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Abstract. In this article, we describe a new command, xtbcfe, that performs the
iterative bootstrap-based bias correction for the fixed-effects estimator in dynamic
panels proposed by Everaert and Pozzi (2007, Journal of Economic Dynamics and

Control 31: 1160–1184). We first simplify the core of their algorithm by using the
invariance principle and subsequently extend it to allow for unbalanced and higher-
order dynamic panels. We implement various bootstrap error resampling schemes
to account for general heteroskedasticity and contemporaneous cross-sectional de-
pendence. Inference can be performed using a bootstrapped variance–covariance
matrix or percentile intervals. Monte Carlo simulations show that the simplifi-
cation of the original algorithm results in a further bias reduction for very small
T . The Monte Carlo results also support the bootstrap-based bias correction in
higher-order dynamic panels and panels with cross-sectional dependence. We illus-
trate the command with an empirical example estimating a dynamic labor–demand
function.

Keywords: st0396, xtbcfe, bootstrap-based bias correction, dynamic panel data,
unbalanced, higher order, heteroskedasticity, cross-sectional dependence, Monte
Carlo, labor demand, bootstrap

1 Introduction

Many empirical relationships are dynamic in nature: decision makers are not always
able or willing to respond immediately to changes in their environment because of,
for example, contract lock-up periods, capacity or technological constraints, or slowly
changing habits. A major advantage of panel data is that repeated observations on the
same units allows the analyzation of individual dynamics. These dynamic relations are
typically modeled by adding lagged dependent variables to the individual-effects panel
model specification. Although the dynamic panel specification may seem straightfor-
ward, the combination of individual effects and lagged dependent variables poses major
econometric challenges.

Nickell (1981) has shown that the standard fixed-effects (FE) estimator is incon-
sistent when the number of cross-section units N goes to infinity while the number
of time periods T is fixed. Only when T goes to infinity is FE consistent. Given
that the (asymptotic) bias may be quite sizable in many cases relevant to applied re-

c© 2015 StataCorp LP st0396
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search, various alternative estimators have been proposed. Particularly popular are
a variety of generalized method of moments (GMM) estimators, most notably the dif-
ference GMM (Arellano and Bond 1991) and system GMM (Arellano and Bover 1995;
Blundell and Bond 1998) estimators. These GMM estimators are, under appropriate as-
sumptions, asymptotically unbiased (when N tends to infinity and T is finite), but the
fact that they use an instrumental-variables technique to avoid the dynamic panel-data
bias often leads to poor small-sample properties.

First, Monte Carlo simulations show that the GMM estimators have a relatively large
standard deviation compared with the FE estimator (see, for example, Arellano and
Bond [1991] and Kiviet [1995]). Second, they may suffer from a substantial finite-sample
bias due to weak-instrument problems (see, for example, Ziliak [1997], Bun and Kiviet
[2006], and Bun and Windmeijer [2010]). Third, GMM estimators require decisions on
which and how many instruments to use. When T is relatively large compared with
N , many valid instruments are available, but this instrument proliferation may render
the GMM estimator invalid even though instruments are individually valid (Roodman
2009). In practice, this typically leads to highly unstable GMM estimates over alternative
instrument sets.

Motivated by these disadvantages, Kiviet (1995) derived a bias-corrected FE estima-
tor using an analytical approximation of its small-sample bias in a first-order dynamic
panel-data model. Using Monte Carlo simulations, this bias-corrected FE estimator is
shown to have superior small-sample properties compared with GMM estimators; that is,
it is able to remove most of the bias of the FE estimator while maintaining its relatively
small coefficient uncertainty. An extended version of this bias-corrected FE estimator
is implemented in the xtlsdvc command written by Bruno (2005). A practical down-
side of Kiviet’s correction, however, is the strict set of assumptions (homoskedasticity,
etc.) under which the bias expression of the FE estimator is derived. These are of-
ten violated in practice such that the correction procedure needs to be rederived to
be applicable in less restrictive settings (see, for example, Bun [2003] for higher-order
dynamic panels, cross-sectional correlation, and cross-sectional heteroskedasticity, and
see Bun and Carree [2006] for cross-sectional and unconditional temporal heteroskedas-
ticity).

Everaert and Pozzi (2007) address this issue by using a bootstrap-based bias cor-
rection procedure. The main advantage of their approach is that it does not require
an analytical expression for the bias of the FE estimator because this is numerically
evaluated using bootstrap resampling. Monte Carlo studies show that the small-sample
properties of their bootstrap-based bias-corrected FE estimator are similar to those of
the Kiviet correction. However, it has the potential to be applicable in nonstandard
cases through an adequate modification of the bootstrap resampling scheme.

In this article, we describe a new command, xtbcfe, that executes a bootstrap-
based bias-corrected FE (BCFE) estimator, building on Everaert and Pozzi (2007). We
first simplify the core of their bootstrap algorithm using the fact that the bias of the
FE estimator is invariant to the variance of the individual effects such that these can be
ignored when generating bootstrap samples. Monte Carlo simulations show that this
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simplification results in a further bias reduction for very small T , implying that the
BCFE is virtually unbiased for all sample sizes in a standard setting.

Next, we extend the algorithm to allow for higher-order and unbalanced panels. In-
ference can be carried out using either a parametric or a nonparametric bootstrapped
variance–covariance matrix or percentile intervals. We allow for a variety of initialization
and resampling schemes to accommodate general heteroskedasticity patterns and error
cross-sectional dependence (CSD). Especially the latter is important: Phillips and Sul
(2007) and Everaert and Groote (Forthcoming) have shown that error CSD implies a
substantial increase in the small T bias of the FE estimator in a dynamic model. When
the CSD in the error terms is restricted to be only contemporaneous, the FE is still
consistent as T → ∞. However, for an intertemporal CSD pattern, Everaert and Groote
(Forthcoming) show that the FE estimator is inconsistent even when T → ∞. The boot-
strap algorithm implemented in xtbcfe to obtain the BCFE estimator can only account
for contemporaneous CSD. We leave the extension to an intertemporal CSD pattern for
future research. Using Monte Carlo simulations, we show that our extended BCFE es-
timator also has adequate small-sample properties in higher-order dynamic models and
panels with contemporaneous error CSD.

The remainder of this article is structured as follows. Section 2 outlines the model
and the bootstrap algorithm together with the various initialization and resampling
schemes. In section 3, we provide the basic syntax for the xtbcfe command. Some
basic Monte Carlo results are discussed in section 4, and an application of the new
command to estimate a labor–demand function is presented in section 5. Section 6
concludes the article.

2 Bootstrap-based bias correction for FE

2.1 Model, assumptions, and FE estimator

Consider a homogeneous dynamic panel-data model of order p,

yit = αi +

p∑

s=1

γsyi,t−s + xitβ + εit (1)

with i = 1, . . . , N and t = 1, . . . , T being the cross-section and the time-series dimension,
respectively, and where yit is the dependent variable, xit is a 1 × (k − p) vector of
strictly exogenous explanatory variables (where k is the total number of time-varying
regressors), and αi is an unobserved individual effect that may be correlated with xit.
Regarding the error term εit, we make the following assumptions:

1) E (εitεjs) = 0, ∀i, j and t 6= s

2) E
(
ε2it
)
= σ2

it, ∀i, t
3) E (εitεjt) = σijt, ∀i, j, t and i 6= j

The first assumption states that the error terms are serially uncorrelated, both within
and over cross-sections. This should not be highly restrictive because it can be accom-
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modated by including a sufficient number of lagged values of yit amongst the regressors.
The second assumption allows for a general heteroskedasticity pattern, including cross-
sectional heteroskedasticity (σ2

it = σ2
i ), temporal heteroskedasticity (σ2

it = σ2
t ), and

general heteroskedasticity (σ2
it). Note that the latter two cases not only allow for un-

conditional heteroskedasticity but also for conditional temporal heteroskedasticity, like,
for example, generalized autoregressive (AR) conditional heteroskedasticity. Assump-
tion 3 allows for a general pattern of contemporaneous CSD. This includes global CSD

induced by a common factor structure (as in, for example, Stock and Watson [2002],
Coakley, Fuertes, and Smith [2002], and Pesaran [2006]) and local CSD induced by spa-
tial dependence (as in, for example, Anselin [1988] and Kapoor, Kelejian, and Prucha
[2007]). Note that intertemporal cross-sectional dependence is ruled out by assump-
tion 1.

For notational convenience, we assume that the initial values yi,−(p−1), . . . , yi0 are ob-
served such that T is the actual time-series dimension available for estimation. Further-
more, the bias-correction algorithm presented below allows for an unbalanced dataset
where the time-series dimension is possibly different over cross-sections, that is, t =
τi, . . . , Ti with τi and Ti the first and last, respectively, observed time periods for in-
dividual i. We present the methodology with a balanced dataset for simplicity’s (in
notation) sake. The developed command will, however, automatically recognize and
deal with unbalanced panels.

Stacking observations over time and cross-sections, we obtain

y = Wδ +Dα+ ε (2)

where y is the NT × 1 vector stacking the observations yit, W = (y−1, . . . ,y−p,X)
is the NT × k matrix stacking observations on the lags of the dependent variable
(yi,t−1, . . . , yi,t−p) and the exogenous explanatory variables xit, δ = (γ′,β′)′ is the
k× 1 parameter vector of interest, and D is an NT ×N dummy-variable matrix calcu-
lated as D = IN ⊗ ιT with ιT a T × 1 vector of 1s. The variance–covariance matrix of
ε is denoted Σ, with elements defined by the assumptions 1–3 above.

