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Abstract. In this article, I describe the algorithm proposed by Berry, Levinsohn,
and Pakes (1995, Econometrica 63: 841–890) to fit the random-parameters logit
demand model from product market shares. I present a new command, blp, for
this estimator.

Keywords: st0408, blp, logit model, elasticities, contraction mapping, GMM, ran-
dom coefficients, optimal instruments

1 Introduction

The estimation of consumer demand in differentiated product industries plays a central
role in applied economic analysis. The traditional approach is to specify a system of
demand functions consistent with economic theory and estimate the parameters using
aggregate market data. Popular examples include the Rotterdam model formulated by
Theil (1965) and the almost-ideal demand system by Deaton and Muellbauer (1980b).

Despite their flexibility, a major hurdle that practitioners often face concerns the
large number of parameters that need to be estimated, even after the restrictions of
adding-up homogeneity and symmetry have been imposed. This dimensionality problem
can be solved if preferences are assumed to be separable and consumers adopt a two-
stage budgeting process. The first assumption allows products to be allocated into broad
groups, such that preferences within one group are independent of the consumption
decisions in another. The second assumption then permits expenditure to be allocated
in two discrete stages: first to the broad groups, given total expenditure and group
price indices, and then to the products within each group, given group outlay and
within-group prices. Although empirically appealing, the assumption of separability
places strong restrictions on the degree of substitutability between goods in different
groups. Furthermore, the requirement of a valid group price index, such that two-stage
budgeting corresponds to the allocation if made in one step, places severe restrictions on
the permissible forms of utility function (see Deaton and Muellbauer [1980a, chap. 5]).

c© 2015 StataCorp LP st0408
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The logit demand model, first proposed by McFadden (1974), is another way to
address the dimensionality problem by projecting consumer preferences onto a finite set
of product characteristics. This model uses observed market shares and can be easily
fit following a transformation of the dependent variable. However, despite this com-
putational simplicity, the model imposes strong restrictions on the nature of consumer
heterogeneity that again lead to patterns of substitution that are generally unrealistic.

In this article, I discuss the new command blp, which estimates the parameters of
the random-coefficients logit demand model from product market shares. This com-
mand uses the generalized method of moments (GMM) estimator proposed by Berry,
Levinsohn, and Pakes (1995) (henceforth, BLP) and allows for endogenous prices and
consumer heterogeneity in the valuation of product characteristics. This creates flexible
patterns of substitution and leads to more realistic estimates of own- and cross-price
elasticities. Finally, to reduce bias and improve both the efficiency and stability of the
estimator, blp follows Reynaert and Verboven (2014) and provides an option to fit the
model using Chamberlain (1987) optimal instruments.

The remainder of this article is organized as follows. In section 2, I describe the
demand model and follow the exposition by Nevo (2000b), who popularized BLP. In
section 3, I discuss details of the BLP algorithm that constitute the GMM estimator. In
section 4, I describe blp. In section 5, I provide examples, and in section 6, I use Monte
Carlo simulation to investigate the small-sample properties of the estimator.

2 The model

Following the exposition by Nevo (2000b), it is assumed that there are t = 1, . . . , T
observable markets consisting of i = 1, . . . , It consumers, facing j = 1, . . . , J alternative
products.1 For each market, aggregate data are available on product demand, prices,
and product characteristics. Markets are assumed to be independent and can be cross-
sectional (for example, geographic), time series, or longitudinal.

2.1 Demand

Let uijt denote the indirect utility that individual i receives from the consumption of
product j in market t. This is assumed to be a linear function of a K × 1 vector of
product characteristics xjt, price pjt, an unobserved (to the econometrician) component
ξjt, and an idiosyncratic error ǫijt. Hence,

uijt = αi(yi − pjt) + x
′

jtβi + ξjt + ǫijt (1)

where yi is individual income, βi is a K×1 vector of coefficients, and αi is the marginal
utility of income. The term ξjt can be regarded as deviations from observed product
quality that are common to all individuals. Consumer i can also choose to buy the
outside product j = 0, with normalized utility ui0t = αiyi + ǫi0t.

1. blp accommodates the case where markets are unbalanced, that is, Jt.
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Both βi and αi are assumed to be linear functions of a d× 1 vector of demographic
factors, Di, and a (K + 1)× 1 vector of unobservable components, vi. In particular,

(
βi

αi

)
=

(
β

α

)
+ΠDi + Lvi (2)

where Π and L are (K +1)× d and (K +1)× (K +1) matrices, respectively. Although
both Di and vi are typically unobserved, the distribution of the demographics, P (Di),
is assumed to be known. For vi, it is assumed that Lvi ∼ i.i.d.N(0,Σ), where Σ = LL

′

is the covariance matrix of the coefficients βi, αi conditional upon Di.
2

Define the set Aijt = (ǫit : uijt ≥ uimt, ∀m 6= j), where ǫit = (ǫij0, . . . , ǫiJt), then
the probability that individual i selects product j, in market t, given Di and vi is

Prijt =

∫

Aijt

dF (ǫit | Di,vi) (3)

Integrating out the unobservables Di and vi in (2) yields

Prjt =

∫

Di

∫

vi

PrijtdF (Di | vi)dF (vi) (4)

The probability Prjt is the same for all i and can be estimated by the product market
shares sjt = qjt/It, where qjt denotes the sales. The error in this approximation is

Op(I
−1/2
t ) and will be negligible for large It, which is often the case.

To evaluate the integrals in (4), it is assumed that the errors ǫijt are independent
and identically distributed (i.i.d.) and have a type-I extreme-value distribution. Then,
from (2),

Prijt =
exp

(
x

′

jtβi − αipjt + ξjt

)

1 +
∑J

m=1 exp
(
x

′

mtβi − αipmt + ξmt

) (5)

Because income yi appears in the (indirect) utility function for all alternatives, in-
cluding the outside option, αiyi cancels in the expression for Prijt.

The integrals in (4) cannot be evaluated analytically, but they can be approximated
by Monte Carlo integration with R random draws of (Di,vi) from the distributions
P (Di) and N(0, IK+1). Letting δjt = x

′

jtβ − αpjt + ξjt denote the mean utility,

sjt =
1

R

R∑

i=1

Prijt =
1

R

R∑

i=1

exp
{
δjt +

(
x

′

jt,−pjt
)
(ΠDi + Lvi)

}

1 +
∑J

m=1 exp
{
δmt +

(
x

′

mt,−pmt

)
(ΠDi + Lvi)

} (6)

The simulation error can be reduced by increasing the number of draws, R.3 This has
a convergence rate of O(R−1/2) and requires R to be increased by a factor of 100 for
every additional digit of accuracy.

2. In practice, it is not necessary for all coefficients to be random or determined by the same set of
demographic variables in Di. blp allows for each case.

