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multiply imputed data: An application to count

models for the frequency of alcohol use
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Abstract. Stata’s mi commands provide powerful tools to conduct multiple im-
putation in the presence of ignorable missing data. In this article, I present Stata
code to extend the capabilities of the mi commands to address two areas of sta-
tistical inference where results are not easily aggregated across imputed datasets.
First, mi commands are restricted to covariate selection. I show how to address
model fit to correctly specify a model. Second, the mi commands readily aggregate
model-based standard errors. I show how standard errors can be bootstrapped for
situations where model assumptions may not be met. I illustrate model specifica-
tion and bootstrapping on frequency counts for the number of times that alcohol
was consumed in data with missing observations from a behavioral intervention.

Keywords: st0407, multiple imputation, missing data, model specification, boot-
strap

1 Introduction

Missing data are a common issue across most fields of study involving proper statisti-
cal analysis. When missing data are assumed to be dependent on observed variables
(that is, missing at random [Rubin 1976]), multiple imputation (MI) (see Bartlett et al.
[Forthcoming]; Belin et al. [2000]; Little and Rubin [2002]; Rubin [1987]; Schafer [2003];
Siddique and Belin [2008]) can potentially reduce estimation bias and increase pre-
cision. In Stata, mi commands are used to create multiple datasets where missing
values are imputed based on observed variables in the data. The mi estimate com-
mand can then be used to combine estimated regression coefficients and standard er-
rors (SEs) across imputed datasets for proper statistical inference based on Rubin’s
method (Rubin 1987). Over the past decade, many studies have conducted MI through
Stata (Aloisio et al. 2014; Royston 2004; Royston 2005; Royston 2007; Royston 2009;
Royston, Carlin, and White 2009).

Despite their utility, Stata’s mi commands and the MI procedures of other standard
software packages do not implement two statistical inferentially related key tasks. Be-
fore combining regression coefficients with mi estimate and selecting model covariates
with mi test, one must specify an appropriate model. For example, model-fit statis-

c© 2015 StataCorp LP st0407



834 Multiple imputation, model specification, and bootstrapping

tics and diagnostic plots should be examined to determine the adequacy of outcome
distributional assumptions, such as normality for a linear regression model. Model
fit cannot be tested through the mi commands. This is understandable because dis-
cussion of methods to test model fit in the presence of MI is really just starting to
emerge in the literature, let alone in statistical software packages. For example, see
Johansson, Str̊alfors, and Cedersund (2014) and Schomaker and Heumann (2014).

Current MI procedures in Stata and other statistical software packages also still lack
the ability to bootstrap SEs. This is especially important for nonlinear combinations of
regression coefficients where assumptions for common methods for implementing vari-
ance estimation may not be tenable (for example, with the delta method implemented
through the margins command). Furthermore, the formula for the SEs may be difficult
or even mathematically intractable to specify (Guan 2003).

In this article, I show how to enhance the mi commands with additional programming
to conduct model specification and bootstrapping. In both instances, I use a forvalue

loop to iterate through imputed datasets. For testing model fit, I examine fit statistics
across imputed datasets and favor the fit-statistic results that are in agreement across
most imputed datasets. For bootstrapping, the SE is bootstrapped on each imputed
dataset. The overall estimate of the SE is constructed using Rubin’s rules for combining
imputed data (Rubin 1987).

I illustrate model specification and bootstrapping in conjunction with MI using data
from a behavioral intervention trial on the frequency of alcohol consumption over three
months in HIV-positive adults. In section 2, I give details on the dataset. In section 3,
I discuss candidate models for the frequency-count data. In section 4, I discuss the
MI data structure in Stata to clarify how forvalue loops are used in the code. In
section 5, I explain model specification for multiply imputed datasets. I estimate the SE

for a quantity of interest in this dataset, giving the marginal effect of having an AIDS

diagnosis on the expected count for the number of times that alcohol was consumed.
In section 6.1, I give an example of SE estimation based on the delta method, and I
contrast this with estimation of the SE through bootstrapping in section 6.2. In section 7,
I provide further discussion. Analyses are conducted in Stata 14.