Let MD = IN ⊗
{
IT −D(D′D)−1D′

}
denote the symmetric and idempotent matrix

that transforms the data into deviations from individual specific-sample means. Because
MDD = 0, the individual effects α can be eliminated from the model by multiplying
(2) by MD,

MDy =MDWδ +MDDα+MDε

ỹ =W̃δ + ε̃ (3)

where ỹ = MDy denotes the centered dependent variable and similarly for the other
variables. The least-squares estimator for δ in model (3) defines the FE estimator:

δ̂ =
(
W̃′W̃

)−1

W̃′ỹ = (W′MDW)
−1

W′MDy
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2.2 Outline of the bootstrap algorithm

The bootstrap algorithm implemented in the xtbcfe command to correct the bias of the
FE estimator is an extended version of the approach presented in Everaert and Pozzi
(2007). The underlying idea is that the FE estimator δ̂ is biased but still an unknown
function of the true parameter vector, that is,

E
(
δ̂ |δ,Σ, T

)
=

∫ +∞

−∞

δ̂f
(
δ̂ |δ,Σ, T

)
dδ̂ 6= δ (4)

with E being the expected value and f being the probability distribution of δ̂ for given
population parameter vector δ, covariance matrix of the error terms Σ, and sample size

T . If we are able to generate a sequence
(
δ̂1, . . . , δ̂J |δ,Σ, T

)
of J biased FE estimates

δ̂ for δ, the integral in (4) can be written as

E
(
δ̂ |δ,Σ, T

)
= lim

J→∞

1

J

J∑

j=1

δ̂j |δ,Σ, T (5)

Equation (5) shows that an unbiased estimator for δ can be obtained as the value δ̂
bc

that yields for the FE a mean of δ̂ over the J repeated samples. Formally, δ̂
bc

is an
unbiased estimator for δ if it satisfies

δ̂ = lim
J→∞

1

J

J∑

j=1

δ̂j

∣∣∣δ̂
bc
,Σ, T (6)

The proposition in Everaert and Pozzi (2007) is that for any specific value of δ∗, the
condition in (6) can be evaluated by generating J bootstrap samples from the data-
generating process in (2) and applying FE to each of the samples to obtain the sequence(
δ̂1, . . . , δ̂J |δ∗,Σ, T

)
. The bias-corrected δ̂

bc
can then be obtained by searching over

different parameter values δ∗ until (6) is satisfied. Everaert and Pozzi (2007) further

suggest that the search for δ̂
bc

can be performed efficiently by iteratively updating the
parameter vector δ∗ used for the creation of bootstrap samples, taking the original
biased FE estimate as the best initial guess (δ∗(0) = δ̂). The iterative bootstrap bias-
correction procedure is given by the following steps:

1. Using (3) and the original centered data, calculate the residuals as ε̂ = ỹ−W̃δ∗(κ).

2. Obtain J bootstrap samples, where in each sample j = 1, . . . , J :

a. Draw a bootstrap sample εb from ε̂ according to a specified (re)sampling
scheme.

b. Calculate the bootstrap sample yb = Wbδ∗(κ) + εb, where Wb =

(yb
−1, . . . ,y

b
−p, X̃).

c. Use FE to estimate δ̂
b

j = (Wb′MDWb)−1Wb′MDyb.
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3. Calculate ω(k) = δ̂ − 1/J
∑J

j=1 δ̂
b

j .

4. Update the parameter vector δ∗(κ+1) = δ∗(κ) + ω(κ).

In other words, step 3 evaluates to what degree the condition in (6) is satisfied when
δ∗(κ) is used to generate bootstrap samples, with ω(κ) being the approximation error.
When ω(κ) is positive (negative), this means that δ∗(κ) and the resulting average of the

FE estimates 1/J
∑J

j=1 δ̂
b

j over the bootstrap samples is too low (high) for (6) to be

satisfied. In step 4, we therefore update δ∗(κ) by adding ω(κ) to obtain δ∗(κ+1) as a new

guess for δ̂
bc
. The algorithm (steps 1–4) is then iterated until (6) is satisfied up to a

tolerable degree, that is, until ω(κ) is sufficiently close to 0.

In step 2 of the algorithm, it is crucial to obtain a sequence δ̂
b

1, . . . , δ̂
b

J that provides
an adequate proxy for the bias of the FE estimator; that is, the average of the FE

estimates δ̂
b

j as calculated in (5) should be a good approximation to the integral in (4).
To this end, the sampling of the bootstrap data should be consistent with the properties
of the underlying data-generating process. A few comments are in order.

First, the bias of the FE estimator is invariant to the variance of the individual
effects α because these are effectively wiped out by centering the data. In fact, it is

the centering itself that causes the bias because it induces correlation between W̃ and
ε̃ in (3). As such, in contrast to Everaert and Pozzi (2007), who calculate bootstrap
data from (2), we generate bootstrap samples

(
yb,Wb

)
using (3) in step 2b of the

algorithm. In step 2c, using the FE estimator then still implies centering of the data,
which causes its bias. The main practical advantage of this is that it simplifies the
bootstrap algorithm because there is no need to estimate the individual effects α and
use them to generate the data. The simplification is also favorable in terms of properties
of the BCFE estimator (see Monte Carlo simulation results in section 5) because it avoids
the nuisance induced by estimating α in combination with deterministic initialization.

Second, in step 2a the bootstrap errors εb should be drawn consistently with the
variance–covariance structure in the population error terms ε, as represented by Σ.
Various (re)sampling schemes are discussed in section 2.3. Furthermore, the calculation
of the bootstrap data ybit in step 2b requires initial values for ybi,−(p−1), . . . , y

b
i0. The

choice of how these initial values should be generated implicitly entails a decision about
the initial conditions of the data. The possible initialization options are outlined in
section 2.4.

2.3 Error (re)sampling schemes

To accommodate various distributional assumptions about the error term εit, our boot-
strap algorithm includes several parametric error sampling and nonparametric error
resampling options in step 2a. All of these rely in some way on the rescaled error terms
ε̂rit,
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ε̂rit = ε̂it

√
NT

NT − k −N

where rescaling is necessary to correct for the fact that the estimated error terms ε̂it,
obtained in step 1 of the bootstrap algorithm outlined above, have a lower variance than
the population error terms εit.

Parametric sampling schemes

In the parametric schemes, we draw εbit from the independent and identically distributed

(i.i.d.) N
(
0, σ̂2

it

)
distribution, where we set σ2

it = σ̂2
i = 1/T

∑T
t=1 (ε̂

r
it)

2
to allow for

cross-sectional heteroskedasticity or σ2
it = σ̂2

t = 1/N
∑N

i=1 (ε̂
r
it)

2
to allow for temporal

heteroskedasticity. Under the assumption of homoskedasticity, we set σ̂2
it = σ̂2, which

can then be calculated as σ̂2 = 1/(NT )
∑N

i=1

∑T
t=1 (ε̂

r
it)

2
. Note that the parametric

schemes do not take into account general heteroskedasticity (σ2
it) or error CSD (σijt 6= 0)

because this would require specific assumptions about the functional form of these error
structures.

Nonparametric resampling schemes

In the nonparametric schemes, εbit is obtained by resampling the rescaled error terms
ε̂rit. This has the advantage that it does not require distributional assumptions about
εit, while its covariance structure can be preserved by an appropriate design of the
resampling scheme. In general notation, this implies setting εbit = ε̂rjit,sit , with jit
and sit denoting cross-section and time-series bootstrap indices drawn specifically for
cross-section i at time t. The way these indices are drawn (with replacement) from the
cross-section index (1, . . . , N) and the time index (1, . . . , T ) is aligned with the alleged
covariance structure in εit. We allow for the following cases:1

1. Under homoskedasticity (σ2
it = σ2), ε̂rit can be resampled over both cross-sections

and time; that is, jit is drawn from 1, . . . , N and sit from 1, . . . , T .

2. Under pure cross-sectional heteroskedasticity (σ2
it = σ2

i ), ε̂rit can be resampled
over time within cross-sections; that is, sit is drawn from 1, . . . , T while for jit we
consider two cases:

a. When σ2
i is random over cross-sections, we can draw entire cross-sections

and resample over time within cross-sections, that is, restrict jit = ji, which
implies drawing a cross-section indicator ji for each i from 1, . . . , N and using
this in every time period t.

1. Note that the downward bias of the FE estimator induces a serial correlation pattern in the esti-
mated error terms ε̂it that is not present in the population error terms εit. As such, any resampling
scheme should remove this spurious serial correlation pattern in the rescaled estimated error terms
ε̂rit. This implies that we cannot resample blocks or entire cross-sections of these errors.
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b. When σ2
i is cross-section specific, we can only resample over time within

cross-sections, that is, restrict jit = i.

3. Under pure temporal heteroskedasticity (σ2
it = σ2

t ), ε̂rit can be resampled over
cross-sections within time periods, that is, jit is drawn from 1, . . . , N while for sit
we consider two cases:

a. When the temporal heteroskedasticity pattern is unconditional, we can draw
entire time periods and resample over cross-sections within time periods, that
is, restrict sit = st, which implies drawing a time indicator st for each t from
1, . . . , T and using this for every cross-section i.

b. When the temporal heteroskedasticity pattern is conditional, we can only
resample over the cross-sectional dimension, that is, restrict sit = t.

4. Under general heteroskedasticity (σ2
it), both the cross-sectional and the temporal

structure of the error terms need to be preserved. To meet this challenge, we use
the wild bootstrap suggested by Liu (1988) and Mammen (1993). The idea is
to resample the residuals by multiplying them by a binomial random variable ιit
that is equal to −1 with probability 0.5 and equal to 1 with probability 0.5. We
consider two cases:

a. When the unconditional variance σ2
i is random over cross-sections, we can

first resample entire cross-sections and next apply the wild bootstrap, that
is, εbit = ιitε̂

r
ji,t

.

b. When the unconditional variance σ2
i is cross-section specific, we cannot re-

sample over cross-sections and therefore apply a pure wild bootstrap, that
is, εbit = ιitε̂

r
it.

5. Under error CSD, (σijt 6= 0) the covariance between εit and εjt is nonzero and may
be different at each point in time. We consider two cases:

a. Under global CSD, we can still resample over cross-sections within time peri-
ods. As such, both resampling schemes 3a and 3b can be used.

b. Under local CSD, we can only resample over time in the same way for each
cross-section; that is, we restrict jit = i as under 2b and sit = st as under
3a.

Each of the above resampling schemes has been generalized to unbalanced datasets,
except for the randomized wild bootstrap (4a) and local CSD resampling (5b), which
are only possible in balanced panels.

2.4 Initialization

As mentioned above, the calculation of the bootstrap data ybit in step 2b of the algorithm
requires initial values for the lags of the dependent variable (ybi,−(p−1), . . . , y

b
i0). How

these initial values are chosen to be generated depends implicitly on the decision about
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the initial conditions of the data. The initialization choice will influence the statistical
properties of the estimator (see section 4) and tends to play an important role for
the numerical properties of the algorithm in small datasets. Below, we outline several
possibilities that differ in the degree of randomness in generating the initial values. In
section A.1 of the appendix, we provide some additional details about convergence and
its relation to the initialization schemes.