3. The model in (4) is the aggregate counterpart of the random-coefficients logit model for individual-
level choice data. The command mixlogit by Hole (2007) fits such models by maximum simulated
likelihood using Halton draws.
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An alternative method of variance reduction is to use quasi-random numbers. These
are draws that represent nonrandom points within the domain of integration and provide
a more-uniform coverage of the sampling distribution. A leading example are draws de-
rived from Halton sequences. This method was introduced to the econometrics literature
by Train (2000) and has a convergence rate of O{R−1 log(R)a}, where a is the dimension
of the integral. This suggests that for modest R and small a, Monte Carlo integration
using Halton draws will provide more-accurate approximations to the integrals in (4)
compared with approximations based on random variates. Drukker and Gates (2006)
examine this issue and conclude that Halton draws should be used for a ≤ 10.

Polynomial-based integration is an additional method that offers further improve-
ments over simulation. This approach is adopted by Skrainka and Judd (2011), who
approximate the market-share integrals in (4) using three multidimensional polynomial-
based rules.

Finally, for models that contain demographic variables, Halton draws or polynomial-
based integration over v should offer no improvement when the integrals over D are
approximated using random draws.4

Elasticities

To illustrate the advantages of the BLP model, consider the case of the logit specification,
where preferences are homogeneous across consumers, (βi = β, αi = α). Then, from
(3), the own- and cross-price elasticities are given by

ejkt =

{
−αpjt(1− sjt) if j = k
αpktskt if j 6= k

Because shares are often small, own-price elasticities will be proportional to price.
This suggests that cheaper products are less elastic and have higher markups over
marginal costs. This assumption is clearly implausible for many industries. A further
limitation is implied by the cross-price elasticities, which impose unrealistic restrictions
on the patterns of substitution between products. For example, if a red wine and a
white wine have similar market shares, the logit model restricts the increase in their
sales for a rise in the price of another brand of red wine to be the same. In practice, we
would expect more consumers to substitute toward products that are similar and less
toward products whose characteristics are different.

As Nevo (2000b) explains, the restrictive nature of the cross-price elasticities is due
to the i.i.d. structure of the error terms, ǫijt. Although the ranking of the products will
differ across consumers, the probability of selecting a particular alternative will be the
same as the population average, which is simply the market share.

To avoid this problem, the utilities in (1) must be correlated across brands. This is
introduced by including Di and vi in (2), which generates correlation between products

4. This results from the property O(a) + O(b) = O(max{a, b}). Hence, if using Halton draws for v,
the error will be O[max{R−1/2, R−1 log(R)k+1}], which is at least as large as O(R−1/2).



858 The Berry–Levinsohn–Pakes estimator

with similar characteristics. Furthermore, consumers with the same demographics will
have similar preferences and, hence, similar patterns of substitution. From (4), the own-
and cross-price elasticities for the BLP model become the following:

ejkt =

{
−pjt

sjt

∫
αiPrijt(1− Prijt)dF (Di,vi) if j = k

pkt

sjt

∫
αiPrijtPriktdF (Di,vi) if j 6= k

(7)

The price sensitivity is now a probability-weighted average and can differ over products.
As such, the model allows for flexible patterns of substitution that are more likely to be
observed in the data. The integrals in (5) are again approximated by simulation.

2.2 Supply

Following Reynaert and Verboven (2014), let the marginal cost of product j in market
t be independent of output and described by

cjt = x
′

jtγ1 +w
′

jtγ2 + ζjt (8)

where wjt is a vector of variables that affects marginal costs and ζjt is an unobserved
(to the econometrician) component. Under perfect competition, pjt = cjt, and in vector
notation, the supply side is described by

pt = Xtγ1 +Wtγ2 + ζt (9)

For markets characterized by differentiated yet substitutable products, it may be rea-
sonable to assume that firms engage in multiproduct Bertrand price competition. In
this case, each company selects prices to maximize profits, given own-product attributes
and the prices and attributes of other products in the market. The supply side under
this model of imperfect competition is described by

pt = ct +∆−1
t (δt,L,Π) st (δt,L,Π) (10)

where ∆t is a J × J matrix with i, j-element ∆tij = −∂sjt/∂pit if products i and j
are manufactured by the same company and 0 otherwise. Prices now include a markup
∆−1

t st, which depends on δt(pt,Xt, ξt). Thus, under this form of competition, the
Nash-equilibrium prices will be a function of Xt, Wt, and the unobservables ζt and ξt.

blp follows the recent literature and estimates the parameters of the demand system
by GMM. Unlike BLP, who estimate the parameters of both the demand and supply
side, the relationships in (7) and (8) are used only to generate additional instruments to
accommodate the endogeneity of prices. This will occur in perfect competition in (6) if
ξjt is correlated with ζjt, and it is likely to be exacerbated under imperfect competition
in (8), because the markups ∆−1

t st contain the vectors of unobservables ζt and ξt.
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3 GMM estimation

To identify the demand parameters, the product characteristics, Xt, and the cost
shifters, Wt, are assumed to be mean independent of the unobserved component, ξjt.

E (ξjt | Xt,Wt) = 0, j = 1, . . . , J (11)

The conditional-moment restriction in (9) implies an infinite number of unconditional-
moment restrictions,

E (zjtξjt) = 0 (12)

where zjt = gjt (Xt,Wt) is a vector of instruments that are functions of the product
characteristics and cost drivers of all products (see section 3.1).

Following the exposition by Nevo (2000a), the GMM estimator is carried out in three
steps, including an initial stage, as follows:

0. For each market, draw R individuals v1, . . . ,vR and D1, . . . ,DR. These are used
to approximate the integrals in (4) in step 1.5

1. For given values of Π and L, solve each market for the vector δt = (δ1t, . . . , δJt)
′

,
such that shares from (4) equal observed market shares.

2. Compute the sample-moment conditions T−1
∑T

t=1 Z
′

tξt, where Zt is a J × l set

of instruments and ξt = (ξ1t, . . . , ξJt)
′

, and form the GMM objective function.

3. Search for the values β, α, Π, and L that minimize the GMM objective function.

The blp command restricts the off-diagonal elements of the covariance matrix Σ to
be zero. Thus, L = diag(σ1, . . . , σK+1), where σk denotes the standard deviation of the
kth random coefficient for individual i, conditional upon Di. As such, any correlation
between the taste parameters operates through the demographics only.

To simplify the exposition, let x†
jt = (x

′

jt, pjt)
′

be a K+1 vector of observed product

characteristics that now includes price, and let X†
t = (x†

1t, . . . ,x
†
Jt)

′

be the J × (K +1)

matrix of observations for market t and θ = (θ
′

1,θ
′

2)
′

, where θ
′

1 = (β
′

, α, ) and θ
′

2 =

{σ1, . . . , σK+1, vec(Π
′

)
′}. Each stage of the estimation is described in detail below.

Step 0: Drawing v and D

blp uses R random draws of the demographic variables D and Halton or pseudorandom
draws (as an option) for the K + 1 vector v. These differ across markets, but do not
vary during estimation (steps 1 through 3). To generate the Halton draws for market
t, a matrix containing a Halton sequence of length R and dimension K + 1 is created
from the first K + 1 primes. The set is started at point 1 + B + R(t − 1), where B is

5. As Nevo (2000b) explains, identification of the demographic parameters Π requires data on several
markets and with variation in the distribution of the demographics across markets.
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discarded to reduce correlation between the sequences.6 blp sets R = 200 by default,
although it is recommended that practitioners investigate the sensitivity of parameter
estimates to increasing numbers of draws. Reynaert and Verboven (2014, tab. 8) report
that for R = 50, estimates based on pseudo-Monte Carlo integration are less precise
and considerably more biased than estimates that result when R = 200.

