number)
[
size(number) saving(filename) bca

]

Options

rep(number) specifies the number of bootstrap replications. rep() is required.

size(number) specifies the sample size of a single bootstrap replication. By default, it
is equal to the current sample size.

saving(filename) specifies to save the resulting graph in filename.gph.

bca specifies to estimate confidence intervals by the bias-corrected and accelerated
method.

The statistical significance level assumed by boot drf is the same as the one declared
in the ci() option of ctreatreg.

5 An illustrative application

Let us consider the Stata 14 example dataset nlsw88.dta collecting data from the Na-
tional Longitudinal Survey of Young Women 1988, containing information on women’s
labor conditions such as wages, educational level, race, and marital status. We wish
to study the impact of the variable tenure (job tenure) on wage (wages in dollars per
hour) conditional on a series of other covariates (that is, observable confounders) refer-
ring to each single woman. The variable tenure is a good candidate to be exploited as
continuous treatment (that is, dose) for such a model, having a (small) spike at 0:

. sysuse nlsw88.dta
(NLSW, 1988 extract)

. summarize tenure

Variable Obs Mean Std. Dev. Min Max

tenure 2,231 5.97785 5.510331 0 25.91667

. count if tenure==0
51
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. describe

Contains data from C:\Program Files\stata14\ado\base/n/nlsw88.dta
obs: 2,246 NLSW, 1988 extract
vars: 17 1 May 2014 22:52
size: 60,642 (_dta has notes)

storage display value
variable name type format label variable label

idcode int %8.0g NLS id
age byte %8.0g age in current year
race byte %8.0g racelbl race
married byte %8.0g marlbl married
never_married byte %8.0g never married
grade byte %8.0g current grade completed
collgrad byte %16.0g gradlbl college graduate
south byte %8.0g lives in south
smsa byte %9.0g smsalbl lives in SMSA
c_city byte %8.0g lives in central city
industry byte %23.0g indlbl industry
occupation byte %22.0g occlbl occupation
union byte %8.0g unionlbl union worker
wage float %9.0g hourly wage
hours byte %8.0g usual hours worked
ttl_exp float %9.0g total work experience
tenure float %9.0g job tenure (years)

Sorted by: idcode

We consider a model where the outcome, the treatment, and the controls are defined
as follows:

• outcome y: wage

• treatment w: tenure

• controls x: age, race, married, collgrad, south, occupation

Furthermore, we consider two IVs to use in the IV estimation (when assuming endoge-
nous treatment):

• instrument for w: c city

• instrument for t: ttl exp

The goodness of these instruments is just assumed; it is neither discussed nor tested
because this is just an instructional example.
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Before estimation, we generate the binary treatment variable, called treatment:

. capture drop treatment

. generate treatment=0 if tenure==0
(2,195 missing values generated)

. replace treatment=1 if tenure >0 & tenure !=.
(2,180 real changes made)

. tabulate treatment, mis

treatment Freq. Percent Cum.

0 51 2.27 2.27
1 2,180 97.06 99.33
. 15 0.67 100.00

Total 2,246 100.00

We then generate the continuous treatment (dose), which we call tenure2:

. capture drop tenure2

. quietly summarize tenure, detail

. generate tenure2=(tenure-0)/(r(max)-0)*100
(15 missing values generated)

. summarize tenure2

Variable Obs Mean Std. Dev. Min Max

tenure2 2,231 23.06566 21.26173 0 100

We now have all the ingredients to apply ctreatreg to this example. Before we
fit the ct-ols model (by assuming unconfoundedness) and then the ct-iv model (by
assuming treatment endogeneity), we put variables into proper global macros:

. global xvars age i.race i.married i.collgrad i.south i.occupation

. global xvarh age married
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Example

Applying ctreatreg using ct-ols (unconfoundedness):

. xi: ctreatreg wage treatment $xvars, graphdrf delta(10) hetero($xvarh)
> model(ct-ols) ct(tenure2) ci(1) m(3) s(10)

(output omitted )

Source SS df MS Number of obs = 2,222
F(24, 2197) = 22.51

Model 14597.0383 24 608.209929 Prob > F = 0.0000
Residual 59355.7045 2,197 27.0167067 R-squared = 0.1974

Adj R-squared = 0.1886
Total 73952.7428 2,221 33.2970477 Root MSE = 5.1978

wage Coef. Std. Err. t P>|t| [95% Conf. Interval]

treatment -.2258611 .7723743 -0.29 0.770 -1.740521 1.288799
age .1767878 .227949 0.78 0.438 -.2702303 .6238058