2 Healthy Living Project: A motivating example

Here we analyze baseline data (n = 936) from the Healthy Living Project (HLP). This
study was designed to reduce HIV-transmission behaviors and improve the quality of
life for adults living with HIV. Adults, ages 19 to 67, were recruited from social service
agencies in four metropolitan areas in the United States from 2000 to 2002; the cities
were Los Angeles, Milwaukee, New York City, and San Francisco. Study participants
were queried on their sexual behavior and use of alcohol, tobacco, and other drugs. See
additional study details in Wong et al. (2008) and Comulada et al. (2010).

Here we analyze the frequency of times that alcohol was consumed over the past 90
days (alcoholx) as an outcome, and we treat the self-reported CD4 counts as a primary
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regressor. We dichotomize the CD4 counts into a clinically relevant variable (aids) with
categories for CD4 counts less than 200 cells per µL to indicate an AIDS diagnosis (1) or
counts of 200 or greater (0). Approximately 1 in 5 study participants who reported their
CD4 counts had counts less than 200 (17%; n = 146 of 867). We conduct analyses on
study participants with complete data (n = 928), except for the aids variable that MI

methods are illustrated on. Seven percent of the aids data are missing (n = 61 of 928),
mostly because study participants reported that they did not know their CD4 counts.
Other HLP measures include age (age); education level, dichotomized as high school
or less (1) or more education (0) (hsorless); current employment (work; 1 = yes and
0 = no); study site, with sitemi, siteny, and sitesf coded as 1/0 binary indicators
for Milwaukee, New York City, and San Francisco, respectively; and race and ethnicity,
with 1/0 binary indicators for non-Latino African American ethnicity (black), Latino
ethnicity (latino), and non-Latino White ethnicity (white). All other race and ethnic
categories constitute the reference group. We also include an HIV-transmission risk
group measure (CDC 2001), where male participants are coded into one of three 1/0
binary indicators based on the following hierarchy: 1) injecting drugs (idu); 2) not
injecting drugs but having sex with other men (msm); and 3) not injecting drugs and
not having sex with other men (htm). Female participants are the reference group. The
following Stata code reads in the data:

. use hlp.dta, clear

. set seed 2014

. global nobsdata = _N // # observations in dataset

. // Specify values for 1st approach to estimate SE (improper approach)

. global nimpute = 25 // # imputations

. global nboot = 50 // # bootstrap samples on each imputed dataset

We set a seed value of 2014 for reproducibility on imputation and bootstrapping
algorithms that will be carried out in subsequent sections. We use global macro variables
to set numbers of observations in the dataset, imputations, and bootstrap samples to
add flexibility to the Stata code for use in other MI data scenarios.

3 Candidate count models

We consider four commonly used count-data models for the frequency of alcohol con-
sumption. We begin with Poisson regression as a base model. Count yi for person i
has mean µi = expx′iβ, where β is a regression coefficient vector for covariate vector
xi. A key assumption of the Poisson model is that the mean and variance of the counts
are equal, Var(yi|xi) = µi, which is typically not met in alcohol-use count data. Most
individuals in our study were occasional alcohol consumers mixed with a few heavy
consumers, resulting in data that appeared to be overdispersed beyond what a Poisson
distribution can reasonably model. This is reflected in the sample variance of 660.5,
which is much larger than the sample mean of 16.8 times.

An alternative model that handles overdispersed count data is the negative binomial
regression model. An additional parameter α is introduced to allow the variance to be
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overdispersed, Var(yi|xi) = µi(1 + αµi). As part of the nbreg command to conduct
negative binomial regression, a likelihood-ratio (LR) test is conducted to test against a
null hypothesis that α is 0, H0: α = 0, and a Poisson distribution can be assumed.