Step 1: Contraction mapping

For each market t = 1, . . . , T , compute the J × 1 vector of mean utilities δt such that

s(δt,θ2) = st (13)

where s(δt,θ2) are the predicted shares from (4) and st = {s1t, . . . , sJt}
′

are the ob-
served counterparts. This system of J equations is then solved using the contraction
mapping suggested by BLP. For a given vector δnt , this involves computing

δn+1
t = δnt + log st − log {s(δnt ,θ2)} (14)

where n denotes the nth iteration of the process. Updating then continues using (3)
and (11) until ‖δnt − δn−1

t ‖ is below a specified tolerance level.

As Dubé, Fox, and Su (2012) demonstrate, a loose tolerance for the contraction map-
ping propagates into the GMM objective function and its derivatives and may lead to a
nonconvergence of the optimization routine.7 To avoid this situation, blp sets a default
inner-loop tolerance to 10E–15. Iteration is also over exp(δt), and δt is recovered at
convergence. This removes the need to compute logs and exponentials within each loop
and, therefore, saves considerable computational time.

Step 2: GMM objective function

Let Zt = (z1t, . . . , zJt)
′

be a J × l matrix of instruments that satisfy (10) such that

E{ht(θ0)} = E{Z′

tξt(θ0)} where ξt(θ0) = δt(θ2,0) −X
†
tθ1,0 and θ0 = (θ

′

1,0,θ
′

2,0)
′

are
the true population parameters. The GMM method replaces the population-moment
conditions with the sample counterparts h(θ) = T−1

∑T
t=1 ht(θ) and selects θ as the

values that minimize the objective function

Q = h(θ)
′

ATh (θ)

where AT is a positive-definite weighting matrix that is independent of θ. The subscript
T indicates reliance on the data, and identification of the parameters requires that
l ≥ (K + 1)(2 + d).

6. Hole (2007) sets B = 15 by default in mixlogit.
7. The contraction mapping is a nested fixed-point algorithm. Dubé, Fox, and Su (2012) eliminate

this step using mathematical programming with equilibrium constraints. This minimizes the GMM
objective function subject to the market-share equations as constraints.
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Step 3: Parameter search

For the case where the model is just identified as {l = (K + 1)(2 + d)}, the estimator

θ̂ is the solution to h(θ̂) = 0, which does not involve AT . For overidentified models,
selection of the weighting matrix yields different estimators that are consistent under
regulatory assumptions, but with varying degrees of efficiency.

Letting GT (θ) = T−1
∑T

t=1(∂ht/∂θ
′

), the GMM estimator for the overidentified
model solves the following first-order conditions:

2GT (θ̂)
′

ATh(θ̂) = 0 (15)

The elements of GT are given by

GT (θ) = T−1
T∑

t=1

Z
′

t

{
X

†
t ,Dθ2

δt(θ2)
}

(16)

where Dθ2δt denotes the J × (K +1)(1 + d) matrix of derivatives of δt with respect to

θ
′

2. To reduce the search time, θ1 can be written as an explicit function of θ2,

θ̂1 = (X†′ZATZ
′

X†)−1X†′ZATZ
′

δ(θ2) (17)

where X† = (X†′

1 , . . . ,X
†′

T )
′

, Z = (Z
′

1, . . . ,Z
′

T )
′

, and δ = (δ
′

1, . . . , δ
′

T )
′

. Ignoring pro-

portionality constants, the search is now limited to θ2, where the estimator θ̂2 solves

{
T∑

t=1

Z
′

tDθ2δt

(
θ̂2

)}
′

AT

{
T∑

t=1

Z
′

tξt

(
θ̂
)}

= 0 (18)

To use a Newton method, the analytical derivatives Dθ2δt in the first-order conditions
in (15) are required. These can be computed by an application of the implicit function
theorem to s{δt(θ2),θ2} = st, which yields the following:

Dθ2δt = −(Dδt
st)

−1Dθ2st (19)

The elements inside the matrices of (16) are

Dθ2
δt = −




∂s1t
∂δ1t

.. ∂s1t
∂δJt

: : :
∂sJt

∂δ1t
.. ∂sJt

∂δJt




−1



∂s1t
∂σ1

.. ∂s1t
∂σK+1

, ∂s1t
∂π11

.. ∂s1t
∂π(K+1)d

: : : : : :
∂sJt

∂σ1
.. ∂sJt

∂σK+1
, ∂sJt

∂π11
.. ∂sJt

∂π(K+1)d




where, for example, ∂sjt/∂πkd is the derivative of sjt with respect to πkd, where πkd
measures the impact of demographic variable d on the kth stochastic coefficient.
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From the simulator in (4), the derivatives in the matrices of (16) are given by

∂sjt
∂δjt

= R−1
R∑

i=1

Prijt(1− Prijt)

∂sjt
∂δmt

= R−1
R∑

i=1

PrijtPrimt

∂sjt
∂σk

= R−1
R∑

i=1

Prijtvik

(
xjtk −

J∑

m=1

xmtkPrimt

)

∂sjt
∂πkd

= R−1
R∑

i=1

PrijtDid

(
xjtk −

J∑

m=1

xmtkPrimt

)

where Prijt is defined in (3), and xmtk denotes the observation for alternative m in
market t on product characteristic k.8

To implement the estimation algorithm, initial values of θ2 are needed. blp sets
these to 0.5 but provides the user with the option to specify alternative starting values
if required. This is important, because recent literature suggests that the objective
function may not be globally concave, leading to convergence at local extrema. Knittel
and Metaxoglou (2014) explore this issue using pseudo-Monte Carlo integration with
R ∈ (25, 50) and for different starting values and alternative optimization routines.
They report considerable variation in objective-function values and multiple instances
of convergence failure. These issues are associated with the nonlinearity of the model,
which leads to an objective function that is not globally concave. They suggest that
in the absence of prior information on θ2, a large number of starting values should be
generated using random draws. Estimation should then proceed using several different
optimization algorithms and stopping rules based on tight outer tolerances.9 Starting
values and optimization algorithms that yield the lowest objective-function values should
then be selected for the final parameter search.

Skrainka and Judd (2011) report similar issues using pseudo-Monte Carlo integra-
tion and attribute these to ripples on the surface of the GMM objective function that
lead to false local minimums. Experiments are carried out using different starting values
for the parameters, R ∈ (1000, 10000) in the pseudo-Monte Carlo integration, and ap-
proximations to (4) using polynomial-based rules. The results show that while larger R
increases stability, variation persists in both point estimates and objective-function val-
ues. This is not the case when (4) is approximated using polynomial-based integration,
where results are virtually identical across all sets of starting values.