Deterministic initialization

The fastest and most straightforward way of initializing the series ybit is by setting
ybi,−(p−1), . . . , y

b
i0 equal to the observed (centered) initial values ỹi,−(p−1), . . . , ỹi0 in each

bootstrap sample. The advantage of this initialization is that we do not have to make
assumptions about how the initial conditions are generated. In fact, this is the initial-
ization used by Everaert and Pozzi (2007). Their Monte Carlo simulations show that
it works well for both stationary and nonstationary initial conditions. Moreover, it
has the practical advantage that one can avoid generating initial conditions when the
data are not rich enough (see section A.1). However, if initial conditions are random, a
deterministic initialization has the obvious risk that it induces a spurious dependency
over bootstrap samples, especially when the time-series dimension is short. Therefore,
we further extend the original bootstrap procedure of Everaert and Pozzi (2007) by al-
lowing for random initialization schemes. These assume that initial conditions are in
the infinite past. They are outlined below.

Analytic initialization

In the analytic initialization scheme, the initial observations are drawn from the multi-
variate normal distribution

(
ybi0, . . . , y

b
i,−(p−1)

)
∼ N

(
µ̂0
i , Σ̂

0

i

)

where µ̂0
i = x̃i0β̂ /(1−∑p

s=1 γ̂s) is the unconditional expected value of yi0 for fixed
values of the exogenous variables x̃i0, the unconditional variance–covariance matrix

Σ̂
0

i is estimated as Σ̂
0

i = T−1
∑T

t=1 z
′
itzit with zit =

(
y∗it, . . . , y

∗
i,t−p+1

)
, and y∗it =

ỹit − x̃itβ̂ /(1−∑p
s=1 γ̂s) is the deviation of yit from its unconditional mean. In the

case of a single lagged dependent variable (p = 1), for instance,

Σ̂
0

i =
1

T

T∑

t=1

(
ỹit −

x̃itβ̂

1− γ̂1

)2

which is the variance of yit around its unconditional mean x̃itβ̂ /(1− γ̂1) observed

over the sample. As Σ̂
0

i is estimated for each cross-section individually, this initializa-
tion takes into account cross-sectional heteroskedasticity. Under the assumption of ho-

moskedasticity, Σ̂
0

i can be replaced by Σ̂
0
= N−1

∑N
i=1 Σ̂

0

i , which is the cross-sectional

average of Σ̂
0

i .
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Burn-in initialization

As an alternative to treating the initial observations as fixed or drawing them from
the normal distribution, one may start in the distant past from initial values set to
0, for example, ybi,−50−p+1 = 0, . . . , ybi,−50 = 0, and then generate the series ybil, with
l = −49, . . . , 0 as in step 2b of the bootstrap algorithm, setting x̃il = x̃i0, and with
bootstrap error terms obtained as in step 2a. We can then simply use ybi,−(p−1), . . . , y

b
i0

as initial values and discard the earlier generated values. The advantage of this approach
is that it does not require a distributional assumption for the initial conditions and that
the error resampling scheme used to generate the actual sample can also be used to
generate the initial values.

2.5 Inference

The small-sample distribution of the BCFE estimator can be simulated by resampling the
original data and applying the bootstrap bias-correction to the FE estimates obtained
in each of the constructed samples. From this simulated distribution, we then calculate
standard errors (SEs) and confidence intervals (CIs). The resampling of the original data
can be done using a parametric or a nonparametric approach.

The parametric approach uses the fact that in the last iteration over the bias-
correction procedure, we already obtained J bootstrap samples from a population where

our bias-corrected FE estimate δ̂
bc

is used as a proxy for the population parameter vec-
tor δ. As such, the distribution of the BCFE estimator can be obtained by applying the

bias-correction procedure to the J FE estimates δ̂
b

j obtained in step 2c of the iterative

bootstrap procedure using δ∗(κ) = δ̂
bc
. The advantage of the parametric approach is

that the resampling of the data used to obtain the small-sample distribution of the BCFE

estimator is exactly the same as the resampling of the data used to bias-correct the FE

estimator. As such, each of the above-mentioned resampling and initialization schemes
can be used.

In the nonparametric approach, as suggested by Kapetanios (2008), we resample
the original data for cross-sectional units as a whole with replacement. The advantage
of this resampling scheme is that it preserves the dynamic panel structure without the
need to make parametric assumptions. Moreover, it is valid under general heteroskedas-
ticity patterns and a global cross-sectional dependence structure in the data (induced,
for instance, by a common factor structure); however, it is not valid under local CSD

(induced, for instance, by a spatial panel structure).
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3 The xtbcfe command

3.1 Syntax

The bootstrap procedures presented and tested in this article are all contained in the
xtbcfe command. The basic syntax is as follows:

xtbcfe depvar
[
indepvars

] [
if
] [

, lags(#) resampling(scheme)

initialization(initial) bciters(#) criterion(#) inference(option)

infiters(#) distribution(histogram) level(#) param te
]

xtbcfe requires that the data are xtset before estimation. The program adds the
lagged dependent variable(s) as the first explanatory variable(s) and can fit the simple
AR model without covariates. Cross-sections that are irregularly spaced along the time
dimension are automatically reduced in size so that the largest block of uninterrupted
observations are maintained (see Millimet and McDonough [2013]). Cross-sections with
too few (≤ 1) usable observations (after lagging) are removed. The xtbcfe command
requires that the moremata, estout (Jann 2005a,b), and distinct (Cox and Longton
2008) packages are installed before use.2

3.2 Options

lags(#) specifies the number of lags of the dependent variable to be included among
the predictors. The default is lags(1).

2. These packages are easily installed by typing in Stata ssc install moremata, ssc install estout,
and ssc install distinct, respectively.
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resampling(scheme) specifies the residual resampling scheme to be used in the boot-
strap procedure. The default is resampling(mcho).

scheme Description

mcho drawing from the normal distribution with estimated homogeneous
variance; the default

mche drawing from the normal distribution with estimated heterogeneous
(cross-section-specific) variance

mcthe drawing from the normal distribution with period (t)-specific
estimated variance

iid for resampling independently over both cross-sections and time
cshet for resampling within cross-sections (cross-sectional heteroskedasticity)
cshet_r for resampling within cross-sections with randomized indices

(random cross-sectional heteroskedasticity)
thet for resampling within time periods (temporal heteroskedasticity)
thet_r for resampling within time periods with permuted t

(random temporal heteroskedasticity)
wboot for wild bootstrap, that is, error terms multiplied by 1 or −1

(general heteroskedasticity)
wboot_r for randomized wild bootstrap, that is, permuted cross-section indices

and error terms multiplied by 1 or −1 (random general
heteroskedasticity, balanced panels only)

csd for resampling identically over cross-sections (cross-sectional
dependence, balanced panels only)

initialization(initial) determines the initialization scheme for the bootstrapped lag-
ged dependent variables (ybi,−(p−1), . . . , y

b
i0). The default is initialization(det).

initial Description

det deterministic initialization, that is,
(ybi,−(p−1), . . . , y

b
i0) = (ỹi,−(p−1), . . . , ỹi0); the default

bi burn-in initialization using the resampling scheme defined by
resampling() over the burn-in sample

aho analytical homogeneous initiation (ybi,−(p−1), . . . , y
b
i0) ∼ N

(
µ̂0
i , Σ̂

0
)

ahe analytical heterogeneous initiation (ybi,−(p−1), . . . , y
b
i0) ∼ N

(
µ̂0
i , Σ̂

0

i

)

When the burn-in initialization is combined with the wild bootstrap (wboot), tem-
poral heteroskedasticity (thet), or Monte Carlo temporal heteroskedasticity (mcthe)
(re)sampling schemes, these become blocked variants. This implies that the resam-
pling pattern used for the creation of bootstrapped data is copied (several times) to
generate the initial values over the burn-in period.
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bciters(#) sets the number of bootstrap iterations used for the construction of the
bias-corrected FE estimator (at least 50). The default is bciters(250).

criterion(#) alters the convergence criterion used in the estimation algorithm. The
default is criterion(0.005). The specified number will be multiplied by the num-
ber of lags (p) of the dependent variable.

inference(option) specifies the type of SEs and CIs. Under the inference(inf se)

option, SEs are bootstrapped and are then used to calculate CIs using the Student t
distribution. Alternatively, because this distributional assumption may be violated,
especially in small datasets with high temporal dependence, the inference(inf ci)

option calculates CIs directly from the bootstrap distribution. This approach does
not make a distributional assumption but is much more computationally intensive
because, compared with calculating SEs, adequate calculation of the desired per-
centiles requires more bootstrap samples. Finally, the inference(inf appr) option
is a fast alternative that approximates SEs by calculating the dispersion of the FE

estimator over the bootstrap iterations. While this is much faster than the other
options, the resulting SEs are expected to be downward biased, so they should only
be used as a rough approximation. We report some Monte Carlo results in section 4
to indicate the relative accuracy of the different inference methods.

infiters(#) specifies the number of bootstrap iterations to be used for inference. The
default is infiters(250) for all choices of inference(). It is recommended to have
at least 50 iterations for bootstrapping SEs and 1,000 iterations for bootstrapping
percentile intervals. The number of iterations cannot be smaller than 100 when the
inference(inf ci) option is used.

distribution(histogram) requests that the bootstrap distribution of xtbcfe obtained
by the inference procedures be saved in e(dist bcfe). This option allows users
to inspect the bootstrap distribution and calculate additional statistics from it.
If this option is omitted, the distribution will be deleted after estimation. Use
distribution(none) to save the bootstrap coefficient matrix in e(dist bcfe).
Specifying distribution(sum) will additionally display a histogram of the boot-
strap distribution for the sum of AR coefficients. The distribution(all) option
adds histograms for all AR coefficients separately.

level(#) specifies the confidence level used to construct CIs. The default is level(95).

param requests that inference procedures be initiated using the parametric bootstrap
instead of the nonparametric default (see section 2.5).

te requests the addition of time effects to the specification. Time dummies are gen-
erated and named according to the time indicator used in the xtset command.
User-specified variables bearing the same name will be overwritten. Time dummies
included in indepvars will be removed.