_Irace_2 -.1996851 .2791678 -0.72 0.475 -.7471455 .3477754
_Irace_3 .1440398 1.032971 0.14 0.889 -1.881661 2.169741

_Imarried_1 1.715242 1.586304 1.08 0.280 -1.395571 4.826055
_Icollgrad_1 2.699153 .3225719 8.37 0.000 2.066575 3.33173

_Isouth_1 -1.066165 .2348634 -4.54 0.000 -1.526743 -.6055878
_Ioccupatio_2 .7195711 .4397573 1.64 0.102 -.1428125 1.581955
_Ioccupatio_3 -2.390577 .3711658 -6.44 0.000 -3.11845 -1.662705
_Ioccupatio_4 -.8981176 .6056345 -1.48 0.138 -2.085794 .2895586
_Ioccupatio_5 -2.447399 .7883316 -3.10 0.002 -3.993352 -.9014455
_Ioccupatio_6 -3.49792 .4760362 -7.35 0.000 -4.431448 -2.564392
_Ioccupatio_7 -5.015922 1.067796 -4.70 0.000 -7.109918 -2.921927
_Ioccupatio_8 -4.163116 .4537492 -9.17 0.000 -5.052938 -3.273293
_Ioccupatio_9 -4.049776 5.216821 -0.78 0.438 -14.28019 6.180642

_Ioccupatio_10 -5.074733 1.777695 -2.85 0.004 -8.560871 -1.588594
_Ioccupatio_11 -2.754774 1.344621 -2.05 0.041 -5.391636 -.1179119
_Ioccupatio_12 -2.218878 3.697292 -0.60 0.548 -9.469431 5.031675
_Ioccupatio_13 -3.025867 .5067538 -5.97 0.000 -4.019633 -2.0321

_ws_age -.2638586 .2308734 -1.14 0.253 -.7166115 .1888944
_ws_married -2.31864 1.600491 -1.45 0.148 -5.457274 .8199942

Tw_1 .126682 .0389813 3.25 0.001 .050238 .2031261
Tw_2 -.0026322 .0012225 -2.15 0.031 -.0050296 -.0002347
Tw_3 .0000203 .0000104 1.95 0.051 -9.27e-08 .0000407
_cons 1.878267 9.239643 0.20 0.839 -16.24108 19.99762

(output omitted )

Results show a not very good R-squared with a negative and nonsignificant ATE,
equal to around −0.22. It means that, on average, over all values taken by job tenure,
the effect of tenure on wage is negative. However, the plot of the DRF (figure 1) shows
that the relationship is weakly increasing and quite precisely estimated for lower values
of the dose; it is more strongly increasing but less precisely estimated for higher levels
of the dose.
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Figure 1. DRF of job tenure on wage; exogenous treatment case

By default, ctreatreg also plots the derivative of the DRF along with its confidence
interval, as illustrated in figure 2. We can see that the derivative of the DRF is a parabola
because the DRF is a cubic function. The minimum of the derivative is found around a
dose of 50, where the DRF correctly exhibits a flex point.



1034 ctreatreg: Command for fitting dose–response models

−
.2

0
.2

.4
.6

D
e
ri
v
a
ti
v
e
 o

f 
th

e
 r

e
s
p
o
n
s
e
 f
u
n
c
ti
o
n

0 10 20 30 40 50 60 70 80 90 100

Dose (t)

Der_ATE(t)

1% significance

Model: ct−ols

 
Outcome variable: wage 

 

Derivative of the dose−response function

Figure 2. Derivative of the DRF of job tenure on wage; exogenous treatment case

Finally, we can estimate the DRF with bootstrapped standard errors by using the
ctreatreg postestimation command boot drf with 20 replications.