8. To speed up the algorithm, blp uses vectorization throughout.
9. blp sets the outer tolerance to 10e–12.
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3.1 Instruments

For the demand-side model where E(ξtξ
′

t | Xt,Wt) = IJσ
2
ξ , the Chamberlain (1987)

optimal instruments are

z∗jt = E

(
∂ξjt
∂θ

| Xt,Wt

)

This is the conditional expectation of the derivative of the conditional-moment restric-
tion with respect to vector θ. As demonstrated by Chamberlain (1987), z∗jt will minimize

the asymptotic covariance matrix of the estimator θ̂.

Reynaert and Verboven (2014) evaluate the small-sample properties of the BLP–
GMM estimator for different sets of instruments zjt = gjt(Xt,Wt). In particular, their
analysis uses simulation to compare the bias, efficiency, and stability of the estimator
using optimal instruments with two sets based on series approximations that are com-
monly applied in the literature. They conclude that cost-side drivers should be used
to identify the price parameters10 and that optimal instruments should be applied to
identify the variances of the random coefficients. Computation of these instrument sets
are described in the following.

Standard instruments

Most applications of the BLP model use instruments that represent series approximations
of z∗jt. In the Monte Carlo experiments by Reynaert and Verboven (2014), two sets of

suboptimal instruments are constructed. The first, denoted z1jt, is a second-order poly-
nomial of (xjt,wjt) and resembles the instruments used by Dubé, Fox, and Su (2012).
These comprise xjt, wjt, and their squares and interactions. Hence, for one demand

characteristic and one cost component, z1jt = (xjt, wjt, x
2
jt, w

2
jt, xjtwjt)

′

.

Their second set, denoted z2jt, extends z
1
jt by adding the sums of the characteristics

of other products
∑J

m=1,m 6=j xmt. These additional instruments resemble those used by

BLP11 and are assumed to assist in the identification of the heterogeneity parameters,
θ2.

12 The results of their simulations show that for a model with one random coeffi-
cient, the estimator using suboptimal instruments is biased, inefficient, and unstable.13

Furthermore, while including BLP-type instruments improves performance, the benefits
are small. These results generalize to models with multiple random coefficients.

10. This finding was initially reported by Armstrong (2014).
11. More precisely, BLP use the following instruments: xjt, wjt,

∑
m∈Fj ,m6=j(xmt,wmt), and

∑
m/∈Fj ,m6=j(xmt,wmt), where Fj contains the set of all products that are manufactured by the

same company that produces product j.
12. blp requires the user to create and specify all suboptimal instruments.
13. This refers to the case where the distribution of the standard deviation of the taste parameter

exhibits a large number of spikes around zero.
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Optimal instruments

In vector notation, the unconditional-moment restrictions for each market satisfy
E(Z∗′

t ξt) = 0, where the matrix of optimal instruments Z∗
t is described as

Z∗
t = E (Dβξt,Dαξt,Dθ2

ξt | Xt,Wt) (20)

The expectation of the first component in (5) is simply

E (Dβξt | Xt,Wt) = −E (Xt | Xt,Wt) = −Xt (21)

For the second component in (5), a supply-side assumption is required. Under perfect
competition in (7), this expectation becomes the following:

E (Dαξt | Xt,Wt) = −E (pt | Xt,Wt) = −(Xtγ1 +Wtγ2) (22)

A consistent estimator of the expectation in (22) is then the predicted price from an
ordinary least-squares (OLS) regression of pjt on xjt and wjt. As noted by Reynaert
and Verboven (2014), the instruments for the linear parameters θ1 in (21) and (22) are
the same as those from the first stage in a two-stage least-squares estimator.

To compute E(pt | Xt,Wt) under imperfect competition in (8), it is necessary to
first solve for the vector of equilibrium prices, pt = f(Wt,Xt, ξt, ζt). The expectation
is then with respect to the density of the demand and the cost-side unobservables.
Reynaert and Verboven (2014) follow BLP and approximate the expectation by setting
ξt = ζt = 0. However, they also report more accurate predictions from an OLS regression
of prices pjt on a polynomial of the demand characteristics, cost drivers, and

∑
m 6=j xmt.

The final component in (5) is the optimal set of instruments for the heterogeneity
parameters, θ2. This is given by

E (Dθ2
ξt | Xt,Wt) = E (Dθ2

δt | Xt,Wt) (23)

Reynaert and Verboven (2014) approximate the expectation using simulation, but re-
port similar gains in efficiency using the method proposed by Berry, Levinsohn, and
Pakes (1999). This evaluates the derivatives in (23) at the expected value of the un-
observables ξt = ζt = 0 and is computationally faster. This procedure is described as
follows:

1. Estimate the parameters of the model with suboptimal instruments to obtain θ̂.

2. Predict prices p̂t = Xtγ̂1 +Wtγ̂2, where γ̂1 and γ̂2 are the OLS estimates. Func-
tions of Wt and Xt can be included if necessary. For expectations that are non-
linear in the parameters, (22) will be an approximation.

3. Compute the predicted mean utility δ̂t = Xtβ̂− α̂p̂t, and substitute for δt in the
components of (16). This provides E(Dθ2

ξt | Xt,Wt) ≈ Dθ2
δ̂t.
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Reynaert and Verboven (2014) report considerable improvements in the performance
of the estimator when using optimal instruments. In particular, they find that optimal
instruments reduce the small-sample bias and improve the efficiency and stability of the
estimator when compared with estimation using the series approximations z1jt and z2jt.

blp includes an option to compute and use optimal instruments. The program
follows the approximation in steps 1 through 3 and permits one or more variables to be
endogenous (not just price). This requires the user to specify subsets or functions of
the instruments that appear in step 2 (xjt is included by default). The iterative GMM

estimator can also be specified, which updates the values in step 3 from the previous
round of parameter estimates. This process continues until convergence is achieved or
until the maximum number of iterations has been reached.14

3.2 Distribution of the GMM estimator

For fixed J and T → ∞, the GMM estimator

√
T
(
θ̂GMM − θ0

)
d−→ N

{
0,
(
G

′

0A0G0

)−1

G
′

0A0S0A0G0

(
G

′

0A0G0

)−1
}

(24)

where G0 = plimGT (θ0), A0 = plimAT , and S0 = plimT−1
∑T

t=1 ht(θ0)h
′

t(θ0), is the
asymptotic variance matrix of the sample-moment conditions. The optimal weighting
matrix sets A0 ∝ S−1

0 , which yields

√
T
(
θ̂GMM − θ0

)
d−→ N

{
0,
(
G

′

0S
−1
0 G0

)−1
}

(25)

Inference can proceed by replacing G0 with GT (θ̂) from (13) and S0 with

ST

(
θ̂
)
= T−1σ̂2

ξZ
′

Z (26)

if the errors ξjt are i.i.d., where σ̂2
ξ = (JT )−1

∑T
t=1 ξ̂

′

tξ̂t and ξ̂t = δt −Xtθ̂1, or with

ST (θ̂) = T−1
T∑

t=1

(
Z

′

tξ̂tξ̂
′

tZt

)
(27)

if ξjt is considered to be heteroskedastic across markets and correlated over products
within each market.