Once all options are specified, the xtbcfe command will remove any time-invariant
or collinear variables and move on to the main estimation bcfe ub (Mata) subcommand.
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3.3 Stored results

xtbcfe stores the following in e():

Scalars
e(N) number of observations
e(N g) number of groups
e(k) number of exogenous regressors
e(df r) residual degrees of freedom
e(t min) minimum number of time periods
e(t max) maximum number of time periods
e(t avg) average number of time periods
e(irr) number of cross-sections removed because of irregular spacing or lack of

observations
e(conv) convergence of the bootstrap algorithm

Macros
e(cmd) xtbcfe
e(depvar) name of dependent variable
e(predict) program used to implement predict
e(ivar) panel variable
e(tvar) time variable

Matrices
e(b) xtbcfe estimates
e(V) variance–covariance matrix of the estimators
e(dist bcfe) xtbcfe bootstrap distribution if distribution() is specified
e(res bcfe) xtbcfe error terms

Functions
e(sample) marks estimation sample

3.4 Postestimation

The xtbcfe command supports the postestimation command predict (see [R] predict)
to compute fitted values and residuals. The syntax for predict following xtbcfe is

predict
[
type

] [
newvar

] [
if
] [

, statistic
]

statistic Description

xb
∑p

s=1 γ̂pyi,t−s + xitβ̂, the fitted values; the default
ue α̂i + ε̂it, the combined residuals

xbu
∑p

s=1 γ̂syi,t−s + xitβ̂ + α̂i, the prediction including fixed effect
u α̂i, the fixed effect
e ε̂it, the observation-specific error component

The xb and ue statistics are available both in and out of sample; type predict . . .
if e(sample) . . . to restrict statistics to the estimation sample. The xbu, u, and e

statistics are calculated only for the estimation sample, even when if e(sample) is not
specified.
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4 Monte Carlo experiments

Using Monte Carlo simulations, Everaert and Pozzi (2007) show that the BCFE estima-
tor outperforms the difference and system GMM estimators, in terms of both bias and
inference, in samples with small to moderate T . Furthermore, the BCFE is found to be
insensitive to nonnormality of the errors, conditional heteroskedasticity, or nonstation-
ary initial conditions and has a bias comparable to the analytical bias corrections of
Kiviet (1995) and Bun and Carree (2005).

In this section, we present some further Monte Carlo simulation results3 to illustrate
the finite-sample properties of our simplified BCFE bootstrap algorithm and its extension
to higher-order dynamic models and error CSD. Data are generated from (1) with xit

restricted to be a single exogenous explanatory variable, generated as

xit = ρxi,t−1 + ξit, ξit ∼ i.i.d. N (0, σ2
ξ ) (7)

We normalize the long-run impact of xit to 1 by setting β = 1 −∑p
s=1 γs. Each

experiment is based on 1,000 iterations, where in each sample we generate 50 + T
periods and discard the first 50 observations. The BCFE estimator is implemented,
setting the number of bootstrap iterations to 250 (bciters(250)). We analyze the
performance of alternative initialization schemes and adjust the bootstrap resampling
scheme according to the properties of the data-generating process of yit. We report
1) mean bias (bias), which is the average of the deviation of the estimates γ̂ from the
true population parameter γ; 2) SE, which is the standard error of the estimates γ̂;
3) mean estimated SE (ŜE), which is the average of the estimated SEs; and 4) real
size (size), which is the probability of incorrectly rejecting the correct null hypothesis
using a two-sided t test at the 5% nominal level of significance. We also include results
for pooled ordinary least squares (POLS), FE, and the analytical correction (BCFEan)
implemented in the xtlsdvc command developed by Bruno (2005) initiated with the
Anderson–Hsiao estimator and SEs obtained through 200 bootstrap iterations.

4.1 Simplification using the invariance principle

In table 1, we compare the performance of the original algorithm (BCFEor) of Everaert
and Pozzi (2007) to our simplified algorithm presented in section 2. We use the high
temporal dependence setting reported in their table 2 because this is the case where the
original BCFE estimator still exhibits some small-sample bias.4 This setting corresponds
to generating yit from a first-order (p = 1) version of (1), setting γ1 = 0.8 and assuming
αi ∼ i.i.d. N{0, (1− γ1)

2} and εit ∼ i.i.d. N (0, 1), with xit generated from (7) setting
ρ = 0.5 and assuming ξit ∼ i.i.d. N (0, 0.65). The BCFE estimator is implemented,
setting the number of bootstrap iterations to 200 (bciters(200)). Because there is
no structure in the error terms, each of the BCFE estimators uses the iid resampling
scheme.

3. All simulations were performed using the Ghent University High Performance Computing infra-
structure.

4. Similar results are obtained for other parameter values.
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Table 1. Monte Carlo results for an AR(1) model with γ1 = 0.8: Simplification bootstrap
algorithm

Bias SE ŜE Size Bias SE ŜE Size

appr 1000 50 appr SE CI appr 1000 50 appr SE CI

T = 4, N = 20 T = 9, N = 20

POLS 0.04 0.06 0.06 - - 0.12 - - 0.04 0.04 0.04 - - 0.22 - -
FE −0.51 0.13 0.12 - - 0.97 - - −0.24 0.07 0.07 - - 0.96 - -
BCFEan −0.18 0.17 0.16 - - 0.21 - - −0.05 0.08 0.08 - - 0.09 - -
BCFEor −0.14 0.15 - - - - - 0.25 −0.04 0.09 - - - - - 0.11
BCFEde 0.07 0.17 0.13 0.17 0.17 0.15 0.16 0.09 0.03 0.10 0.07 0.09 0.08 0.21 0.14 0.08
BCFEah 0.00 0.16 0.13 0.16 0.15 0.08 0.09 0.05 0.00 0.09 0.07 0.08 0.08 0.11 0.09 0.08
BCFEbi −0.04 0.17 0.13 0.16 0.16 0.13 0.10 0.09 −0.01 0.09 0.07 0.08 0.08 0.11 0.09 0.10

T = 4, N = 100 T = 9, N = 100

POLS 0.05 0.03 0.03 - - 0.47 - - 0.05 0.02 0.02 - - 0.76 - -
FE −0.51 0.06 0.06 - - 1.00 - - −0.23 0.03 0.03 - - 1.00 - -
BCFEan −0.13 0.08 0.09 - - 0.30 - - −0.03 0.04 0.04 - - 0.14 - -
BCFEor −0.13 0.07 - - - - - 0.80 −0.04 0.04 - - - - - 0.35
BCFEde 0.09 0.07 0.06 0.07 0.07 0.40 0.31 0.20 0.03 0.05 0.03 0.05 0.04 0.32 0.13 0.07
BCFEah 0.04 0.08 0.06 0.07 0.07 0.20 0.15 0.07 0.00 0.04 0.03 0.04 0.04 0.14 0.08 0.07
BCFEbi −0.02 0.09 0.06 0.09 0.08 0.21 0.07 0.05 −0.01 0.04 0.03 0.04 0.04 0.13 0.06 0.07
Notes:

i) Data for yit are generated from a first-order (p = 1) version of (1), setting γ1 = 0.8, β = 0.2, and assuming αi ∼
i.i.d. N{0, (1− γ1)

2} and εit ∼ i.i.d. N (0, 1), with xit generated from (7) setting ρ = 0.5 and assuming ξit ∼ i.i.d.
N (0, 0.65). Note that as we assume yi0 to be observed, the sample sizes T = 5 and T = 10 in Everaert and Pozzi
(2007) correspond to T = 4 and T = 9 in our notation.

ii) Reported results are for estimating γ1. POLS and FE refer to the POLS and the FE estimator, respectively.
BCFEan is the analytical bias-corrected FE estimator implemented in the xtlsdvc command developed by Bruno
(2005) initiated with the Anderson–Hsiao estimator and SEs obtained through 200 bootstrap iterations. BCFEor

is the original bootstrap-based bias-corrected FE estimator of Everaert and Pozzi (2007). Results are taken from
their table 2. BCFEde, BCFEah, and BCFEbi refer to the simplified BCFE estimator presented in section 2 with 200
bootstrap samples, and with the deterministic (det), homogeneous analytical (aho), and burn-in (bi) initialization,
respectively. Each of the BCFE estimators uses the iid resampling scheme.

iii) The bias is the deviation of the estimates γ̂1 from the population parameter γ1 while SE is the SE of the distribution
of γ̂1 over the Monte Carlo draws. The estimated SEs (ŜE) are obtained in three different ways: ŜEappr are
approximate SEs based on the bootstrapped FE distribution (inf appr), while ŜE1000 and ŜE50 are bootstrapped
SEs (inf se) using, respectively, 1,000 or 50 bootstrap iterations. The real size (size) is the probability of
incorrectly rejecting the correct null hypothesis using a two-sided t test at the 5% nominal level of significance.
The sizes reported as “appr” and “SE” are calculated using the SEs ŜEappr and ŜE1000, respectively. For the
size reported as “CI”, the bootstrap percentile interval option, inf ci, is used. Standard errors for the BCFEah

estimator are obtained using a bootstrap with 200 iterations. The standard analytical formulas are used for
calculating the SEs of the POLS and FE estimators.

We further use this simulation design to shed some light on the relative performance
of the various initialization schemes and alternative approaches to inference. As such, we
report results for three alternative initialization schemes: det (BCFEde), aho (BCFEah)
and bi (BCFEbi). Next, approximate SEs (ŜEappr) obtained from the bootstrapped
distribution of the FE estimator using the inf appr option are compared with SEs from
the bootstrapped distribution of the BCFE estimator using the inf se option. For the
first option, which is relatively fast, we set the number of bootstrap iterations to 1,000
(infiters(1000)). For the computationally more intensive second option, we analyze
the importance of the number of iterations by reporting results for 1,000 (ŜE1000) and
for 50 (ŜE50) iterations. Finally, we calculate real test sizes by using the above-obtained
approximate FE (sizeappr) and BCFE (sizeSE) SEs and the bootstrapped percentile CI
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(sizeCI) by using the inf ci option. These are all based on 1,000 bootstrap iterations.
Because estimates for β are more or less unbiased for all estimators, we only report
results for estimating γ.

The simulation results show that our simplified algorithm yields a considerable im-
provement over the original estimator. Under the analytical and burn-in initialization
schemes, the BCFE estimator is nearly unbiased and bootstrapped SEs (ŜE1000) are close
to the true SE. As a result, these versions of the BCFE estimator have a more or less
correct real size, even for very small T . Under the deterministic initialization, a small
bias remains for T = 4. Overall, we consider the BCFE initiated with the burn-in ini-
tiation to be the superior alternative because of its low bias and adequate results in
terms of inference. Each of the BCFE variants also displays adequate convergence rates,
with 100% convergence for the deterministic initiation and 97.9% and 98.7% for the
homogeneous analytical and burn-in initiations, respectively, in the N = 20, T = 4
case. Any other sample size resulted in 100% convergence for all initiations.

