%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

THE STATA JOURNAL

Editors

H. JosepH NEWTON
Department of Statistics
Texas A&M University
College Station, Texas
editors@stata-journal.com

Associate Editors

CHRISTOPHER F. BAUM, Boston College

NATHANIEL BECK, New York University

RiNo BELLOCCO, Karolinska Institutet, Sweden, and
University of Milano-Bicocca, Italy

MAARTEN L. Buis, University of Konstanz, Germany

A. CoLIN CAMERON, University of California—Davis

MaRIO A. CLEVES, University of Arkansas for
Medical Sciences

WiLLiAM D. DUPONT, Vanderbilt University

PuiLip ENDER, University of California—Los Angeles

DaviD EpPSTEIN, Columbia University

ALLAN GREGORY, Queen’s University

JAMES HARDIN, University of South Carolina

BEN JANN, University of Bern, Switzerland

STEPHEN JENKINS, London School of Economics and
Political Science

ULRICH KOHLER, University of Potsdam, Germany

Stata Press Editorial Manager
LisA GILMORE

Nichoras J. Cox
Department of Geography
Durham University
Durham, UK
editors@stata-journal.com

FRAUKE KREUTER, Univ. of Maryland—College Park

PETER A. LACHENBRUCH, Oregon State University

JENS LAURITSEN, Odense University Hospital

STANLEY LEMEsSHOW, Ohio State University

J. ScorT LONG, Indiana University

ROGER NEWSON, Imperial College, London

AUSTIN NIcHOLS, Urban Institute, Washington DC

MARCELLO PAGANO, Harvard School of Public Health

SopPHIA RABE-HESKETH, Univ. of California—Berkeley

J. PaTRICK ROYSTON, MRC Clinical Trials Unit,
London

PuiLlP RYAN, University of Adelaide

MARK E. SCHAFFER, Heriot-Watt Univ., Edinburgh

JEROEN WEESIE, Utrecht University

IAN WHITE, MRC Biostatistics Unit, Cambridge

NicuorAs J. G. WINTER, University of Virginia

JEFFREY WOOLDRIDGE, Michigan State University

Stata Press Copy Editors
DaviD CULWELL, SHELBI SEINER, and DEIRDRE SKAGGS

The Stata Journal publishes reviewed papers together with shorter notes or comments, regular columns, book
reviews, and other material of interest to Stata users. Examples of the types of papers include 1) expository
papers that link the use of Stata commands or programs to associated principles, such as those that will serve
as tutorials for users first encountering a new field of statistics or a major new technique; 2) papers that go
“beyond the Stata manual” in explaining key features or uses of Stata that are of interest to intermediate
or advanced users of Stata; 3) papers that discuss new commands or Stata programs of interest either to
a wide spectrum of users (e.g., in data management or graphics) or to some large segment of Stata users
(e.g., in survey statistics, survival analysis, panel analysis, or limited dependent variable modeling); 4) papers
analyzing the statistical properties of new or existing estimators and tests in Stata; 5) papers that could
be of interest or usefulness to researchers, especially in fields that are of practical importance but are not
often included in texts or other journals, such as the use of Stata in managing datasets, especially large
datasets, with advice from hard-won experience; and 6) papers of interest to those who teach, including Stata
with topics such as extended examples of techniques and interpretation of results, simulations of statistical
concepts, and overviews of subject areas.

The Stata Journal is indexed and abstracted by CompuMath Citation Index, Current Contents/Social and Behav-
ioral Sciences, RePEc: Research Papers in Economics, Science Citation Index Expanded (also known as SciSearch),
Scopus, and Social Sciences Citation Index.

For more information on the Stata Journal, including information for authors, see the webpage

http://www.stata-journal.com

http://www.stata-journal.com

Subscriptions are available from StataCorp, 4905 Lakeway Drive, College Station, Texas 77845, telephone
979-696-4600 or 800-STATA-PC, fax 979-696-4601, or online at

http://www.stata.com/bookstore/sj.html

Subscription rates listed below include both a printed and an electronic copy unless otherwise mentioned.