14. blp uses the original starting values for the parameter search following step 3. This avoids the
optimizer converging at local minimums for poor first-round estimates of θ2. Subsequent iterations
use estimates from the previous round. Hall (2005, sec. 2.4 and 3.6) mentions that there may be
gains to finite-sample efficiency with the iterative GMM estimator.
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When (6.3) is a consistent estimator of S0, the weighting matrix in (14) and (15)
can be replaced by AT = (T−1Z

′

Z)−1. Then, from (25), the GMM estimator is asymp-
totically normally distributed, with mean θ0 and estimated asymptotic variance.

V̂
(
θ̂
)
= T−1

{
GT

(
θ̂
)
ST

(
θ̂
)−1

GT

(
θ̂
)}−1

(28)

If S0 is consistently estimated by (27), but AT = (T−1Z
′

Z)−1 has been imposed, a

panel–robust estimate of V(θ̂) can be computed from (24). This is given by

V
(
θ̂
)
= T−1

{
G

′

T

(
θ̂
)
ATGT

(
θ̂
)}−1

GT

(
θ̂
)′

ATST

(
θ̂
)
ATGT

(
θ̂
)

{
G

′

T

(
θ̂
)
ATGT

(
θ̂
)}−1

where ST (θ̂) is computed postestimation.

For the more-efficient GMM estimator (using suboptimal instruments), the weighting

matrix AT = ST (θ̂)
−1 from (27). This method requires the model to be fit twice. In

the first round, AT = (T−1Z
′

Z)−1 to obtain a consistent estimate θ̂. The second round

then uses θ̂ to compute ST (θ̂) and the optimal weighting matrix AT . Equation (28)
provides the estimated asymptotic variance of this optimal two-step GMM estimator.

Finally, when the model is exactly identified as {l = (K + 1)(2 + d)}, the first-
order conditions in (12) can be premultiplied by (G

′

TAT )
−1, and the estimator will be

the solution to h(θ̂) = 0. As such, the same estimator is obtained for any full-rank
weighting matrix AT . This will be the case if optimal instruments are used, because
dim(Z∗

t ) = (K+1)(2+d) after the first round of estimation.15 The estimated asymptotic
variance matrix is then provided by (28) and will be robust if S0 is estimated by (27).

4 The blp command

blp fits the random-parameters logit demand model from product market shares using
the algorithm discussed in section 3. The program requires the data to be in long
form, where each market contains observations on product shares and characteristics.
Products are not required to be the same across markets; hence, the panel can be
unbalanced. The user can specify which coefficients are stochastic and include different
sets of demographic variables in the equations for each random parameter.

The market-share integrals are approximated by quasi-Monte Carlo integration using
Halton draws, with an option to switch to pseudorandom numbers. To investigate the
effects of simulation error, it is recommended that the user tests the stability of the
parameter estimates for progressively larger draws. If demographic variables are used,
it is necessary to include a random sample of individuals from each market (in long

15. The solution θ̂ should, therefore, set the objective function Q(θ̂) = 0.
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form) in a separate dataset. The dimensions of this sample must be the same for each
market.

The parameters are estimated by GMM, and for overidentified models, blp permits
the user to specify a weighting matrix that is optimal when the errors are correlated
between products and heteroskedastic across markets. The default assumes that the
errors are i.i.d., and to guard against misspecification, robust standard errors (SEs) can
be reported.

Instruments must be included to identify the heterogeneity parameters and any
coefficients associated with endogenous regressors. Thus, for a model that contains
one endogenous regressor, two random coefficients, and no demographic variables, a
minimum of three additional instruments must be specified. blp also provides an option
to fit the model using Chamberlain (1987) optimal instruments. This requires the user
to include standard instruments and subsets and functions of these instruments that
appear in the linear (in parameters) conditional expectations in (22) when the model
contains endogenous regressors.

Finally, the program provides the user with an option to compute the matrix of
demand elasticities for any market and any variable with a stochastic coefficient. These
are computed by Monte Carlo simulation, using the same set of draws for the market-
share integrals. The user can also include a string variable that identifies the products
and is used to label the rows and columns of the elasticity matrix.

4.1 Syntax

The syntax for blp is as follows:

blp depvar
[
varlist

] [
if
] [

in
]
, endog(

[
varlist endog

]
=varlist inst1)

stochastic(varname s1=varlist s1, varname s2=varlist s2, ...)

markets(varname m)
[
optinst

[
(varlist inst2)

]
tolin(#) tolout(#)

draws(#) burn(#) iter
[
(#)

]
demofile(filename d) initsd(initvals)

initdemo(initvals d) elast(varname e, #
[
, varname p

]
) robustweight

robust random noisily nocons
]

4.2 Options

endog(
[
varlist endog

]
=varlist inst1) identifies varlist endog as any endogenous vari-

ables and varlist inst1 as the instruments for varlist endog and the parameters in
stochastic(). endog() is required.

stochastic(varname s1=varlist s1, varname s2=varlist s2, ...) identifies
varname s1, varname s2, . . . as product characteristics with random coefficients and
varlist s1, varlist s2, . . . as demographic variables that appear in these equations.
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Random coefficients can be associated with only the variables that appear in varlist

or varlist endog. For a random constant, it is necessary to generate and include a
variable named cons. stochastic() is required.

markets(varname m) identifies varname m as the market variable in the data and in
the demographic file filename d , if used. markets() is required.

optinst
[
(varlist inst2)

]
fits the model using Chamberlain (1987) optimal instruments.

For models that include endogenous variables, varlist inst2 contains subsets and
functions of varlist inst1 that appear in the linear (in parameters) conditional ex-
pectation of varlist endog.

tolin(#) specifies the tolerance level used to define convergence of the contraction-
mapping algorithm. The default is tolin(10E-15).

tolout(#) specifies the tolerance level used to define convergence of the GMM estima-
tor. The default is tolout(10E-12).

draws(#) specifies the number of Halton draws used to approximate the market-share
integrals. The default is draws(200), and the Halton sequence is created from the
first K primes, where K denotes the number of stochastic coefficients.

burn(#) specifies the number of initial elements to drop when creating Halton se-
quences. The default is burn(15). This helps to reduce correlation between the
sequences.

iter
[
(#)

]
specifies the iterative instead of the two-step GMM estimator. It is available

for optinst() or robustweight, and estimation will continue until the relative dif-
ference between estimates in successive iterations is below tolout(). Alternatively,
# specifies the number of iterations.

demofile(filename d) identifies filename d as the path to the file that contains the
random draws of the demographic variables for each market.

initsd(initvals) identifies initvals as the starting values for the standard deviations
of the random coefficients. These must be separated by a comma. The default is
initsd(0.5,0.5).

initdemo(initvals d) identifies initvals d as the starting values for the coefficients on
the demographic variables. The order will correspond to varlist s1, varlist s2, . . . ,
and values must be separated by a comma. The default is initdemo(0.5,0.5).

elast(varname e, #
[
, varname p

]
) provides the matrix of demand elasticities for

a 1% increase in variable varname e in market number #. These are available for
varname s1, varname s2, etc., only. An optional string variable varname p can be
specified to identify the products.

robustweight specifies a weighting matrix in the GMM estimator that is optimal when
the errors are correlated between products and heteroskedastic across markets. This
option cannot be used when the number of instruments equals the number of pa-
rameters or when optinst() is specified (because the model is exactly identified).
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robust computes an estimate of the SEs that are robust when the errors are correlated
between products and heteroskedastic across markets. The default assumes that the
errors are i.i.d.

random specifies that pseudorandom draws be used to approximate the market-share
integrals instead of those based on Halton sequences. Following Drukker and Gates
(2006), it is suggested that this option be selected if the number of stochastic coef-
ficients exceeds 10.

noisily displays the iteration log during estimation. This indicates convergence of the
contraction mapping by market and displays the current values of the heterogeneity
parameters and associated analytical gradients.

nocons fits the model without the constant term in the mean utility.