Given that the SEs based on 1,000 bootstrap iterations in the ŜE1000 column are com-
putationally very intensive, an assessment of the performance of the less time consuming
alternatives is of particular interest for practitioners. As expected, the approximated
SEs (ŜEappr) have a downward bias that has a detrimental effect on the real test size.
The ŜE50 column, however, reveals that on average, the difference between using 1,000
and using 50 bootstrap iterations for computing SEs is only marginal. This suggests
that 50 bootstrap iterations is a reasonable lower bound for SE estimation.

4.2 Error CSD

In table 2, we analyze the small-sample performance of the BCFE estimator in a non-
standard scenario with cross-sectionally dependent errors. To this end, we focus on a
pure (β = 0) first-order AR model with γ1 = 0.8 and assume that the error term εit in
(1) has the common factor structure

εit = λiFt + ǫit (8)

with Ft ∼ i.i.d. N (0, 1) and ǫit ∼ i.i.d. N (0, 1). We follow Sarafidis and Robertson
(2009) and generate the factor loadings as λi ∼ i.i.d. U (1, 4), and we set the individual
effect variance to σ2

α = (1− γ1)(1+ γ1)
−1(µ2

λ +σ2
λ +1), with µλ and σ2

λ being the mean
and variance of the factor-loading distribution. We use the burn-in (bi) initiation for
the BCFE estimator together with the CSD (csd; BCFEcsd) and randomized temporal
heteroskedasticity (thet r; BCFEthet) resampling schemes. Although csd resampling
allows for a more general CSD pattern than thet r resampling, both are valid given the
common factor structure in (8). Next, to bias and SEs, we report real test sizes from
t tests (sizet) and CIs (sizeCI) based on 200 iterations. The root mean squared error
(RMSE) is provided as a performance measure that takes both bias and variance into
account.
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Table 2. Monte Carlo results for an AR(1) model with γ1 = 0.8: Error CSD

Bias SE ŜE RMSE Sizet SizeCI Bias SE ŜE RMSE Sizet SizeCI

T = 5, N = 20 T = 10, N = 20

POLS 0.088 0.049 0.046 0.101 0.53 - 0.090 0.037 0.032 0.098 0.77 -
FE −0.443 0.120 0.104 0.459 0.98 - −0.226 0.075 0.061 0.238 0.94 -
BCFEan −0.169 0.148 0.134 0.225 0.25 - −0.053 0.087 0.077 0.102 0.13 -
BCFEcsd 0.041 0.159 0.143 0.165 0.17 0.09 0.019 0.100 0.084 0.102 0.15 0.10
BCFEthet −0.020 0.167 0.146 0.168 0.15 0.10 −0.002 0.097 0.084 0.097 0.13 0.11

T = 5, N = 100 T = 10, N = 100

POLS 0.098 0.020 0.020 0.101 0.99 - 0.098 0.014 0.014 0.099 1.00 -
FE −0.430 0.056 0.046 0.434 1.00 - −0.220 0.034 0.027 0.222 1.00 -
BCFEan −0.105 0.076 0.074 0.130 0.30 - −0.029 0.044 0.038 0.053 0.16 -
BCFEcsd 0.070 0.086 0.078 0.111 0.24 0.13 0.022 0.047 0.044 0.052 0.09 0.07
BCFEthet −0.003 0.085 0.080 0.085 0.09 0.07 −0.001 0.044 0.042 0.044 0.07 0.08

Notes:

i) Data for yit are generated from a first-order (p = 1) version of model (1) with γ1 = 0.8, β = 0, and errors
generated from the common factor structure in (8). We generate loadings as λi ∼ i.i.d. U (1, 4) and set σ2

α =
(1− γ1)(1 + γ1)

−1(µ2
λ + σ2

λ + 1).

ii) Reported results are for estimating γ1. POLS and FE refer to the POLS and the FE estimator, respectively. BCFEan

is the analytical bias-corrected FE estimator implemented in the xtlsdvc command developed by Bruno (2005)
initiated with the Anderson–Hsiao estimator and SEs obtained through 200 bootstrap iterations. BCFEcsd refers
to the bootstrap-based bias-corrected FE estimator presented in section 2 with 250 bootstrap samples, burn-in
(bi) initialization, and the csd resampling scheme. BCFEthet is the alternative that uses the random temporal
heteroskedasticity (thet r) scheme.

iii) The bias is the deviation of the estimates γ̂1 from the population parameter γ1, SE is the SE of the distribution

of γ̂1 over the Monte Carlo draws, and RMSE =
√
{E(γ̂1)− γ1}2 + σ2

γ̂1
. The estimated SEs (ŜE) are obtained

using the nonparametric bootstrap resampling scheme with 200 iterations. The real size (size) is the probability
of incorrectly rejecting the correct null hypothesis using a two-sided test at the 5% nominal level of significance,
with sizet based on t statistics with estimated SEs using the inf se option and sizeCI based on the CI option
(inf ci).

The results reveal a general deterioration of the estimated SEs compared with the
real SEs for all estimators. BCFE SEs suffer as well, but compared with the other estima-
tors, this does not result in large size distortions. Note, however, that the size of the CIs
approach is better than that of the t test approach, especially for the resampling(csd)
option in smaller sample sizes. This is because of the skewness of the BCFE distribution
caused by the relatively large value of γ1. The resulting asymmetry renders normal ap-
proximations very inaccurate and leads to size distortions. The CI approach, in contrast,
is not based on any distributional assumption and therefore has a more appropriate size.

There is also a clear difference in performance between our two alternative resam-
pling schemes. Bias and real size for thet r resampling are generally superior to csd

resampling. This can be explained by the fact that under the thet r option, errors are
resampled over both time and cross-sections (within time periods). Especially when the
cross-sectional dimension N is large, this results in more randomness in the bootstrap
samples compared with the csd scheme, which only resamples over time. In small T
datasets, csd resampling offers only a very limited number of reshuffling options and
therefore induces a dependency over bootstrap samples that leads to bias and an in-
creased real test size. These results suggest that researchers should, in practice, opt for
the most random resampling scheme among the appropriate alternatives.
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4.3 Second-order dynamic model

In tables 3 and 4, we analyze the small-sample performance of the BCFE estimator in a
second-order (p = 2) version of model (1). We assume αi ∼ i.i.d. N (0, 1) and εit ∼ i.i.d.
N (0, 1), with xit generated from (7) setting ρ = 0.5 and assuming ξit ∼ i.i.d. N (0, 1).
We report results for estimating γ1 and γ2. The BCFE estimator is implemented with
iid resampling, burn-in (bi) initiation, and inference using bootstrapped SEs (inf se)
and t tests based on nonparametric bootstrapping. Note that the BCFEan is not included
because the xtlsdvc command does not support higher-order models.

Table 3 reports results for a series with strong temporal dependence, setting γ1 = 0.6
and γ2 = 0.2. The BCFE estimator again appears as a very effective correction for FE.
Its bias is virtually 0 at the cost of only a small increase in variance. Standard errors are
estimated well and the resulting real test size is near the nominal 5% level. In line with
results from a first-order model, the standard POLS estimator has a small but positive
bias for both γ1 and γ2 for every combination of N and T , while the FE estimator is
strongly downward biased for both γ1 and γ2 for small T . This suggests that in this
setting, an unbiased estimator is expected to lie between POLS and FE, but probably
closer to the former than to the latter.

In table 4, we set γ1 to 1.1 but maintain the stationarity assumption by setting
γ2 to −0.2. The hump-shaped pattern implied by this parameter combination is often
encountered in practice (see, for example, the application in section 5) but seldom
included in simulation studies. The BCFE estimator is again almost unbiased in all
settings with real test sizes close to the desired nominal level. In line with the results
in table 3, the POLS estimator has a small upward bias for both γ1 and γ2. For the FE,
though, we note an important difference. While the FE estimator for γ1 is still strongly
downward biased, it is much less biased for γ2. In this setting, an unbiased estimator is
expected to lie closer to the POLS estimator for γ1 but closer to the FE estimator for γ2.
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Table 3. Monte Carlo results for an AR(2) model with γ1 = 0.6 and γ2 = 0.2

γ1 γ2 γ1 γ2

Bias SE ŜE Sizet Bias SE ŜE Sizet Bias SE ŜE Sizet Bias SE ŜE Sizet

T = 5, N = 20 T = 10, N = 20

POLS 0.08 0.09 0.10 0.10 0.10 0.09 0.10 0.17 0.09 0.07 0.07 0.25 0.09 0.07 0.07 0.26
FE −0.39 0.12 0.11 0.92 −0.20 0.11 0.11 0.40 −0.18 0.08 0.07 0.63 −0.11 0.07 0.07 0.33
BCFE −0.03 0.14 0.13 0.09 −0.02 0.13 0.13 0.07 −0.01 0.09 0.08 0.09 −0.01 0.08 0.08 0.08

T = 5, N = 100 T = 10, N = 100

POLS 0.09 0.04 0.04 0.59 0.09 0.04 0.04 0.58 0.09 0.03 0.03 0.87 0.09 0.03 0.03 0.87
FE −0.38 0.05 0.05 1.00 −0.19 0.05 0.05 0.97 −0.17 0.04 0.03 1.00 −0.11 0.03 0.03 0.90
BCFE −0.01 0.07 0.07 0.07 −0.01 0.06 0.06 0.06 −0.01 0.04 0.04 0.08 −0.01 0.04 0.04 0.07

Notes:

i) Data for yit are generated from a second-order (p = 2) version of (1), setting γ1 = 0.6, γ2 = 0.2, β = 0.2, and
assuming αi ∼ i.i.d. N (0, 1) and εit ∼ i.i.d. N (0, 1), with xit generated from (7) setting ρ = 0.5 and assuming
ξit ∼ i.i.d. N (0, 1).

ii) Reported results are for estimating γ1 and γ2. POLS and FE refer to the POLS and the FE estimator, respectively.
BCFE refers to the bootstrap-based bias-corrected FE estimator presented in section 2 with 250 bootstrap samples
(bciters()), burn-in (bi) initialization, and the iid resampling scheme.

iii) The bias is the deviation of the estimates γ̂ from the population parameter γ, while SE is the SE of the distribution
of γ̂ over the Monte Carlo draws. The estimated SEs (ŜE) are obtained using the nonparametric resampling scheme
with 200 iterations. The real size (sizet) is the probability of incorrectly rejecting the correct null hypothesis using
a two-sided t test with estimated SEs (inf se) at the 5% nominal level of significance.