. quietly xi: ctreatreg wage treatment $xvars, graphdrf delta(10) hetero($xvarh)
> model(ct-ols) ct(tenure2) ci(1) m(3) s(25)

. boot_drf, rep(20)

(output omitted )

We obtain the plot displayed in figure 3, where we see that the bootstrapped and
analytical standard errors show a very similar pattern.
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Figure 3. DRF of job tenure on wage; exogenous treatment case with bootstrapped
standard errors

Example

Applying ctreatreg using ct-iv (treatment endogeneity):

. xi: ctreatreg wage treatment $xvars, graphdrf delta(10) hetero($xvarh)
> model(ct-iv) ct(tenure2) ci(1) m(3) s(10) estype(twostep) iv_t(ttl_exp)
> iv_w(c_city)

(output omitted )
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Heckman selection model -- two-step estimates Number of obs = 2,222
(regression model with sample selection) Censored obs = 50

Uncensored obs = 2,172

Wald chi2(19) = 215.05
Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

tenure2
age .2754417 .5995455 0.46 0.646 -.8996459 1.450529

_Irace_2 4.883963 5.678379 0.86 0.390 -6.245454 16.01338
_Irace_3 -5.935405 10.02299 -0.59 0.554 -25.5801 13.70929

_Imarried_1 .9848613 3.053211 0.32 0.747 -4.999322 6.969044
_Icollgrad_1 -.7735144 2.671136 -0.29 0.772 -6.008844 4.461815

_Isouth_1 -2.230267 1.940938 -1.15 0.251 -6.034436 1.573903
_Ioccupatio_2 -1.854261 3.678048 -0.50 0.614 -9.063102 5.35458
_Ioccupatio_3 1.142482 3.494785 0.33 0.744 -5.707171 7.992135
_Ioccupatio_4 -3.492005 5.128079 -0.68 0.496 -13.54286 6.558845
_Ioccupatio_5 3.216274 6.502177 0.49 0.621 -9.527759 15.96031
_Ioccupatio_6 3.173788 5.332911 0.60 0.552 -7.278525 13.6261
_Ioccupatio_7 -4.144287 9.199841 -0.45 0.652 -22.17564 13.88707
_Ioccupatio_8 -.0788224 4.295322 -0.02 0.985 -8.497499 8.339855
_Ioccupatio_9 13.30952 43.12609 0.31 0.758 -71.21606 97.8351

_Ioccupatio_10 -3.30663 16.39857 -0.20 0.840 -35.44723 28.83397
_Ioccupatio_11 .15048 12.24041 0.01 0.990 -23.84028 24.14124
_Ioccupatio_12 2.790015 30.87441 0.09 0.928 -57.72271 63.30274
_Ioccupatio_13 7.52296 4.249082 1.77 0.077 -.8050881 15.85101

ttl_exp 2.674497 .1994488 13.41 0.000 2.283585 3.06541
_cons -20.20849 21.89844 -0.92 0.356 -63.12864 22.71166

treatment
age -.0411952 .0197378 -2.09 0.037 -.0798805 -.0025099

_Irace_2 -.3772631 .1481417 -2.55 0.011 -.6676154 -.0869108
_Irace_3 4.241509 . . . . .

_Imarried_1 -.1866555 .1368208 -1.36 0.172 -.4548194 .0815084
_Icollgrad_1 -.0239416 .1832938 -0.13 0.896 -.3831908 .3353076

_Isouth_1 -.0170888 .1291613 -0.13 0.895 -.2702404 .2360627
_Ioccupatio_2 .0794301 .2837233 0.28 0.780 -.4766574 .6355175
_Ioccupatio_3 -.1461987 .21451 -0.68 0.496 -.5666305 .2742331
_Ioccupatio_4 -.1138135 .3431414 -0.33 0.740 -.7863584 .5587314
_Ioccupatio_5 .001804 .4545683 0.00 0.997 -.8891336 .8927416
_Ioccupatio_6 -.2590639 .2508861 -1.03 0.302 -.7507916 .2326638
_Ioccupatio_7 -.1739169 .5023217 -0.35 0.729 -1.158449 .8106155
_Ioccupatio_8 -.1712341 .2485614 -0.69 0.491 -.6584054 .3159373
_Ioccupatio_9 3.903505 . . . . .

_Ioccupatio_10 4.389021 . . . . .
_Ioccupatio_11 4.386132 . . . . .
_Ioccupatio_12 4.21906 . . . . .
_Ioccupatio_13 .0566438 .3059878 0.19 0.853 -.5430813 .6563688

c_city .0300973 .1400446 0.21 0.830 -.2443852 .3045798
_cons 3.981387 .8266223 4.82 0.000 2.361237 5.601537

mills
lambda -42.75893 116.9072 -0.37 0.715 -271.8928 186.375

rho -1.00000
sigma 42.758929

(output omitted )
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Instrumental variables (2SLS) regression

Source SS df MS Number of obs = 2,222
F(24, 2197) = 20.92

Model 5979.39919 24 249.141633 Prob > F = 0.0000
Residual 67973.3437 2,197 30.9391642 R-squared = 0.0809