4.3 Remarks

blp requires the data to be in long form, where each market contains observations on
product shares and characteristics. Products are not required to be the same across
markets. The number of Halton draws is set to 200, but it is recommended that the
user test the stability of the estimates using sequentially larger values.

If demographic variables are included, filename d must contain an equal number
of draws across markets in long form and have the same numeric market identifier,
varname m. The number of draws contained in this file will also override those specified
by the user. Identification of the demographic coefficients requires data on multiple
markets and variation in the distribution across markets. There is no requirement to
demean the demographic draws to identify the parameters.

Finally, for models that include a random coefficient on the constant, Monte Carlo
experiments indicate that it is very difficult to identify the standard deviation of this
characteristic in addition to the associated coefficients on the demographic variables.
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4.4 Stored results

blp stores the following in e():

Scalars
e(N) number of observations
e(T) number of markets
e(conv) 1 if converged, 0 otherwise
e(draws) number of simulation draws
e(burn) dropped initial Halton sequences
e(obj) objective-function value

Macros
e(cmd) blp

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators
e(initsd) initial values for standard deviations of random coefficients
e(initd) initial values for coefficients on demo variables
e(elast) elasticity matrix

Functions
e(sample) marks estimation sample

5 Examples

5.1 No demographic variables

In this example, consumers can select from J = 10 alternatives, excluding the outside
good. Data are simulated for T = 25 markets, and utility is determined by a constant,
one product characteristic x1, and price p (which is endogenous). The supply side is
characterized by perfect competition, where marginal costs are a linear function of the
product characteristics and three exogenous cost drivers w1, w2, and w3. Heterogeneity
is restricted to the coefficient on x1, which has a true mean valuation of 2 and a standard
deviation of 1. The constant is set to 2, and the coefficient on price is −2.

Standard instruments

The model is initially fit by generating the instrument set z2jt (section 3.1). This contains
the exogenous variables, their squares and interactions, and the sums of the character-
istics of other products. Construction of these instruments is given below.

. use blp_nodemo

. generate w12=w1^2

. generate w22=w2^2

. generate w32=w3^2

. generate x12=x1^2

. generate x1w1=x1*w1

. generate x1w2=x1*w2

. generate x1w3=x1*w3

. bysort mkt: egen x1s=sum(x1)
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. replace x1s=x1s-x1
(250 real changes made)

. blp s x1, stochastic(x1) endog(p=w1 w2 w3 w12 w22 w32 x12 x1w1 x1w2 x1w3 x1s)
> markets(mkt)
Iteration 0: f(p) = 13.131515

(output omitted )

Iteration 4: f(p) = 12.941619

GMM estimator of BLP-model

GMM weight matrix: unadjusted Number of obs = 250
Number of markets = 25
Number of Halton draws = 200

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Mean utility
cons 1.86419 .7104963 2.62 0.009 .4716428 3.256737

x1 2.411279 .6008964 4.01 0.000 1.233544 3.589014
p -2.040571 .0488951 -41.73 0.000 -2.136403 -1.944738

x1
SD .7360524 .4879043 1.51 0.131 -.2202225 1.692327

Optimal instruments

Prices are a linear function of w1, w2, w3, and x1 and a constant. Hence, to fit the model
using optimal instruments, optinst(w1 w2 w3) is specified, where x1 and the constant
is included by default.

. blp s x1, stochastic(x1) endog(p=w1 w2 w3 w12 w22 w32 x12 x1w1 x1w2 x1w3 x1s)
> markets(mkt) optinst(w1 w2 w3)
Iteration 0: f(p) = 13.131515

(output omitted )

Iteration 4: f(p) = 12.941619
Estimation iteration with optimal instruments: 1
Iteration 0: f(p) = .6931999

(output omitted )

GMM estimator of BLP-model

Instruments: Chamberlain optimal Number of obs = 250
Number of markets = 25
Number of Halton draws = 200

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Mean utility
cons 2.133752 .4518272 4.72 0.000 1.248187 3.019317

x1 2.210469 .3299087 6.70 0.000 1.56386 2.857078
p -2.05896 .0450369 -45.72 0.000 -2.147231 -1.970689

x1
SD .9145327 .1890028 4.84 0.000 .544094 1.284971
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The parameter estimates are now closer to the true values and have smaller SEs
compared with those estimated using the suboptimal set.

5.2 Demographic data

This example extends the previous model to include a random coefficient on price p, with
a standard deviation of 1 and two demographic variables d1 and d2 in the coefficient
equation for x1. The marginal effects of d1 and d2 are both 1, and samples are drawn
from independent normal distributions. To permit parameter identification, the mean
and variance are allowed to differ across markets. demodata.dta contains 500 draws
(per market) selected at random from the simulated population of individuals used to
construct the product shares.

The model is fit with optimal instruments, and price elasticities are reported for
market 1 by specifying elast(p,1,product), where product is a string variable that
contains product names to label the elasticity matrix.

. use blp_demo, clear

. generate w12=w1^2

. generate w22=w2^2

. generate w32=w3^2

. generate x12=x1^2

. generate x1w1=x1*w1

. generate x1w2=x1*w2

. generate x1w3=x1*w3

. bysort mkt: egen x1s=sum(x1)

. replace x1s=x1s-x1
(500 real changes made)

. blp s x1, stochastic(x1=d1 d2,p) endog(p=w1 w2 w3 w12 w22 w32 x12 x1w1 x1w2
> x1w3 x1s) markets(mkt) optinst(w1 w2 w3) demofile(demodata) initdemo(1,1)
> initsd(1,1) elast(p,1,product)

(output omitted )

Iteration 0: f(p) = 18.345114 (not concave)
Iteration 1: f(p) = 11.51863
Iteration 2: f(p) = 10.731222

(output omitted )

Estimation iteration with optimal instruments: 1
Iteration 0: f(p) = 330.01219 (not concave)
Iteration 1: f(p) = 26.894109

(output omitted )
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GMM estimator of BLP-model

Instruments: Chamberlain optimal Number of obs = 500
Number of markets = 50
Number of Halton draws = 500

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Mean utility
cons 1.562526 .4870916 3.21 0.001 .6078444 2.517208

x1 2.144829 .1669901 12.84 0.000 1.817535 2.472124
p -1.938477 .1165748 -16.63 0.000 -2.16696 -1.709995

x1
d1 .9794679 .0728124 13.45 0.000 .8367581 1.122178
d2 .9406059 .0740145 12.71 0.000 .7955401 1.085672
SD .9448503 .204845 4.61 0.000 .5433616 1.346339

p
SD .9726345 .0751903 12.94 0.000 .8252641 1.120005

The estimated marginal effects of d1 and d2 are approximately 0.98 and 0.94.