Table 4. Monte Carlo results for an AR(2) model with γ1 = 1.1 and γ2 = −0.2

γ1 γ2 γ1 γ2

Bias SE ŜE Sizet Bias SE ŜE Sizet Bias SE ŜE Sizet bias SE ŜE sizet

T = 5, N = 20 T = 10, N = 20

POLS 0.02 0.10 0.10 0.05 0.07 0.10 0.10 0.09 0.04 0.07 0.07 0.07 0.05 0.07 0.07 0.10
FE −0.42 0.12 0.11 0.95 −0.02 0.11 0.11 0.06 −0.18 0.08 0.07 0.66 −0.04 0.08 0.07 0.09
BCFE −0.05 0.13 0.13 0.08 0.00 0.13 0.13 0.09 −0.00 0.09 0.08 0.10 −0.01 0.08 0.08 0.09

T = 5, N = 100 T = 10, N = 100

POLS 0.04 0.04 0.04 0.16 0.05 0.04 0.04 0.19 0.05 0.03 0.03 0.28 0.05 0.03 0.03 0.33
FE −0.40 0.06 0.05 1.00 −0.02 0.05 0.05 0.08 −0.18 0.04 0.03 1.00 −0.04 0.03 0.03 0.21
BCFE −0.01 0.06 0.06 0.06 −0.00 0.06 0.06 0.05 −0.00 0.04 0.04 0.06 −0.00 0.03 0.04 0.05

Notes:

i) Data for yit are generated from a second-order (p = 2) version of (1), setting γ1 = 1.1, γ2 = −0.2, β = 0.1, and
assuming αi ∼ i.i.d. N (0, 1) and εit ∼ i.i.d. N (0, 1), with xit generated from (7) setting ρ = 0.5 and assuming
ξit ∼ i.i.d. N (0, 1).

ii) Reported results are for estimating γ1 and γ2. POLS and FE refer to the POLS and the FE estimator, respectively.
BCFE refers to the bootstrap-based bias-corrected FE estimator presented in section 2 with 250 bootstrap samples,
burn-in (bi) initialization, and the iid resampling scheme.

iii) The bias is the deviation of the estimates γ̂ from the population parameter γ, while SE is the SE of the distribution
of γ̂ over the Monte Carlo draws. The estimated SEs (ŜE) are obtained using the nonparametric resampling scheme
with 200 iterations. The real size (sizet) is the probability of incorrectly rejecting the correct null hypothesis using
a two-sided t test with estimated SEs (inf se) at the 5% nominal level of significance.
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5 Application

In this section, we illustrate the use of the xtbcfe command by reporting some estima-
tion results for labor demand by UK firms using the Arellano and Bond (1991) dataset
(abdata.dta). This has become a prominent example in dynamic panel-data modeling
because labor demand is known to react very slowly to movements in its explanatory
variables because of, for instance, considerable adjustment costs. Typically, lags of the
dependent variable are added to the explanatory variables to capture this adjustment
process. However, because the dataset has a moderately large cross-section (140 UK

companies) but a relatively short time-series dimension (max nine observations between
1976 and 1984), the standard FE estimator is expected to be strongly downward bi-
ased. As such, Arellano and Bond (1991) use this example to advocate the use of their
GMM estimator as an alternative to FE. They suggest two lags of log employment (nit)
and further model the dynamics by adding a single lag for log wages (wit) and two
lags for the logs of industry output (ysit) and capital (kit). This yields the following
specification:

nit =

2∑

s=1

γsni,t−s +

1∑

q=0

βw,qwi,t−q +

2∑

r=0

(βk,rki,t−r + βys,rysi,t−r) + αi + λt + εit (9)

where αi is included to capture individual effects and λt is a time dummy that serves
to capture aggregate demand shocks. The data is mildly unbalanced with a minimum
of seven observations (prior to lagging) and no gaps.

Table 5 reports estimation results for the POLS, FE, difference GMM (dGMM), system
GMM (sGMM), and BCFE estimators. Looking first at the POLS and FE estimators, the
coefficient on the first lag is much bigger for POLS than for FE, although still relatively
high for the latter. The coefficient on the second lag is small and negative for both
estimators. For the POLS estimator, it is clearly not significantly different from 0; for
FE, it is somewhat more negative and significant at the 7% level of significance. This
pattern is in line with expectations: in general, the POLS estimator is expected to be
upward biased because not accounting for individual effects implies positive correlation
between the error terms and the lagged dependent variable, while the FE estimator is
expected to be biased downward because the centering used to wipe out the individual
effects results in negative correlation between the centered lagged dependent variables
and the error terms. The simulation results in section 4.3 show, more specifically, that
in a second-order dynamic model like (9), the POLS estimator has a more or less equal
small upward bias for the coefficients on the first and second lag, while the FE estimator
has a strong downward bias for the coefficient on the first lag but is much less biased
for the coefficient on the second lag.
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Table 5. Estimated employment equations: Full sample

Dependent variable: nit Sample period: 1976–1984, 140 UK firms

POLS FE dGMM sGMM BCFE

ni,t−1 1.045 (0.051) 0.734 (0.058) 0.686 (0.145) 0.914 (0.127) 1.008 (0.057)
ni,t−2 −0.077 (0.048) −0.141 (0.077) −0.085 (0.056) −0.068 (0.055) −0.161 (0.069)
wit −0.524 (0.172) −0.557 (0.155) −0.608 (0.178) −0.652 (0.182) −0.560 (0.163)
wi,t−1 0.477 (0.169) 0.326 (0.143) 0.393 (0.168) 0.524 (0.168) 0.495 (0.192)
kit 0.343 (0.048) 0.385 (0.056) 0.357 (0.059) 0.341 (0.062) 0.385 (0.051)
ki,t−1 −0.202 (0.064) −0.084 (0.053) −0.058 (0.073) −0.148 (0.075) −0.202 (0.060)
ki,t−2 −0.116 (0.035) −0.025 (0.042) −0.020 (0.033) −0.059 (0.039) −0.053 (0.037)
ysit 0.433 (0.176) 0.521 (0.193) 0.608 (0.172) 0.660 (0.178) 0.455 (0.178)
ysi,t−1 −0.768 (0.248) −0.659 (0.208) −0.711 (0.232) −0.836 (0.234) −0.746 (0.271)
ysi,t−2 0.312 (0.130) 0.001 (0.139) 0.106 (0.141) 0.111 (0.158) 0.133 (0.171)

No. of obs 751 751 611 751 751
Sum AR 0.968 (0.007) 0.593 (0.067) 0.601 (0.125) 0.846 (0.100) 0.847 (0.050)

Notes:

i) POLS, FE, and dGMM estimates are taken from Arellano and Bond (1991). sGMM estimates are obtained using
the xtdpdsys Stata command with the vce(robust) option to calculate SEs.

ii) The instrument sets used by the GMM estimators are constructed under the assumption that all regressors except
the lagged dependent variables are strictly exogenous. The reported GMM estimates are one-step results.

iii) The BCFE estimator uses 250 bootstrap samples with a burn-in (bi) initialization and the wild bootstrap (wboot)
to allow for general heteroskedasticity.

iv) Estimated SEs are reported in parentheses. They are robust to general cross-section and time-series heteroskedas-
ticity. For the BCFE, they are calculated using 50 bootstrap iterations.

v) Sum AR is the sum of the estimated AR coefficients γ̂1 and γ̂2.

vi) Time dummies are included in every specification but are not reported.

Hence, an unbiased estimate for the coefficient on ni,t−1 is expected to lie somewhere
in between the FE estimate 0.734 and the POLS estimate 1.045, but closer to the POLS

than the FE estimate. An unbiased estimate for the coefficient on ni,t−2 is expected to
lie close to the FE estimate of −0.141 and below the POLS estimate of −0.077. Note
that this only holds in expectations; sampling error can still imply that an unbiased
estimator results in estimates that are outside the POLS–FE bounds in a specific sample.
This risk is more pronounced in a higher-order dynamic model because the different
lags of the dependent variables are typically highly correlated. This multicollinearity
problem tends to increase the variance of the estimates. Therefore, we also report the
sum of the AR coefficients (γ1+γ2) as a rough measure of overall temporal dependence.
For the POLS estimator, the sum is 0.97, which is close to nonstationarity, while for the
FE estimator, this is much lower at 0.59.

Looking at the GMM results, the dGMM estimator behaves rather poorly: the coeffi-
cient estimate of 0.686 on ni,t−1 is even lower than the downward biased FE estimate,
while the coefficient estimate of −0.085 on ni,t−2 is close to the upward biased POLS

estimate. The sum of the dGMM AR term estimates equals 0.601, which is highly sim-
ilar to the sum of 0.593 implied by the downward biased FE estimates. This suggests
that the temporal dependence implied by the dGMM estimates is also downward biased.
Moreover, the standard deviation of the dGMM estimator is much bigger than that of
the FE estimator, especially for the coefficient on ni,t−1. The sGMM estimator improves
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on these results: the coefficient of 0.914 on ni,t−1 is now between the POLS and FE

estimates, as is expected for an unbiased estimator. Moreover, the overall temporal
dependence of 0.846 is higher than that implied by the downward biased FE estimates.
However, the coefficient of −0.068 on ni,t−2 is now even higher than the upward bi-
ased POLS estimate and statistically not significantly different from 0. Furthermore,
the standard deviation has decreased some but is still much higher than that of the FE

estimator.

The last column in table 5 reports BCFE estimates. Because firms operating in
different industries may have considerably different error variances, which are also likely
to change over time, we use the wild bootstrap (wboot) resampling scheme, which
is robust to heteroskedasticity. We further use the burn-in (bi) initialization, which
is the most flexible approach. The Stata commands to obtain the BCFE results and
full estimation output are reported in section A.2 of the appendix. The appendix
also contains estimation results for alternative resampling schemes. Turning to the
estimation results, in line with what we expect, the coefficient of 1.008 on ni,t−1 is
closer to the POLS estimate than to the FE estimate, while the coefficient of −0.161
on ni,t−2 is close to the FE estimate. Moreover, the SEs of the BCFE are close to that
of the FE estimator and much lower than that of the GMM estimators, especially for
the coefficient on ni,t−1. Also note that although its SE is higher than that of the
sGMM estimator, ni,t−2 now even shows up as significantly negative at the 5% level of
significance.