Zero inflation is a feature related to overdispersion that also occurs in alcohol-use
count data. This means there is a higher proportion of zeros than what can reasonably
be explained through either a Poisson or a negative binomial distribution. In the HLP

study, 33% of the participants did not report any alcohol use (n = 303 of 928), suggesting
zero inflation. Two count models to handle zero inflation are the zero-inflated Poisson
(Lambert 1992) and zero-inflated negative-binomial (ZINB) models (Greene 1994). The
basic modeling approach assumes that some zeros occur from individuals in a “zero
state” (for example, teetotalers in our data) and that other zeros are assumed to occur
from individuals who are not in a zero state (for example, individuals who did not drink
during the prior three months). Thus the zero-inflated model contains two parts: an
inflation part for the probability of being in the zero state and a count part to model
counts conditional on observations not being in the zero state.

We can test the fit of the four models by fitting the ZINB model through the zinb

command. Two model-fit tests are offered. First, an LR test for α is conducted similar
to the nbreg command to see whether overdispersion needs to be accounted for. Second,
the Vuong test (Vuong 1989) is conducted to test against a null hypothesis of no zero
inflation.

4 Multiple imputation: First steps

We use the mi impute command to impute missing values for the aids variable through
a logistic model. We include all other measures listed in section 2 as covariates. We
impute 25 imputed datasets as a lower boundary for the number of commonly accepted
imputations. Stata code for this is as follows:

. mi set mlong

. mi register imputed aids // 61 marked as incomplete
(61 m=0 obs. now marked as incomplete)

. mi impute logit aids sitemi siteny sitesf black latino white msm idu htm
> hsorless age work, add($nimpute)

Univariate imputation Imputations = 25
Logistic regression added = 25
Imputed: m=1 through m=25 updated = 0

Observations per m

Variable Complete Incomplete Imputed Total

aids 867 61 61 928

(complete + incomplete = total; imputed is the minimum across m

of the number of filled-in observations.)
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We verify the adequacy of 25 imputations using the method proposed by White,
Royston, and Wood (2011). We fit the candidate count models from section 3 across
imputed datasets to alcohol-consumption counts. Models include covariates for aids and
the HIV-transmission risk group measure that we hypothesize to be associated with the
frequency of alcohol consumption. Using the margins command, we estimate the effect
of an AIDS diagnosis on expected alcohol-consumption counts, that is, the marginal effect
of AIDS. Note that the aids covariate should be preceded by an i. prefix to indicate that
a categorical, and not a continuous, covariate is being modeled; the margins command
will produce different estimates depending on the covariate type. We then examine the
Monte Carlo (MC) error associated with estimating the marginal effect of AIDS across
imputed datasets for each of the candidate models from section 3. The MC error is
produced through the mi estimate command and mcerror option. The resulting MC

errors from fitting the ZINB model follow and are representative of results from the other
count models in terms of the adequate number of imputations.

. capture program drop mimargins

. program mimargins, eclass properties(mi)
1. version 14
2. args pvar
3. zinb alcoholx i.aids msm idu htm, inflate(i.aids msm idu htm)
4. margins, dydx(`pvar´) post
5. end

. mi estimate, mcerror: mimargins aids

Multiple-imputation estimates Imputations = 25
Average marginal effects Number of obs = 928

Average RVI = 0.0608
Largest FMI = 0.0576

DF adjustment: Large sample DF: min = 7,296.84
avg = 7,296.84

Within VCE type: Delta-method max = 7,296.84

Coef. Std. Err. t P>|t| [95% Conf. Interval]

1.aids 1.922415 2.594921 0.74 0.459 -3.16438 7.00921
.1218727 .0256568 0.04 0.026 .0987859 .1583907

Note: Values displayed beneath estimates are Monte Carlo error estimates.

Note that the MC error of the marginal effect for aids is less than 10% of the SE,
the MC error of the t statistic is less than 0.1, and the MC error of the p-value is close
to 0.03 and acceptable for larger p-values. These properties suggest that additional
imputations are not needed.