U.S. and Canada Elsewhere

Printed & electronic Printed & electronic

1-year subscription $115 1-year subscription $145
2-year subscription $210 2-year subscription $270
3-year subscription $285 3-year subscription $375
1-year student subscription $ 85 1-year student subscription $115
1-year institutional subscription $345 1-year institutional subscription $375
2-year institutional subscription $625 2-year institutional subscription $685
3-year institutional subscription $875 3-year institutional subscription $965
Electronic only Electronic only

1-year subscription $ 85 1-year subscription $ 85
2-year subscription $155 2-year subscription $155
3-year subscription $215 3-year subscription $215
1-year student subscription $ 55 1-year student subscription $ 55

Back issues of the Stata Journal may be ordered online at

http://www.stata.com/bookstore/sjj.html

Individual articles three or more years old may be accessed online without charge. More recent articles may
be ordered online.

http://www.stata-journal.com/archives.html

The Stata Journal is published quarterly by the Stata Press, College Station, Texas, USA.

Address changes should be sent to the Stata Journal, StataCorp, 4905 Lakeway Drive, College Station, TX
77845, USA, or emailed to sj@stata.com.

[0

t’? ,ﬁ\; Copyright © 2015 by StataCorp LP
B a

Press

Copyright Statement: The Stata Journal and the contents of the supporting files (programs, datasets, and
help files) are copyright © by StataCorp LP. The contents of the supporting files (programs, datasets, and
help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy
or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

The articles appearing in the Stata Journal may be copied or reproduced as printed copies, in whole or in part,
as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

Written permission must be obtained from StataCorp if you wish to make electronic copies of the insertions.
This precludes placing electronic copies of the Stata Journal, in whole or in part, on publicly accessible websites,
fileservers, or other locations where the copy may be accessed by anyone other than the subscriber.

Users of any of the software, ideas, data, or other materials published in the Stata Journal or the supporting
files understand that such use is made without warranty of any kind, by either the Stata Journal, the author,
or StataCorp. In particular, there is no warranty of fitness of purpose or merchantability, nor for special,
incidental, or consequential damages such as loss of profits. The purpose of the Stata Journal is to promote
free communication among Stata users.

The Stata Journal (ISSN 1536-867X) is a publication of Stata Press. Stata, STATQ, Stata Press, Mata, MaTta,
and NetCourse are registered trademarks of StataCorp LP.

http://www.stata.com/bookstore/sj.html
http://www.stata.com/bookstore/sjj.html
http://www.stata-journal.com/archives.html

The Stata Journal (2015)
15, Number 3, pp. 845-853

mqtime: A Stata tool for calculating travel
time and distance using MapQuest web services

John Voorheis
Department of Economics
University of Oregon
Eugene, OR
jlv@uoregon.edu

Abstract. In this article, I describe mqtime, a new Stata library that provides
functionality to perform a variety of mapping tasks, including calculating travel
time, distance (driving, biking, or walking), and estimated fuel use. mqtime uses
an overlooked free and open-source mapping service provided by MapQuest. This
service has significantly more attractive terms of use than widely used alterna-
tives (for example, Google Maps), which limit use to a few thousand queries per
day. Hence, mqtime makes analysis with even very large datasets practical. I
also provide a convenient function for geocoding character addresses to geographic
coordinates.

Keywords: dm0083, mqgeocode, mqtime, MapQuest, HERE Maps, geocoding

1 Introduction

In many applications, the distance between two locations can be a crucial factor in
explaining behavior. There are numerous ways to calculate distances, and these methods
have varying degrees of realism. One can, for instance, calculate a straight-line or “great
circle” distance between two points using their latitude and longitude coordinates. If one
is modeling transportation, however, the straight-line distance may be quite different
from the distance actually traveled, for example, by car or bicycle. Calculating the true
driving distance is a much more complex task than calculating straight-line distance,
but when accurate measures of distances are important to a particular analysis, this
extra complexity may be warranted.