Because the error terms are potentially correlated over cross-sections, table 6 reports
BCFE estimates using the bootstrap resampling scheme csd, which reshuffles error terms
using the same time index for each cross-section to preserve a general type of contempo-
raneous error CSD. It also takes into account cross-sectional and unconditional temporal
heteroskedasticity. Because this resampling scheme requires a balanced panel, we take
a subset of the original data that includes 80 firms over the period 1978–1982. As a
benchmark, table 6 also contains the POLS and FE estimates for this reduced dataset.
The BCFE estimate of 1.179 on ni,t−1 is now somewhat above the POLS estimate of
1.104, while the BCFE estimate of −0.319 on ni,t−2 is now slightly below the FE esti-
mate of −0.229. However, the overall temporal dependence, as measured by the sum
of the AR coefficients, of 0.86 for the BCFE estimator is still in the range [0.535, 0.974]
implied by the POLS and FE estimates.
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Table 6. Estimated employment equations: Balanced panel

Dependent variable: nit Sample period: 1978–1982, 80 UK firms

POLS FE BCFE

ni,t−1 1.104 (0.048) 0.764 (0.048) 1.179 (0.058)
ni,t−2 −0.130 (0.047) −0.229 (0.064) −0.319 (0.063)
wit −0.087 (0.084) −0.108 (0.116) −0.107 (0.125)
wi,t−1 0.049 (0.088) −0.021 (0.120) 0.049 (0.169)
kit 0.326 (0.044) 0.376 (0.054) 0.383 (0.058)
ki,t−1 −0.221 (0.059) −0.090 (0.054) −0.269 (0.075)
ki,t−2 −0.083 (0.036) 0.001 (0.043) −0.015 (0.036)
ysit 0.095 (0.187) 0.034 (0.204) 0.034 (0.228)
ysi,t−1 −0.385 (0.208) −0.326 (0.194) −0.375 (0.284)
ysi,t−2 0.257 (0.123) 0.305 (0.176) 0.417 (0.220)

Sum AR 0.974 (0.009) 0.535 (0.070) 0.860 (0.046)

Notes:

i) POLS and FE estimates are obtained using the Stata commands regress and xtreg,
respectively, with the vce(robust) option to calculate SEs.

ii) The BCFE estimator uses 250 bootstrap samples with a burn-in (bi) initialization and
the resampling(csd) option to allow for general error CSD and cross-sectional as well
as unconditional temporal heteroskedasticity.

iii) Estimated SEs are reported in parentheses. They are robust to general cross-section and
time-series heteroskedasticity. For the BCFE, they are calculated using 50 bootstrap
iterations.

iv) Sum AR is the sum of the estimated AR coefficients γ̂1 and γ̂2.

v) Time dummies are included in every specification but are not reported.

6 Conclusion

In this article, we described a new command, xtbcfe, that executes an iterative boot-
strap-based bias-corrected FE estimator for dynamic panels building on Everaert and
Pozzi (2007). We first simplified the core of their algorithm using the invariance prin-
ciple and then extended it to allow for unbalanced and higher-order dynamic panels.
We implemented various bootstrap error resampling schemes to account for general het-
eroskedasticity and contemporaneous CSD, and included several options for the initial
conditions. The choice of an appropriate resampling scheme is important to preserve the
structure of the error terms in the resampling process. Several resampling options will
often be applicable in practice but tend to imply a different dependency over bootstrap
iterations in small datasets. Because the xtbcfe algorithm performs better when the
generated samples are independent, researchers are advised to choose the alternative
that incorporates the highest degree of randomness in the resampling process.

Inference can be carried out using either parametric or nonparametric bootstrapped
variance–covariance matrices or percentile intervals. The latter have the advantage of
not making any distributional assumptions and may be more suited in smaller datasets.
Monte Carlo simulations show that the simplification of the original algorithm results in
a BCFE estimator that is virtually unbiased for very small T . The Monte Carlo results
also support the BCFE in higher-order dynamic panels and panels with contemporaneous
error CSD.
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Future extensions of the code will include allowing for predetermined and endogenous
covariates and for intertemporal cross-sectional dependence.
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A Appendix

A.1 Convergence, initiation, and nonstationarity

In this subsection, we provide some additional technical details regarding the xtbcfe

command. Because this is an iterative bias-correction procedure, an important issue is
that of convergence. When evaluating (6), the convergence criterion is by default set to
0.005. Point estimates emerging from a divergent estimator will, in general, not have
appropriate statistical properties and hence are not reliable for inference (the command
will therefore not initiate the inference sequence in this case). However, the relatively
strict convergence criterion may also cause the algorithm to alternate indefinitely within
a very small band without ever converging. We accommodate this issue by altering
the criterion after a few iterations to measure the difference in the average over the
last four iterations and the average over the previous four iterations. This results in
a significant increase in the speed of convergence without a material impact on the
statistical properties. Additionally, the criterion is more difficult to satisfy in bigger
models. It is therefore automatically adjusted to be more lenient as more lags enter the
model; that is, the criterion 0.005 is multiplied by the number of lags p. Finally, users
are also able to specify their own criterion with the criterion() option.

Nonconvergence in itself also entails important information about the model consid-
ered by the researcher. Our (Monte Carlo) experiments have shown that the algorithm
has good convergence properties, even in small datasets, when the model is correctly
specified. However, if the model is misspecified, these properties tend to deteriorate,
especially when the considered lag length for the dependent variable is set much too
high. As such, failure to converge can be seen as a rough indication for the model being
too large and can be used as a tool for model building.

If the researcher is confident about the specified model, a divergent estimator may
be remedied by an alternative initialization scheme. Generally speaking, the stability of
the algorithm tends to increase when more restrictions are put on the initial conditions.
A purely data-driven initialization like the burn-in tends to be less stable, whereas the
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aho and ahe options and especially the det option impose more structure and therefore
more likely lead to convergence. This is of particular importance for small datasets
where the data may be (nearly) nonstationary or very noisy. Parameter estimates may
imply nonstationarity, in which case a burn-in initialization can result in generated
initial conditions that are close to infinity and not of practical use.5

Similarly, the original data may not be rich enough to allow meaningful estimation
of the initial condition covariance matrix Σ used in the analytical initializations aho

and ahe.6 In the case where the generated initial values are unreasonably large, the
xtbcfe estimator will issue a warning alerting the user of numerical problems that may
follow. A less data-driven initiation like the deterministic (det) option should then be
considered as an alternative.

A.2 Commands and estimation output

We obtained the results for the xtbcfe command from section 5 by using the commands
and output outlined below. First, we load the dataset:

. version 13

. webuse abdata

Because this dataset is already xtset, we do not need to do so again. We specify to
generate 250 bootstrap samples with wild bootstrap resampling in combination with
the burn-in initiation, 2 lags, 50 iterations for bootstrapped SEs, and the inclusion of
time dummies:

5. The burn-in generates initial conditions from the model with estimated parameters. Therefore, if
parameter roots imply nonstationarity, the unrestricted burn-in would generate observations from
a nonstationary AR process and quickly obtain very large numbers that cause numerical problems.
We have therefore adjusted the burn-in to attenuate this issue by imposing stationarity over the
burn-in period.

6. To ensure positive definiteness, the estimation of Σ occurs in a restricted manner. We start from
a diagonal matrix (estimating variances) and fill in the kth diagonal (estimating covariances) only
if the resulting matrix remains positive definite. If this is not the case, all the remaining diagonals
(k up to p) are kept at 0.
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. xtbcfe n w wL1 k kL1 kL2 ys ysL1 ysL2, bciters(250) resampling(wboot)
> initialization(bi) inference(inf_se) infiters(50) lags(2) te
25% of inference iterations performed...
50% of inference iterations performed...
75% of inference iterations performed...
95% of inference iterations performed...

Bootstrap corrected dynamic FE regression Number of obs = 751
Group variable : id Number of groups = 140

Resample : Wild bootstrap Obs per group: min = 5
Initialization : Burn-in avg = 5.4
Convergence : Yes max = 7

Dependent variable : n

Results
Coefs. Std. Err. t P>|t| [95% Conf. Interval]

L.n 1.0080990 0.0574874 17.54 0.000 0.8951962 1.1210019
L2.n -0.1610846 0.0694129 -2.32 0.021 -0.2974086 -0.0247606
w -0.5601488 0.1625968 -3.45 0.001 -0.8794822 -0.2408154
wL1 0.4952296 0.1922564 2.58 0.010 0.1176460 0.8728132
k 0.3849128 0.0507612 7.58 0.000 0.2852199 0.4846056
kL1 -0.2016635 0.0595062 -3.39 0.001 -0.3185311 -0.0847958
kL2 -0.0530621 0.0378414 -1.40 0.161 -0.1273810 0.0212568
ys 0.4548348 0.1783124 2.55 0.011 0.1046367 0.8050330
ysL1 -0.7455434 0.2705431 -2.76 0.006 -1.2768789 -0.2142079
ysL2 0.1329351 0.1708564 0.78 0.437 -0.2026200 0.4684901
year4 0.0146121 0.0128807 1.13 0.257 -0.0106851 0.0399094
year5 0.0265182 0.0199924 1.33 0.185 -0.0127460 0.0657824
year6 -0.0088682 0.0264345 -0.34 0.737 -0.0607846 0.0430481
year7 -0.0117055 0.0208444 -0.56 0.575 -0.0526430 0.0292320
year8 0.0010984 0.0224391 0.05 0.961 -0.0429711 0.0451679
year9 0.0187045 0.0247321 0.76 0.450 -0.0298683 0.0672773

Notes:
- Bootstrapped standard errors
- Confidence bounds for the t- distribution calculated with bootstrapped

standard errors
- Inference performed with non-parametric bootstrap

After estimation, we obtain the covariance matrix (only partly displayed here):

. matrix list e(V)

symmetric e(V)[16,16]
L. L2.
n n w wL1 k kL1

L.n .0033048
L2.n -.00278868 .00481814

w .00384405 -.00582258 .02643771
wL1 -.00368057 .00500156 -.02946648 .03696251

k -.00127285 .00008722 -.00001881 -.00065258 .0025767

(output omitted )

We next select the randomized temporal heteroskedasticity resampling scheme
(thet r). We use this to account for cross-sectional dependence without having to
balance the data (the csd resampling scheme requires a balanced dataset). Moreover,
it has the advantage that even though the time-series dimension is short, we use the
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large cross-section size to limit the dependency over bootstrap samples and maintain
the favorable properties of our estimator (see section 4.2).