Next, I discuss Stata’s MI data structure to clarify how imputed datasets will be used
in forvalue loops for model specification and bootstrapping in subsequent sections. The
original HLP dataset contained 928 rows: one for each observation in the dataset. After
conducting MI, Stata retains the original dataset and appends rows to the end of the
original dataset for each imputed value. Because the mlong format was specified, there
were 61 missing observations and 25 imputations per missing observation that were
requested. Therefore, the mi impute command appended 61 × 25 = 1525 rows to the
end of the original dataset. The MI dataset contains 928 + 1525 = 2453 observations.
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mi impute also adds two variables to the dataset. The mi m variable indicates the
iteration number of the imputed observations, ranging from 1 to 25 in our case. The
mi miss variable takes on values of 0 or 1 for observations in the original data to
indicate whether an observation is missing or observed, respectively; mi miss is set to
missing for imputed rows of observations. Therefore, if we wish to conduct an analysis
on the first imputed dataset, for example, we can subset the analysis data by typing if

mi miss == 0 | mi m == 1.

5 Multiple imputation and model specification

Next, model-fit tests are applied to each imputed dataset, and the results are displayed.
In the Stata code, we use a forvalue loop to iterate through each imputed dataset.
Within the ith imputed dataset, i = 1 . . . 25, we fit a ZINB model to the alcoholx out-
come with covariates for aids and three dummy-coded indicators for HIV-transmission
risk: idu, msm, and htm. We include covariates in both the inflation and the count
parts of the model. Statistics for the Vuong test for zero inflation and LR test for
overdispersion from the e() returned results are saved into matrices mvuong and mch2,
respectively. Stata does not save the p-values in the e() returned results. As in Buis
(2007), the p-values are recalculated for the Vuong test using the normal() function and
for the LR test using the chi2tail() function. Recalculated p-values are then saved as
scalars, along with the test statistics. Test statistics and associated p-values for each
imputed dataset are saved into matrix mattests and displayed as follows:

. // initialize matrix to hold test statistics

. // Use impossible value of -9 as check that each initial value is replaced

. matrix mattests = J($nimpute,4,-9)

. // Initialize local macro to store row names

. local names

. // Loop to run ZINB model and store test statistics

. forvalues i=1/$nimpute {
2. quietly zinb alcoholx i.aids msm idu htm if _mi_miss == 0 | _mi_m == `i´,

> inflate(i.aids msm idu htm) nolog vuong zip
3. matrix mvuong = e(vuong)
4. matrix mch2 = e(chi2_cp)
5. matrix mattests[`i´,1] =mvuong[1,1] // Vuong test statistic
6. matrix mattests[`i´,2] =normal(-1*mvuong[1,1]) // Vuong test p-value
7. matrix mattests[`i´,3] =mch2[1,1] // LR test stat, H0: alpha = 0
8. matrix mattests[`i´,4] =chi2tail(1,mch2[1,1]) // LR p-value
9. local names `names´ `i´
10. }

. matrix rownames mattests = `names´ // Assign imputation numbers as row names

. matrix colnames mattests = Vuong Vuong_p LR LR_p // Assign column names
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. matrix list mattests // Output test statistic values

mattests[25,4]
Vuong Vuong_p LR LR_p

1 10.793552 1.846e-27 14542.427 0
2 10.643859 9.313e-27 14536.519 0
3 10.553355 2.451e-26 14526.471 0
4 10.910555 5.131e-28 14542.217 0
5 10.751589 2.912e-27 14542.491 0
6 10.843383 1.072e-27 14542.801 0
7 11.220511 1.617e-29 14539.252 0
8 10.846547 1.036e-27 14542.848 0
9 11.063159 9.465e-29 14526.966 0

10 11.101006 6.202e-29 14538.338 0
11 10.877243 7.399e-28 14529.867 0
12 10.854434 9.499e-28 14540.268 0
13 10.956243 3.101e-28 14538.263 0
14 11.022121 1.495e-28 14539.027 0
15 10.879367 7.228e-28 14536.711 0
16 10.674114 6.727e-27 14543.062 0
17 10.887376 6.620e-28 14536.941 0
18 10.891531 6.325e-28 14543.108 0
19 10.768049 2.436e-27 14543.146 0
20 11.114011 5.362e-29 14541.313 0
21 10.526446 3.263e-26 14543.763 0
22 10.656714 8.111e-27 14543.36 0
23 10.712125 4.464e-27 14543.365 0
24 11.143318 3.859e-29 14540.06 0
25 10.675284 6.643e-27 14542.59 0