Adj R-squared = 0.0708
Total 73952.7428 2,221 33.2970477 Root MSE = 5.5623

wage Coef. Std. Err. t P>|t| [95% Conf. Interval]

treatment -5.935915 51.67792 -0.11 0.909 -107.2786 95.40679
_ws_age 1.446693 3.919612 0.37 0.712 -6.23984 9.133225

_ws_married -17.08296 26.39882 -0.65 0.518 -68.85222 34.6863
Tw_1 .3203173 .1779275 1.80 0.072 -.0286064 .669241
Tw_2 -.005373 .0051574 -1.04 0.298 -.0154869 .0047409
Tw_3 .0000309 .0000396 0.78 0.435 -.0000467 .0001085
age -1.516218 3.919952 -0.39 0.699 -9.203418 6.170981

_Irace_2 -.5161937 .9440787 -0.55 0.585 -2.367574 1.335186
_Irace_3 .5907224 1.478986 0.40 0.690 -2.309635 3.491079

_Imarried_1 16.15121 25.5332 0.63 0.527 -33.92053 66.22296
_Icollgrad_1 2.457484 .4774821 5.15 0.000 1.521121 3.393848

_Isouth_1 -1.00309 .2542077 -3.95 0.000 -1.501602 -.5045771
_Ioccupatio_2 .6295055 .5350773 1.18 0.240 -.4198048 1.678816
_Ioccupatio_3 -2.1374 .5723671 -3.73 0.000 -3.259837 -1.014963
_Ioccupatio_4 -.0207587 .7577837 -0.03 0.978 -1.506806 1.465289
_Ioccupatio_5 -2.534627 .8942808 -2.83 0.005 -4.288352 -.7809032
_Ioccupatio_6 -3.507123 1.332124 -2.63 0.009 -6.119476 -.8947696
_Ioccupatio_7 -3.528173 1.252746 -2.82 0.005 -5.984864 -1.071482
_Ioccupatio_8 -3.675224 .9923129 -3.70 0.000 -5.621193 -1.729254
_Ioccupatio_9 -5.300002 5.703895 -0.93 0.353 -16.48559 5.88559

_Ioccupatio_10 -3.290802 2.179257 -1.51 0.131 -7.564422 .9828187
_Ioccupatio_11 -2.040387 1.638178 -1.25 0.213 -5.252926 1.172152
_Ioccupatio_12 -2.706283 4.019555 -0.67 0.501 -10.58881 5.176242
_Ioccupatio_13 -3.178334 .5584581 -5.69 0.000 -4.273495 -2.083173

_cons 64.34971 187.35 0.34 0.731 -303.052 431.7515

Instrumented: treatment _ws_age _ws_married Tw_1 Tw_2 Tw_3
Instruments: age _Irace_2 _Irace_3 _Imarried_1 _Icollgrad_1 _Isouth_1

_Ioccupatio_2 _Ioccupatio_3 _Ioccupatio_4 _Ioccupatio_5
_Ioccupatio_6 _Ioccupatio_7 _Ioccupatio_8 _Ioccupatio_9
_Ioccupatio_10 _Ioccupatio_11 _Ioccupatio_12 _Ioccupatio_13
probw _ps_age _ps_married T_hatp_1 T_hatp_2 T_hatp_3

(output omitted )

We see that the ATE becomes even more negative (−5.93) but is still insignificant.
However, the DRF (figure 4) sets out a pattern similar to the previous model, with a
slight cubic form having a flex point around a dose of 60 this time.
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Figure 4. DRF of job tenure on wage; endogenous treatment case

Of course, such results have to be taken just as illustrative, because we have no idea
about the quality of the instruments used, in particular about their exogeneity.

6 A Monte Carlo experiment for testing ctreatreg’s
reliability

This section provides a Monte Carlo experiment to check whether ctreatreg complies
with the consistency of the DRF estimates and to assess its correctness from a computa-
tional point of view. The first step is that of defining a data-generating process (DGP)
as follows:





w = 1(50 + 60x1 − 30x2 + 25zw + a > 0)
y0 = 0.1 + 0.2x1 + 0.3x2 + e
y1 = 0.3 + 0.6x1 + 0.3x2 + h(t) + e
t = 0.4x1 + 0.5x2 + 0.1zt + u

h(t) = 0.888t− 0.023t2 + 0.00017t3
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We have assumed, for simplifying the model, that e1 = e0 = e and that





x1 ∼ U(0, 1)× 100
x2 ∼ U(0, 1)× 100
zw ∼ N(15, 1)
zt ∼ N(100, 1)

We are interested in comparing the performance of ctreatreg when i) the error terms
have a joint normal distribution and treatment exogeneity is assumed; ii) the error terms
have a normal joint distribution and treatment endogeneity is assumed; iii) the error
terms have a nonnormal joint distribution and treatment endogeneity is assumed.