One way to calculate distances is to use third-party mapping services. Indeed, the
traveltime library (written by Adam Ozimek and Daniel Miles [2011]) was written for
use with Google Maps. Unfortunately, traveltime was written for the now-obsolete v2
of the Google Maps application programming interface (API). Since the spring 2013 tran-
sition to the new Google Maps API v3, traveltime has been rendered nonfunctional.
Additionally, before the API change, Google implemented restrictions that severely lim-
ited the number of requests that a researcher could make each day. An extension of the
traveltime library has been written that supports the Google Maps API v3, but it is
still subject to the same rate limits.

mgtime is an attempt to provide off-the-shelf travel-time calculation without the
disadvantages associated with tools that use the Google Maps API. This utility takes

© 2015 StataCorp LP dm0083

846 Calculating travel time and distance using MapQuest web services

advantage of a valuable but overlooked service provided by MapQuest. MapQuest
provides an API that accesses its commercial mapping service (the same service one
would access through http://www.mapquest.com); however, this service is available only
for a steep fee. MapQuest also provides a second API (the open API) that accesses the
OpenStreetMap (0SM) service. The OSM project! is a partially crowd-sourced project
to produce and maintain a publicly available, open-source street map covering as much
of the world as possible.

mgtime (and the associated convenience function mggeocode) is written to mimic
the syntax of traveltime, thereby easing the learning curve for users who are already
familiar with the traveltime tool. However, the under-the-hood functionality of mak-
ing the API requests and then parsing them into a format that is readable by Stata
differs significantly. The insheetjson (Lindsley 2012) library provides functionality to
parse the type of data object (a JavaScript Object Notation [JSON] object) returned by
the MapQuest service.? The approach in mqtime can be easily extended for use with
other similar API services, which are increasingly provided by companies and are an
underused resource for economists.

The chief advantage of mqtime over traveltime is freedom from the strict usage lim-
its imposed by Google. Google places a firm limit of 2,500 API requests (for example,
directions or geocoding) per day per IP address. These limits can be very restrictive, even
for medium-sized datasets. A dataset used by one of the testers of mqtime involves ap-
proximately 500,000 unique address pairs. Processing these data with the Google Maps
API would take over six months. The terms of use (http://info.mapquest.com/terms-of-
use/) for the MapQuest Open API are much more permissive. By using the MapQuest
Open API, mgtime allows for the processing of large datasets in reasonable amounts of
time.?

2 The mqgeocode command

Although the OSM API will take either text address information or latitude and longitude
coordinates as input, users may wish to generate latitudes and longitudes from a text
address for other purposes (for example, for calculating simpler straight-line distances or
for use within geographic information systems software.) Geocoding of addresses can be
accomplished with geographic information systems rather easily, but doing so requires
leaving the confines of Stata. mqgeocode is provided for convenience. Like the mqtime
command (see next section), the mqgeocode command first attempts to geocode using
the OSM API. If this geocoding fails, mggeocode will then query a second API provided

1. See http://wiki.openstreetmap.org/wiki/Legal FAQ#I_would_like_to_use_-OpenStreetMap_maps._
How_should_I_credit_you.3F and http://www.openstreetmap.org for more information.

2. The MapQuest APIs are written with web-oriented languages like JavaScript and Python in mind.
It is easy for an experienced programmer to write a Python script that accomplishes the same thing
as mgtime, but the goal here is to make the information as accessible as possible for general Stata
users.

3. In testing, I timed the average request at about 0.5 seconds, most of which is HTTP overhead, so
our tester’s dataset would require several days to complete.

J. Voorheis 847

by the HERE Maps service.* By default, mqgeocode will display a running total of the
number of addresses that have been geocoded as well as the number of requests made
to the HERE Maps API.

2.1 Syntax

mggeocode [zf] [m] , {address(varname) |lat (varname) long(varname)}

[outaddress (varname) here_id(string) here_code (string)]

2.2 Options

address (varname) specifies the variable holding the plain text addresses (for exam-
ple, 123 First Ave., Eugene, OR 97402) to be geocoded. This option cannot be
combined with options lat() and long(). address() or lat() and long() are
required.

lat (varname) specifies the variable holding the latitude to be reverse geocoded. This
option must be used with option long() and cannot be used with option address().
lat () and long() or address() is required.

long (varname) specifies the variable holding the longitude to be reverse geocoded. This
option must be used with option lat () and cannot be used with option address ().
lat () and long() or address() is required.

outaddress (varname) specifies the variable name to be used for the output, which
will be either a plain text string (Ann Arbor, MI) or a string holding a latitude,
longitude pair (32.377588,-86.301882). The default is outaddress(coords).

here_id(string) and here_code (string) specify user-specific HERE Maps API informa-
tion (ID and code). By default, the mqtime command will use the built-in API
credentials associated with the author. However, if users wish to use their own API
credentials, they may do so. See the following comments for more discussion.