Across the 25 imputed datasets, p-values for the Vuong test are all less than 0.05,
indicating that the null hypothesis of no zero inflation should be rejected. Similarly,
p-values for the LR test across imputed datasets are all less than 0.05, indicating the null
hypothesis of equidispersion should be rejected. When comparing the four candidate
count models in section 3, we conclude that a ZINB model provides the best fit to the
data.

6 Estimating the SE on multiply imputed data

6.1 Delta method

Proceeding from model specification in section 5, we focus on results from a ZINB re-
gression, the best-fitting model. We specifically focus on the marginal effect of AIDS

on expected alcohol-consumption counts. In section 4, we used the delta method to
estimate the SE of the marginal effect across imputed datasets. Next, we combine the
results for the estimated marginal effects and SE using Rubin’s method (Rubin 1987)

as follows. Let M̂i be the estimated marginal effect, and let Ŵi be the variance within
imputed dataset i, i = 1, . . . , N . Here we set N = 25. We express the average estimated
marginal effect M and average within-imputation variance W as

M =
1

N

N∑

i=1

M̂i (1)
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and

W =
1

N

N∑

i=1

Ŵi, (2)

respectively. The variance between imputed datasets is

B =
1

N − 1

n∑

i=1

(
M̂i −M

)2
(3)

and the total variance for the estimated marginal effect is

T =W +

(
1 +

1

N

)
B (4)

The SE is then calculated as the square root of T . Next, I demonstrate how to bootstrap
the SE.

6.2 Bootstrapping

As in the delta method, the variance of the estimated marginal effect is bootstrapped
for each imputed dataset i, i = 1 . . . N . We set the number of bootstrap samples for
each dataset to 50 using the nboot macro variable in section 2. Here we use (1) to (4)
to aggregate variance terms across imputed datasets. The overall variance T and the
SE follows from (4). To calculate T through one forvalue loop, we reformulate the
calculation of (4) using an iterative method for mean and variance estimation (Knuth
1998, 232; Welford 1962). In addition to programming efficiency, rounding errors on
estimates will be reduced. Based on the iterative algorithm, the average marginal effect
Mn, the sums of squares SSn for the between-imputation variance Bn, and the average
within-imputation variance Wn to iteration n can be expressed as follows:

δ1 =Mi −Mn−1

Mn =Mn−1 +
δ1
n

SSn = SSn−1 + δ1
(
Mi −Mn

)

δ2 =Wi −Wn−1

Wn =Wn−1 + δ2
(
Wi −Wn

)

At the last iteration, n = N = 25, and T =W + (1 + 1/n)SSn/(n− 1). Stata code
follows.



W. S. Comulada 841

. // Program to run ZINB model and estimate margins

. capture program drop mimargins2

. program mimargins2, rclass
1. zinb alcoholx i.aids msm idu htm if _mi_miss == 0 | _mi_m == `1´,

> inflate(i.aids msm idu htm)
2. margins, dydx(aids) post
3. matrix m = r(b)
4. end

. // Initialize values to 0 for iterative routine

. scalar n = 0 // Number of current imputed dataset in iteration

. scalar bmean = 0 // Estimated margin, current iteration

. scalar Emean = 0 // Estimated margin, cumulative

. scalar SSbet = 0 // Between variance sums of squares, cumulative

. scalar Vwit = 0 // Within variance on margin, cumulative

. forvalues i=1/$nimpute {
2. // Bootstrap for each imputed dataset

. quietly bootstrap md=m[1,2], reps($nboot): mimargins2 `i´
3. matrix bm = e(b)
4. scalar bmean = bm[1,1] // Save est margin from current iteration to bmean
5. matrix bm2= e(V)
6. scalar bvar =bm2[1,1] // Save variance from current iteration to bvar
7. scalar n = n + 1
8. scalar delta = bmean - Emean
9. scalar Emean = Emean + delta / n
10. scalar SSbet = SSbet + delta*(bmean - Emean)
11. scalar delta2 = bvar - Vwit
12. scalar Vwit = Vwit + delta2 / n
13. }