In the first and second cases, we assume the following:

(a, u) ∼ N(0,Ω)

Ω =

(
σ2
a σa,u

σ2
u

)
=

(
σ2
a ρa,uσaσu

σ2
u

)

σ2
a = 0.65, σ2

u = 1, ρa,u = 0.7

We then suppose that the correlation between a and e0 can be either equal or different
from 0. In the latter case, w is endogenous. Therefore, we assume the following DGP:8

e = η + γa+ v

v ∼ N(0, 1)

γ =
√
ρ2/(1− ρ2)

ρ = corr(e, a)

η = 0.0001

When ρ = 0, the model ct-ols would be the appropriate one; otherwise, the model
ct-iv should be used.

By zw and zt, we indicate the IVs for w and t, directly correlated with w and t,
respectively, but (directly) uncorrelated with y1 and y0. Given these assumptions, the
DGP is completed by the potential outcome equation yi = y0i+wi(y1i−y0i), generating
the observable outcome (or response) y.

The DGP is simulated 200 times using a sample size of 100, 500, 1,000, 3,000, and
10,000 to evaluate both finite- and large-sample properties of the estimation proposed
by ctreatreg. For each simulation, we get a different data matrix (x1, x2, y, w, t, zw,
zt) on which we apply the two models (ct-ols and ct-iv) implemented by ctreatreg.

8. The coefficient γ is equal to {ρ2/(1− ρ2)}−1/2, where ρ = corr(e0, a). To get this result, put x = e
and y = a. We know that corr(x, y) = cov(x, y)/sd(x)sd(y). We can see that, while var(y) = 1 by
assumption, var(x) = γ2+1. Moreover, cov(x, y) = cov(η+γa+v, a) = cov(η+γa, a)+cov(v, a) =
cov(η + γa, a) = cov(γa, a) = γcov(a, a) = γvar(a) = γ. Thus, ρ = γ/(γ2 + 1)−1/2, which implies
that γ = {ρ2/(1− ρ2)}−1/2.
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6.1 Case 1: Exogeneity

We start by assuming ρ = 0, that is, zero correlation between the error term of the
outcome equation (e) and the error term of the selection equation (a). Under this
assumption, w is exogenous. Moreover, we assume a strong correlation between the
selection and the dose equation, as implied by a correlation between a and u equal to
0.7.

Results are set out in table 1. The value of ATE obtained by the ct-ols estimator
is really close to the true ATE (9.22), and the confidence interval at 5% significance for
this estimator strictly contains that value. But also, the percentage bias of ct-iv is
very low (0.86%) and comparable with ct-ols (0.81%), sufficient to imply that the 5%
significance contains the true ATE even in this case.

Table 1. Mean test of ATE from Monte Carlo results using ctreatreg; exogenous
selection is assumed.

Mean Standard error [95% confidence interval]

ATE (true value) 9.22 - - -
ATE—ct-ols 9.21 0.01 9.19 9.22
ATE—ct-iv 9.20 0.01 9.19 9.22
% bias of OLS 0.81 0.04 0.73 0.90
% bias of IV 0.86 0.04 0.77 0.94

Note: ρ = 0, 10,000 observations, 200 simulations.

These results confirm what was expected, thus showing that ct-ols behaves cor-
rectly. Thus, when assuming exogeneity, an analyst may reliably use ctreatreg with
the option ct-ols.

6.2 Case 2: Endogeneity

If we assume that ρ = 0.7, that is, a high positive correlation between the error term
of the outcome equation (e) and the error term of the selection equation (a), then w
becomes endogenous. For the sake of comparison, we still assume the same strong
correlation between the selection and the dose equation (0.7).