2.3 Remarks

Traditional geocoding is relatively straightforward—it requires only that the user has
created a variable holding the full text addresses. If a user has separate variables (for
example, city and state), concatenating them is trivial.

generate newwar = cityvar + "," + statevar

4. More information about the HERE Maps service is available at https://developer.here.com/.

848 Calculating travel time and distance using MapQuest web services

In general, mqgeocode will do only basic string formatting (most importantly, replac-
ing spaces with %20), so the user must ensure that there are no disallowed characters or
spelling errors. The API is permissive in terms of which address formats it will accept,
including city, state; address, city, state, zipcode; and address, zipcode. For
certain addresses located in unincorporated areas, address, zipcode seems to perform
better.

When reverse geocoding, mqgeocode will return a text address at the most granular
level available (this will range, in practice, from the zip code level to the exact address).
In either traditional or reverse geocoding, the geocoded variable is returned as a single
string. If separate latitude and longitude variables are required in traditional geocoding,
the outaddress() variable can be split using

split latlongvar, p(",")

2.4 Example

Suppose we think that the distance between state capitol buildings is important for
some application and that we have a dataset with addresses of capitol buildings that
looks like this:

. insheet using "statecap.csv", clear
(6 vars, 10 obs)

. rename vl address
. rename v2 city

. rename v3 state

. rename v4 addressl
. rename v5 cityl

. rename v6 statel

. list address city state

address city state
1. 600 Dexter Ave. Montgomery Alabama
2. 120 4th St. Juneau Alaska
3. 1700 W. Washington Phoenix Arizona
4. 300 W. Markham St. Little Rock Arkansas
5. 1315 10th St Sacramento California
6. 200 E. Colfax Ave. Denver Colorado
7. 2210 Capitol Ave. Hartford Connecticut
8. 411 Legislative Ave. Dover Delaware
9. 402 S. Monroe St. Tallahassee Florida
10. 206 Washington St. SW Atlanta Georgia

Our first step, then, is to create the new variable

. generate capitol = address + "," + city + "," + state

J. Voorheis 849

We can now geocode these addresses using the following:

. mggeocode in 1/10, address(capitol) outaddress(coords)

Observation 1 of 10 geocoded using the OpenStreetMaps API.

Observation 2 of 10 geocoded using the OpenStreetMaps API.

Observation 3 of 10 geocoded using the HERE Maps API. (1 total requests this run)

(output omitted)

When execution is complete, the data will contain the latitude and longitude for
each observation.

. list capitol coords

capitol coords
1. 600 Dexter Ave.,Montgomery,Alabama 32.377588,-86.301882
2. 120 4th St.,Juneau,Alaska 58.301945,-134.410453
3. 1700 W. Washington,Phoenix,Arizona 33.4485703,-112.0944824
4. 300 W. Markham St.,Little Rock,Arkansas 34.748601,-92.273452
5. 1315 10th St,Sacramento,California 38.576718,-121.494911
6. 200 E. Colfax Ave.,Denver,Colorado 39.739237,-104.984795
7. 2210 Capitol Ave.,Hartford,Connecticut 41.763585,-72.691498
8. 411 Legislative Ave.,Dover,Delaware 39.154514,-75.519517
9. 402 S. Monroe St.,Tallahassee,Florida 30.437994,-84.280724
10. 206 Washington St. SW,Atlanta,Georgia 33.749747,-84.38857

3 The mqgtime command

3.1 Syntax

mgtime [if] [n] , {startx(varname) start_y(varname) | start_add(varname)}
{end x (varname) end_y (varname) | end_add (varname)} |here_id(string)

here_code(string) km mode (string)]

3.2 Options

start_x(varname) and start_y(varname) specify the longitude (z) and latitude (y),
in degrees, of the origin location. These cannot be used with option start_add().
start_x() and start_y() or start_add() is required.

start_add(varname) specifies the variable holding the plain text address of the ori-
gin location. This option cannot be used with options start_x() and start_y(Q).
start_add() or start x() and start_y() are required.

end x (varname) and end_y(varname) specify the longitude (z) and latitude (y), in
degrees, of the destination location. These cannot be used with option end_add().
end_x() and end_y() or end_add() is required.