. display sqrt(Vwit + (1 + 1/n)*(SSbet / (n-1))) // Display SE
2.6299977

The SE is estimated to be 2.63 and only slightly larger than the SE that was estimated
to be 2.59 through the delta method in section 4. Note that while SE estimates between
delta and bootstrap methods were similar in this instance, they may differ to a larger
degree in other datasets.

7 Discussion

In this article, I presented Stata code to extend the capabilities of the mi commands to
test model fit. The proposed ad hoc approach to model specification is straightforward
in following the “majority rule”. Using our example dataset, the majority rule worked
quite well. Model specification tests were in agreement across all imputed datasets. Of
course, this will not always be the case, which may make it more difficult to select the
best model. In some instances, it may be more desirable to average parameter estimates
across various tenable models, as discussed in Schomaker and Heumann (2014). Unfor-
tunately, model averaging or other more sophisticated model-specification methods are
not yet available in Stata and other commercial software packages. Using our ad hoc
approach, we found that additional programming to supplement the mi commands was
minimal. Moreover, the Stata code can easily be modified to produce other model-
specification tests and diagnostic plots that can be outputted across imputed datasets
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through a forvalue loop. Both the dataset and the Stata code that were used for
analyses in this article have been provided as a supplementary resource.

I also presented Stata code to bootstrap SEs of a parameter or a combination of
parameters as an alternative to the delta method. The delta method and bootstrap
procedures were both applied to each imputed dataset, and results were combined using
Rubin’s method (Rubin 1987). Note that a possible alternative implementation to
conducting MI and then bootstrapping each imputed dataset is conducting a multiply-
impute-then-boot procedure. Shao and Sitter (1996) examined the scenario where one
imputation is conducted instead of MI and advocated a boot-then-impute procedure.
First, B1 bootstrap samples are generated from the original dataset containing observed
and missing data. Next, one dataset is imputed for each bootstrap sample. Variance
terms are estimated across the B1 bootstrapped-imputed datasets and averaged. The
SE is the square root of the averaged variance. Many more bootstrap samples should
be generated relative to the multiply-impute-then-boot procedure that bootstraps B2

samples on each of N imputed datasets. Based on the number of imputations and
bootstrap samples we used in our analyses, we could set B1 = N × B2 = 25 × 50 =
1250. For singly imputed data, the boot-then-impute procedure is necessary to capture
variance inflation due to imputation and bootstrapping. To our knowledge, this issue
has not fully been explored for MI. The added value of the boot-then-impute procedure
is debatable in light of the additional variation that MI captures relative to single-
imputation methods. We applied the boot-then-impute procedure to our data, setting
B1 = 500, and compared results with those in section 6.2 based on the multiply-impute-
then-boot procedure; the SE was estimated to be 2.59 and less than the estimate of 2.63
from section 6.2.

We must also consider computing time and sample size. The boot-then-impute
procedure with 500 bootstrap samples took several additional hours to run relative to
the multiply-impute-then-boot procedure that was run on the HLP data, a moderately
sized dataset at a little less than 1,000 observations. We attempted 1,250 bootstrap
samples with the boot-then-impute procedure but stopped the code from running after
several days without results. Analyses were conducted using Stata/IC and would have
benefited from the ability of Stata/MP to harness parallel computing facilities. While
run times increase dramatically as sample sizes increase, He (2006) aptly noted that
combined MI and bootstrapping methods become less practical with increasing model
complexity and decreasing sample size. In our case, ZINB models converged across
imputed and bootstrapped datasets. For smaller datasets, the ZINB model may exhibit
convergence problems in some MI-bootstrapped datasets but not in others. Iterating
through datasets and combining results may be challenging and may require analysts
to adopt other approaches.
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