Table 2 shows that results are again coherent with the theoretical predictions. In-
deed, the percentage bias of model ct-ols is rather high and equal to around 18%,
whereas the bias of ct-iv is around 1%. Furthermore, and more importantly, the 95%
mean test confidence interval for ct-iv contains the true ATE.
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Table 2. Mean test of ATE from Monte Carlo results using ctreatreg; endogenous
selection is assumed

Mean Standard error [95% confidence interval]

ATE (true value) 9.22 - - -
ATE—ct-ols 7.53 0.01 7.51 7.55
ATE—ct-iv 9.22 0.01 9.20 9.24
% bias of OLS 18.26 0.11 18.05 18.48
% bias of IV 1.28 0.07 1.15 1.41

Note: ρ = 0.7, 10,000 observations, 200 simulations.

As expected, this implies that ct-iv is a consistent estimator in the presence of
selection endogeneity, thus leading to a reliable estimation of the true value of ATE.

These results confirm the reliability of the model and of ctreatreg under both
selection exogeneity or selection endogeneity.

Finally, figure 5 plots the DRF along with the 95% interval confidence lines for both
models. This is done with the graphdrf option of ctreatreg. Results clearly confirm
our expectations.
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Figure 5. Graphical representation of the DRF using ctreatreg options ct-ols and
ct-iv under exogeneity and endogeneity, respectively
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6.3 Case 3: Endogeneity and joint nonnormal error terms

In this case, we assume that ρ = 0.7 and

(a, u) ∼ F (0,Ω)

Ω =

(
σ2
a σa,u

σ2
u

)
=

(
σ2
a ρa,uσaσu

σ2
u

)

σ2
a = 1, σ2

u = 1, ρa,u = 0.7

a ∼ U(5, 10), u ∼ χ2(5)

where F (·) is a nonnormal joint distribution with covariance matrix Ω and mean 0, and
a and u are, respectively, marginally uniform within (5, 10) and marginally chi-squared
with 5 degrees of freedom.

The model is completed by assuming that the error term e of the y equation is also
nonnormally distributed,

e = η + γa+ (1− v) (10)

v ∼ χ2(1) (11)

thus having a quite strong chi-squared asymmetric distribution.

The results in table 3 illustrate the percentage bias of the ct-iv estimator in the
normal and the nonnormal setting using 50 simulations and increasing sample size. The
IV approach is inconsistent in finite samples also assuming the normal setting, and this
is confirmed by the 12% bias appearing in the first column. By increasing the sample
size, however, the bias tends to disappear, becoming lower than 1% for a size of 10,000.

Table 3. Percentage bias of ATE from a Monte Carlo simulation using the estima-
tion option ct-iv when treatment is endogenous and errors are jointly nonnormally
distributed

Sample size
100 500 1,000 3,000 10,000

ct-iv (normal setting) 12.03 4.36 3.61 1.79 0.77
ct-iv (nonnormal setting) 22.46 9.95 6.87 5.12 2.18

Note: ρ = 0.7, 50 simulations, true value of ATE = 8.755.

When we use the ct-iv option in a nonnormal setting, however, results stress a
higher percentage bias, which is decreasing but not disappearing with a larger sample
size. When the sample size is 10,000, the bias is 2.18%, which is unexpectedly not
dramatically high. We can conclude—at least in this stylized DGP—that ctreatreg

also seems rather robust in the case of departures from the joint normality of the error
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terms of the first step of the Heckman procedure and in the nonnormality of the error
of the outcome equation.

Although drawing on the nonnormal joint distribution of the errors, these results
still consider smooth distribution functions of the errors. In the case of nonsmooth dis-
tribution functions (as in cases characterized by large probability mass in some specific
points of the support of the continuous treatment t), previous results might be question-
able. Such a case, however, is beyond the purpose of the present model, because we are
interested in modeling a continuous treatment setting. When treatment continuity is
poor and some points have large probability mass, then a multiple-treatment approach
may be more suitable (Cattaneo 2010; Cattaneo, Drukker, and Holland 2013).

7 Conclusion

In this article, I presented ctreatreg, a command for estimating DRFs through a re-
gression approach where i) treatment is continuous, ii) individuals may react heteroge-
neously to observable confounders, and iii) the selection into treatment may be endoge-
nous.

Two estimation procedures are contemplated by this command: one based on OLS

under CMI, and one based on IV when selection endogeneity is assumed.

We saw an application to real data, for testing the impact of job tenure on wages.

To test the reliability of the formulas and of their associated Stata implementation,
we performed a Monte Carlo experiment. The results showed that the models’ formulas
are fairly reliable because estimates comply with the expected results. The proposed es-
timators also appear to be quite robust when departures from the errors’ joint normality
are allowed, although this may rely on styled DGP assumptions.
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