850 Calculating travel time and distance using MapQuest web services

end_add (varname) specifies the variable holding the plain text address of the desti-
nation location. This option cannot be used with options end x() and end_y().
end_add () or end x() and end_y() are required.

here_id(string) and here_code(string) will use a user-supplied MapQuest API key in
place of the built-in key. By default, the mqtime command will use the built-in API
credentials associated with the author. However, if users wish to use their own API
credentials, they may do so. See the following comments for more discussion.

km specifies whether the distances returned will be in kilometers or miles (default is
miles).

mode (string) specifies which mode of travel is to be used. This option must be one of
walking, bicycle, or transit (the default is mode(driving), if unspecified).

3.3 Comments

By default, mgqtime will first attempt to query the MapQuest OSM API for each origin
and destination pair. As noted earlier, the OSM service has no preset rate limit and
is therefore much more amenable to processing large datasets. However, it does have
slightly less coverage than commercial mapping alternatives.® As a backup, mqtime will
query the HERE Maps API if the OSM API fails to return a valid route. The HERE Maps
API has considerably better coverage, although it does have stricter usage limits. By
default, mgtime will query the HERE Maps API only if it receives a route-failure error
from the OSM API.

By default, mqtime will also use the HERE Maps credentials associated with the
author of this article. This means, however, that all requests to the HERE Maps API
will be pooled for all users. If users find themselves needing to make a relatively large
number of requests for which the OSM service fails, it may be advantageous to request
separate API credentials. HERE Maps developer accounts are free and can be requested
at the HERE Maps developer site.5 To ensure mqtime uses a user’s own API credentials,
you must specify the here_id() and here_code() options. The actual API credentials
are randomly generated strings, so it may be easiest to attach them to local macros, for
instance,

local here_id = "your_id_here"
local here_code = "your_code_here"

Users can then instruct mqtime to use these credentials.
mgtime, ... here_id(" here_id"") here_code(" here_code ")

With this modification, mqtime will make requests using the user’s own personal
HERE Maps credentials.

5. In testing, I found that the OSM failed to generate a route for approximately 2% of origin and
destination pairs.
6. See https://developer.here.com/get-started.

J. Voorheis 851

The mqtime program takes the user’s inputs and builds a URL that is the desired
API request. This URL will return a JSON data object.” This JSON object is a text file
containing nested key:value pairs. Many general-purpose programming languages have
built-in functionality to parse these objects, but Stata has no base functionality to deal
with them. Fortunately, Lindsley’s (2012) insheetjson command can parse JSON files
into Stata-readable data. mqtime calls the insheetjson command to parse the JSON
object and return the relevant information (travel time, driving distance, and fuel use)
and discards the rest.

Users can specify the origin and destination locations either as latitude and longitude
or as a text address. The two locations need not be in the same format. For example,
if one had latitude and longitude for a list of origins and text addresses for a list of
destinations, one could execute

mgtime, start_x(lngvar) start_y(latvar) end_add(addvar)

The other options are largely self-explanatory, with the exception of the mode () option.
The nondriving travel modes available in mode () may be slightly less accurate than the
driving information for the OSM service. For multimodal (transit) mode, the user must
specify a time of day (if no time is provided, the API request will be for the time at run
time).

mgtime will, by default, create four new variables: travel _time, distance, service,
and fuelUsed. Travel time is returned in minutes by default, and distance is returned
in miles (or kilometers if km is specified). The estimated fuel-use variable is generated
based on MapQuest’s estimate of fuel use in gallons for the trip.® Note that the HERE
Maps API will not return an estimate of fuel use. The OSM and HERE Maps APIs
return the fastest route based on posted speed limits, but they do not take into account
real-time traffic information.