Elasticities

To view the price elasticity matrix, type

. matrix list e(elast)

e(elast)[10,10]
1% rise i~p:

product1 product2 product3 product4
% change in:product1 -3.1977628 .65508213 .07305337 .00991889

product2 1.1187173 -4.2095821 .0890736 .00896675
product3 1.029381 .73495422 -4.7211944 .00551456

(output omitted )

The (i, j) element in the above matrix represents the percentage change in the demand
for product i caused by a 1% rise in the price of product j.

For a given j, the logit model restricts the cross-price elasticities to be the same for
all i 6= j (section 2.1). As illustrated above, this is not the case for the BLP model,
which permits patterns of substitution that are more likely to be observed in the data.

5.3 Estimation time

For each evaluation of the GMM objective function, blp first inverts the system of
demand equations by calling the inner-loop contraction mapping from (3) and (11).
Because this process is numerically intensive, the convergence time of blp will increase
significantly with every parameter in θ2. The number of draws R may also have an effect
on the computational time of the contraction mapping, despite the use of vectorization
in (4).
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To investigate these issues, the estimation times of the examples are recorded for
R ∈ (100, 500). For the first example with one heterogeneity parameter (section 5.1),
the computational time using standard and optimal instruments is less than 1 second
for R = 100. This increases to under 6 seconds when R = 500.

For the second model containing four heterogeneity parameters (section 5.2), the
time increases to 203 seconds using optimal instruments, but it remains almost un-
changed for R = 500. To investigate the impact of a larger inner-loop tolerance, the
process is repeated for this model, setting tolin(10E-10). The computation time falls
to 138 seconds and again shows no significant increase when R = 500.

5.4 Applications with real data

Simulated data help illustrate blp but avoid issues that arise in empirical applications
of the estimator. These issues include decisions on model specification, sourcing the
market-level data, selection of appropriate instruments, and data preparation.

Of particular importance is a need to construct the product market shares. While
prices and characteristics can be observed in the data, market shares must be computed
from quantities sold and a prior estimate of the number of potential consumers. This
will depend on the definition of the market (that is, location, time period) and the
nature of the products being investigated.

BLP, for example, define a national annual market for automobile sales and measure
the total size as the number of U.S. households. Nevo (2001), on the other hand, defines
a quarterly city market for cereal brands and measures the potential size as one serving
per capita per day.16 The quantities sold are then converted into the same unit of
measurement (for example, servings), and product market shares are computed as the
ratio of sales to market size. In all cases, however, the size of the potential market must
be set to ensure that the outside good has a nonzero share.

Finally, and as suggested by Nevo (2000b), it is recommended that practitioners test
the sensitivity of their results to the market definition. If these are found to be sensitive,
then alternative definitions should be considered.

6 Monte Carlo experiments

In this section, we use Monte Carlo simulation to investigate the bias, efficiency, and
stability of blp using the standard (z1jt, z

2
jt) and optimal (z∗jt) instrument sets as de-

fined in section 3.1. For each experiment, 1,000 datasets are generated from the process
specified by Reynaert and Verboven (2014) and extended to include one demographic
variable in the stochastic coefficient equations. We also consider the role of starting val-
ues in attaining global convergence (Knittel and Metaxoglou 2014) and the importance

16. This implies that consumers face daily purchase decisions between servings of alternative brands. In
practice, they face choices between brands and pack sizes; however, it would be difficult to measure
the market size when quantity is defined in this way, because packs contain multiple servings.
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of accurate approximations to the share integrals in (4) in avoiding false local minimums
(Skrainka and Judd 2011).

6.1 The data-generating process

Data are generated for J = 10 products and T = 25 markets. The variables consist of
product characteristics xjt = (1, x1jt), independent cost driverswjt = (wjt1, wjt2, wjt3)

′

,
an endogenous price pjt described by (7), and the product market share sjt. The charac-
teristic x1jt is drawn from the U(1, 2) distribution, the cost drivers wjt from the U(0, 1)
distributions, and the unobservables (ξjt, ζjt) from the bivariate normal distribution
with unit variance and covariance 0.7.

For all experiments, the mean valuations are equal to β = (2, 2,−2)
′

, and the cost
parameters are set at γ1 = (0.7, 0.7)

′

and γ2 = (3, 3, 3)
′

. One design also includes a
demographic variable Dit,

17 which is drawn from the N(µ
Dt, σ

2
Dt) distribution, where

µ
Dt and σ

2
Dt are sampled from the N(0, 1) and | N(0, 1) | distributions, respectively.18

Finally, the market shares are approximated by Monte Carlo integration using
R = 300000 random draws of Dit and vit for each market.

6.2 A single stochastic coefficient

No demographics

The first design sets L = diag(σ0, σx1
, σp) = diag(0, 1, 0) and Π = (0, 0, 0)

′

, and it draws
starting values from the U(0.1, 2) distribution. As such, all heterogeneity is associated
with the random coefficient on x1jt with a standard deviation of 1. For each instrument
set, table 1 provides the estimated bias, the root mean squared error (RMSE), and the
mean of the asymptotic SEs for R ∈ (50, 100, 200) Halton draws.

The results reflect the findings of Reynaert and Verboven (2014, tab. 1), and they
report moderate bias using standard instruments z1jt, a small reduction from z2jt (which
includes BLP-type instruments), and a large improvement using Chamberlain (1987)
optimal instruments z∗jt. Note that as the approximation of the share integrals in
(4) improves, the bias of the GMM estimator using optimal instruments reduces. For
example, the estimator of σx1

(denoted sdx1) reports a bias of 7% for R = 50, which
falls to 4% when R is increased to 200. This is not the case when using standard
instruments, where the bias tends to persist throughout.

The simulations also suggest that suboptimal instruments lead to biased estimates
of the SEs for SE(σ̂x1

), which increases as the approximation of the share integrals in
(4) improves.19 This is not the case when using optimal instruments, although the
estimated SEs exhibit modest downward bias when compared with the RMSE.

17. The subscript t in Dit indicates that the demographic draws are market specific.
18. As aforementioned, variation in the distribution of demographics is required to identify Π.
19. This finding was first noted by Skrainka and Judd (2011) and then confirmed in the simulation

study by Reynaert and Verboven (2014, tab. 8).
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Using optimal instruments also offers considerable improvements in efficiency. This
is especially the case for the estimator of the heterogeneity parameter σx1

, where for
R = 200, the RMSE is 46% lower than the value using z1jt. Figure 1 visualizes these
efficiency gains by comparing histograms of the parameter estimates of σx1

for each
set of instruments. It also displays a large spike in the distribution of the estimator
around 0 using suboptimal instruments z1jt and z2jt, which is not the case using optimal
instruments z∗jt. This confirms the findings of Reynaert and Verboven (2014, fig. 1) that
optimal instruments improve both the efficiency and stability of the estimator σ̂x1

.
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Figure 1. Histograms of σ̂1

Finally, to investigate the properties of the objective function, the experiment was
repeated with different starting values for the heterogeneity parameter. The results
using the same datasets were virtually identical to those in table 1, suggesting no local
extrema.