. version 13

. webuse abdata, clear

. xtbcfe n w wL1 k kL1 kL2 ys ysL1 ysL2, bciters(250) resampling(thet_r)
> initialization(bi) inference(inf_se) infiters(50) lags(2) te
25% of inference iterations performed...
50% of inference iterations performed...
75% of inference iterations performed...
95% of inference iterations performed...

Bootstrap corrected dynamic FE regression Number of obs = 751
Group variable : id Number of groups = 140

Resample : random T-Heteroscedasticity Obs per group: min = 5
Initialization : Burn-in avg = 5.4
Convergence : Yes max = 7

Dependent variable : n

Results
Coefs. Std. Err. t P>|t| [95% Conf. Interval]

L.n 1.0497798 0.0771825 13.60 0.000 0.8981965 1.2013630
L2.n -0.1679384 0.0674475 -2.49 0.013 -0.3004025 -0.0354743
w -0.5560476 0.1495334 -3.72 0.000 -0.8497251 -0.2623700
wL1 0.5086207 0.1781491 2.86 0.004 0.1587433 0.8584982
k 0.3810623 0.0660147 5.77 0.000 0.2514121 0.5107125
kL1 -0.2214609 0.0607838 -3.64 0.000 -0.3408378 -0.1020840
kL2 -0.0446566 0.0323679 -1.38 0.168 -0.1082259 0.0189126
ys 0.4662594 0.1775042 2.63 0.009 0.1176485 0.8148704
ysL1 -0.7721300 0.2518845 -3.07 0.002 -1.2668208 -0.2774392
ysL2 0.1531533 0.1304085 1.17 0.241 -0.1029637 0.4092703
year4 0.0203758 0.0109208 1.87 0.063 -0.0010721 0.0418238
year5 0.0344659 0.0178722 1.93 0.054 -0.0006345 0.0695662
year6 -0.0014030 0.0268697 -0.05 0.958 -0.0541740 0.0513681
year7 0.0000237 0.0192105 0.00 0.999 -0.0377049 0.0377524
year8 0.0137072 0.0189288 0.72 0.469 -0.0234681 0.0508825
year9 0.0316466 0.0244391 1.29 0.196 -0.0163509 0.0796440

Notes:
- Bootstrapped standard errors
- Confidence bounds for the t- distribution calculated with bootstrapped

standard errors
- Inference performed with non-parametric bootstrap

Subsequently, we fit the model with the csd resampling option. Because this re-
quires a balanced panel, we balance the data using the xtbalance package (xtbalance,
range(1976 1982)). We keep the burn-in initiation to also incorporate cross-sectional
dependence in the generation of the initial conditions.

. version 13

. webuse abdata, clear

. xtbalance, range(1976 1982)

(113 observations deleted due to out of range)

(358 observations deleted due to discontinues)
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. xtbcfe n w wL1 k kL1 kL2 ys ysL1 ysL2, bciters(250) resampling(csd)
> initialization(bi) inference(inf_se) infiters(50) lags(2) te
25% of inference iterations performed...
50% of inference iterations performed...
75% of inference iterations performed...
95% of inference iterations performed...

Bootstrap corrected dynamic FE regression Number of obs = 400
Group variable : id Number of groups = 80

Resample : Cross-section dependence Obs per group: min = 5
Initialization : Burn-in avg = 5.0
Convergence : Yes max = 5

Dependent variable : n

Results
Coefs. Std. Err. t P>|t| [95% Conf. Interval]

L.n 1.1791647 0.0577193 20.43 0.000 1.0655878 1.2927416
L2.n -0.3189932 0.0629156 -5.07 0.000 -0.4427952 -0.1951913
w -0.1072298 0.1253633 -0.86 0.393 -0.3539129 0.1394533
wL1 0.0496606 0.1687568 0.29 0.769 -0.2824100 0.3817313
k 0.3833026 0.0581229 6.59 0.000 0.2689314 0.4976739
kL1 -0.2695174 0.0752560 -3.58 0.000 -0.4176022 -0.1214326
kL2 -0.0146591 0.0368312 -0.40 0.691 -0.0871336 0.0578154
ys 0.0337995 0.2279966 0.15 0.882 -0.4148401 0.4824391
ysL1 -0.3751031 0.2839324 -1.32 0.187 -0.9338102 0.1836039
ysL2 0.4174060 0.2198262 1.90 0.059 -0.0151563 0.8499684
year4 0.0136099 0.0125602 1.08 0.279 -0.0111054 0.0383251
year5 -0.0313750 0.0310202 -1.01 0.313 -0.0924148 0.0296649
year6 -0.0992146 0.0384908 -2.58 0.010 -0.1749547 -0.0234745
year7 -0.0195502 0.0195095 -1.00 0.317 -0.0579399 0.0188395

Notes:
- Bootstrapped standard errors
- Confidence bounds for the t- distribution calculated with bootstrapped

standard errors
- Inference performed with non-parametric bootstrap

. matrix list e(V)

symmetric e(V)[14,14]
L. L2.
n n w wL1 k kL1

L.n .00333152
L2.n -.0025691 .00395837

w .00030945 -.00043054 .01571595
wL1 -.00114287 .00126991 -.01784427 .02847886

k -.00162874 .00034465 .00114095 -.00028964 .00337828

(output omitted )

With the time-series dimension now shortened, the distribution of the xtbcfe com-
mand may be poorly approximated by the normal distribution. A percentile interval
may be the better choice for inference here because it does not make any symmetry or
normality assumptions. We select it by specifying the inference(inf ci) option and
increase the number of inference iterations to 200.
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. version 13

. webuse abdata, clear

. xtbalance, range(1976 1982)

(113 observations deleted due to out of range)

(358 observations deleted due to discontinues)

. xtbcfe n w wL1 k kL1 kL2 ys ysL1 ysL2, bciters(250) resampling(csd)
> initialization(bi) inference(inf_ci) infiters(200) lags(2) te
25% of inference iterations performed...
50% of inference iterations performed...
75% of inference iterations performed...
95% of inference iterations performed...

Bootstrap corrected dynamic FE regression Number of obs = 400
Group variable : id Number of groups = 80

Resample : Cross-section dependence Obs per group: min = 5
Initialization : Burn-in avg = 5.0
Convergence : Yes max = 5

Dependent variable : n

Results
Coefs. Std. Err. t P>|t| [95% Conf. Interval]

L.n 1.1791647 0.0604333 19.51 0.000 1.0527685 1.2954533
L2.n -0.3189932 0.0672792 -4.74 0.000 -0.4449091 -0.1578264
w -0.1072298 0.1208303 -0.89 0.376 -0.3784196 0.0993305
wL1 0.0496606 0.1584258 0.31 0.754 -0.1936102 0.3992755
k 0.3833026 0.0532620 7.20 0.000 0.2632709 0.4742108
kL1 -0.2695174 0.0746871 -3.61 0.000 -0.3728123 -0.1027051
kL2 -0.0146591 0.0415927 -0.35 0.725 -0.1086166 0.0629152
ys 0.0337995 0.2057357 0.16 0.870 -0.2999481 0.4710875
ysL1 -0.3751031 0.2672561 -1.40 0.161 -0.9478765 0.0263027
ysL2 0.4174060 0.2055512 2.03 0.043 0.0411414 0.8130541
year4 0.0136099 0.0135002 1.01 0.314 -0.0144991 0.0360641
year5 -0.0313750 0.0292467 -1.07 0.284 -0.0912637 0.0245360
year6 -0.0992146 0.0347852 -2.85 0.005 -0.1616807 -0.0307033
year7 -0.0195502 0.0200393 -0.98 0.330 -0.0542770 0.0118444

Notes:
- Bootstrapped standard errors
- Bootstrap 95% (percentile-based) confidence intervals
- Inference performed with non-parametric bootstrap

Given the limited time-series size, this resampling scheme may also suffer from cor-
related bootstrap samples. To alleviate this issue, we use randomized temporal het-
eroskedasticity resampling.
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. version 13

. webuse abdata, clear

. xtbalance, range(1976 1982)

(113 observations deleted due to out of range)

(358 observations deleted due to discontinues)

. xtbcfe n w wL1 k kL1 kL2 ys ysL1 ysL2, bciters(250) resampling(thet_r)
> initialization(bi) inference(inf_ci) infiters(200) lags(2) te
25% of inference iterations performed...
50% of inference iterations performed...
75% of inference iterations performed...
95% of inference iterations performed...

Bootstrap corrected dynamic FE regression Number of obs = 400
Group variable : id Number of groups = 80

Resample : random T-Heteroscedasticity Obs per group: min = 5
Initialization : Burn-in avg = 5.0
Convergence : Yes max = 5

Dependent variable : n

Results
Coefs. Std. Err. t P>|t| [95% Conf. Interval]

L.n 1.1283840 0.0602031 18.74 0.000 0.9849712 1.2351810
L2.n -0.2800163 0.0630316 -4.44 0.000 -0.3680919 -0.1256024
w -0.1139698 0.1065288 -1.07 0.286 -0.3373439 0.0698350
wL1 0.0493259 0.1495614 0.33 0.742 -0.1886080 0.4095369
k 0.3815278 0.0543022 7.03 0.000 0.2784973 0.4824990
kL1 -0.2431629 0.0695407 -3.50 0.001 -0.3617617 -0.0987648
kL2 -0.0229568 0.0396791 -0.58 0.563 -0.1457693 0.0426496
ys 0.0409369 0.1990656 0.21 0.837 -0.3281545 0.4940364
ysL1 -0.3802078 0.2439174 -1.56 0.120 -0.9901919 0.0201739
ysL2 0.4098277 0.1773858 2.31 0.022 0.0536915 0.7672914
year4 0.0123800 0.0111948 1.11 0.270 -0.0086366 0.0371148
year5 -0.0311606 0.0256305 -1.22 0.225 -0.0820865 0.0169481
year6 -0.1005774 0.0299376 -3.36 0.001 -0.1591851 -0.0424375
year7 -0.0241097 0.0161215 -1.50 0.136 -0.0619703 0.0002694

Notes:
- Bootstrapped standard errors
- Bootstrap 95% (percentile-based) confidence intervals
- Inference performed with non-parametric bootstrap