3.4 Examples

We return to the example using state capitol buildings to illustrate how mgqtime can
query the API to obtain driving directions from text addresses. Suppose we want to
generate directions from the 10 state capitol buildings used in the previous example to
10 other arbitrarily matched capitol buildings. The first five rows of our data then look
like this:

. rename capitol capitol_origin
. generate capitol_destination = addressl + "," + cityl + "," + statel

. keep capitol_origin capitol_destination

7. An example URL (requesting the driving route between Eugene, OR, and Springfield, OR) is
http://open.mapquestapi.com/directions/v2/route?’key=YOUR_KEY_HERE&{rom=Eugene,OR
&to=Springfield, OR&outFormat="json’&narrative="none’.

8. It is possible to supply the MapQuest API with specific fuel-efficiency assumptions, but this is not
yet implemented in mgtime.

852 Calculating travel time and distance using MapQuest web services

. list

1. capitol_origin
600 Dexter Ave.,Montgomery,Alabama

capitol_destination
488 N 3rd St,Harrisburg,Pennsylvania

2. capitol_origin
120 4th St.,Juneau,Alaska

capitol_destination
82 Smith St.,Providence,Rhode Island

3. capitol_origin
1700 W. Washington,Phoenix,Arizona

capitol_destination
1100 Gervais St.,Columbia,South Carolina

4. capitol_origin
300 W. Markham St.,Little Rock,Arkansas

capitol_destination
500 E. Capitol Ave,Pierre,South Dakota

(output omitted)
To generate the driving time, distance, etc., we can then execute the following:

. mqtime, start_add(capitol_origin) end_add(capitol_destination)
Processed 1 of 10 using the OpenStreetMaps API.

Processed 2 of 10 using the OpenStreetMaps API.

Processed 3 of 10 using the HERE Maps API. (2 total requests this run)

(output omitted)
Processed 10 of 10 using the OpenStreetMaps API.

. drop capitol_origin capitol_destination

When execution is complete, we can check that mqtime has generated the correct
data; we can see that all the routes were mapped without error, and only one required
the backup HERE Maps API.

. list
travel~e distance fuelUsed service
1. 805.0667 882.5601 42.06 0sM
2. 5216.317 4026.689 164.76 0sSM
3. 1887.45 2064.501 . HERE Maps
4 904 1004.535 48.93 0sM

(output omitted)

J. Voorheis 853

4 Conclusion

Taking advantage of insheetjson’s ability to parse JSON files (the industry standard
of data provision from an API), I have shown how to generate travel times, distances,
and estimated fuel use. This is accomplished using a convenient but underused service
provided by MapQuest. Unlike previous implementations, mqtime can process even very
large datasets without running afoul of terms of use. mqtime can also be easily patched
to stay up to date with API changes.

Several features are available in the OSM API and the HERE Maps API of which
mgtime does not yet take full advantage. Future revisions of the mqtime code base,
conditional on user input, will seek to incorporate these features. Chief among these
potential additional features are the following: 1) providing vehicle miles per gallon to
calculate more precise fuel use; 2) taking advantage of real-time traffic data to provide
more precise travel times; and 3) the ability to request directions more precisely (for
example, avoiding toll roads).

5 Acknowledgments

I thank Sonja Kolstoe and Jason Query for providing datasets and testing, and I thank
Trudy Cameron for encouragement and advice. None of this would be possible without
the work of Adam Ozimek and Daniel Miles (2011) (for writing the original traveltime)
and Erik Lindsley (2012) (for writing insheetjson). Any remaining errors are my own.

6 References

Lindsley, E. 2012. insheetjson: Stata module for importing tabular data from JSON
sources on the internet. Statistical Software Components S457407, Department of
Economics, Boston College. https://ideas.repec.org/c/boc/bocode/s457407. html.

Ozimek, A., and D. Miles. 2011. Stata utilities for geocoding and generating travel time
and travel distance information. Stata Journal 11: 106-119.

About the author

John Voorheis is a PhD student in economics at the University of Oregon. His research focuses
on measuring income inequality and poverty at subnational geographic scales and examining
the effects of local income distribution on economic outcomes of interest. He is also interested in
learning and developing new tools for economists to take advantage of the “big data” revolution.