Table 1. Bias and efficiency—random coefficient on x1

instruments and properties
draws and z1 z2 opt
parameters bias st.err rmse bias st.err rmse bias st.err rmse

50
con -0.122 0.765 0.754 -0.102 0.663 0.678 -0.085 0.444 0.511
x1 0.048 0.587 0.585 0.030 0.489 0.515 0.066 0.275 0.356
p 0.012 0.055 0.053 0.012 0.050 0.050 0.005 0.043 0.044

sdx1 -0.106 0.690 0.505 -0.068 0.457 0.423 -0.070 0.129 0.289

100
con -0.113 0.778 0.757 -0.090 0.673 0.679 -0.049 0.445 0.502
x1 0.043 0.597 0.587 0.021 0.499 0.516 0.036 0.276 0.345
p 0.012 0.055 0.054 0.012 0.051 0.050 0.004 0.043 0.044

sdx1 -0.106 0.993 0.501 -0.064 0.596 0.416 -0.045 0.129 0.260

200
con -0.110 0.791 0.758 -0.084 0.678 0.682 -0.040 0.446 0.509
x1 0.039 0.609 0.587 0.016 0.503 0.518 0.029 0.276 0.359
p 0.011 0.056 0.054 0.011 0.051 0.050 0.003 0.044 0.044

sdx1 -0.105 1.487 0.498 -0.064 0.808 0.416 -0.042 0.136 0.267
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Including demographics

The second design sets L = diag(0, 1, 0) and Π = (π0D1
, πx1D1

, πpD1
)
′

= (0, 1, 0)
′

to
permit the stochastic coefficient on x1jt to be a linear function of Dit, with a marginal
effect of 1. Table 2 displays the bias, RMSE, and the mean of the asymptotic SEs for
R ∈ (50, 100, 200) Halton draws.

Table 2. Bias and efficiency—random coefficient on x1 with demographics

instruments and properties
draws and z1 z2 opt
parameters bias st.err rmse bias st.err rmse bias st.err rmse

50
con -0.186 0.851 0.760 -0.183 0.743 0.724 -0.132 0.455 0.530
x1 0.153 0.726 0.665 0.142 0.599 0.608 0.124 0.279 0.353
p 0.014 0.064 0.058 0.014 0.057 0.055 0.006 0.045 0.048

d1x1 -0.077 0.369 0.347 -0.070 0.282 0.293 -0.048 0.070 0.105
sdx1 -0.185 1.277 0.562 -0.145 0.834 0.507 -0.102 0.156 0.346

100
con -0.138 0.854 0.750 -0.128 0.740 0.706 -0.083 0.450 0.504
x1 0.097 0.731 0.656 0.082 0.600 0.585 0.073 0.278 0.324
p 0.012 0.063 0.057 0.012 0.056 0.054 0.004 0.044 0.047

d1x1 -0.051 0.369 0.341 -0.042 0.282 0.277 -0.026 0.071 0.095
sdx1 -0.167 1.469 0.556 -0.129 0.938 0.493 -0.087 0.162 0.315

200
con -0.124 0.844 0.761 -0.107 0.732 0.711 -0.047 0.447 0.496
x1 0.081 0.727 0.673 0.058 0.594 0.592 0.042 0.277 0.336
p 0.011 0.063 0.057 0.011 0.056 0.054 0.002 0.044 0.046

d1x1 -0.042 0.368 0.351 -0.028 0.280 0.280 -0.016 0.071 0.099
sdx1 -0.175 1.868 0.559 -0.130 1.169 0.487 -0.061 0.153 0.291

The results reflect the findings in table 1, and they report reductions in bias and
gains in efficiency when the GMM estimator uses optimal instruments, z∗jt, instead of

standard sets z1jt and z2jt. For the estimator of πx1D1
(denoted d1x1) with R = 200,

the bias falls from 4% using z1jt to around 1.5% using z∗jt and has a reduction of over
70% in the RMSE.

6.3 Multiple stochastic coefficients

The final experiment considers the performance of the GMM estimator when the co-
efficients on x1 and p are allowed to be random. The standard deviations of these
parameters are set to L = (0, 1, 1), the demographic variables are excluded from the
model, and the number of markets is increased to T = 50. Table 3 provides the bias,
RMSE, and the mean of the asymptotic SEs for R ∈ (100, 200) Halton draws.



878 The Berry–Levinsohn–Pakes estimator

Table 3. Bias and efficiency—random coefficients on x1 and p

instruments and properties
draws and z1 z2 opt
parameters bias st.err rmse bias st.err rmse bias st.err rmse

100
con -0.437 1.537 1.375 -0.439 1.217 1.141 -0.199 0.608 0.666
x1 -0.079 0.286 0.309 -0.095 0.263 0.308 -0.014 0.174 0.189
p 0.151 0.496 0.458 0.159 0.395 0.390 0.066 0.183 0.209

sdx1 -0.185 2.566 0.779 -0.124 1.666 0.696 -0.187 0.284 0.482
sdp -0.093 0.317 0.292 -0.097 0.258 0.250 -0.039 0.114 0.133

200
con -0.402 1.527 1.346 -0.385 1.208 1.106 -0.024 0.620 0.643
x1 -0.071 0.279 0.293 -0.086 0.258 0.302 0.002 0.176 0.186
p 0.138 0.492 0.445 0.140 0.392 0.375 0.007 0.190 0.201

sdx1 -0.187 4.034 0.767 -0.121 2.659 0.693 -0.152 0.343 0.484
sdp -0.085 0.313 0.283 -0.086 0.252 0.239 -0.002 0.118 0.127

The bias is much higher relative to the results in table 1, and the estimator is less
efficient. Optimal instruments, z∗jt, continue to provide considerable gains in efficiency
over suboptimal sets, although the reduction in bias is minimal for the heterogeneity
parameter σ̂x1

. This is not the case for the estimator of σp (denoted sdp), where the
estimated bias falls from 8.5% using z1jt to 0.2% using z∗jt, with a 55% reduction in the
RMSE for R = 200.

As before, an increase in the number of draws leads to improvements in the per-
formance of the estimator using optimal instruments, z∗jt, which is not the case for the

estimator using both suboptimal sets, z1jt and z2jt.

7 Conclusion

The aggregate random-coefficients logit demand model by Berry, Levinsohn, and Pakes
(1995) has become increasingly popular since the publication of Nevo (2000b). In this
article, I describe a user-written command, blp, that estimates the parameters of this
model, using standard or Chamberlain (1987) optimal instruments. Monte Carlo ex-
periments confirm the findings by Reynaert and Verboven (2014) and report reductions
in bias and improvements in the stability and efficiency of the estimator using optimal
instruments relative to the series approximations typically found in the literature.
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