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Abstract. We propose a new command, xtsktest, for explaining nonnormalities
in linear panel-data models. The command performs tests to explore skewness
and excess kurtosis, allowing researchers to identify departures from Gaussianity
in both error components of a standard panel regression, separately or jointly. The
tests are based on recent results by Galvao et al. (2013, Journal of Multivariate

Analysis 122: 35–52) and extend the classical Jarque–Bera normality test for the
case of panel data.

Keywords: st0406, xtsktest, skewness, kurtosis, normality, panel data

1 Introduction

The need to check for nonnormal errors in regression models obeys both to method-
ological and conceptual reasons. From a strictly methodological viewpoint, lack of
Gaussianity sometimes harms the reliability of simple estimation and testing proce-
dures and calls for either better methods under alternative distributional assumptions
or robust alternatives whose advantages do not depend on distributional features. Addi-
tionally, whether errors should be more appropriately captured by skewed or leptokurtic
distributions may be a statistically relevant question.

The normality assumption also plays a crucial role in the validity of inference pro-
cedures, specification tests, and forecasting. In the panel-data literature, Blanchard
and Mátyás (1996) examine the consequences of nonnormal error components for the
performance of several tests. Montes-Rojas and Sosa-Escudero (2011) show that non-
normalities severely affect the performance of the panel-heteroskedasticity tests by
Holly and Gardiol (2000) and Baltagi, Bresson, and Pirotte (2006). Despite these con-
cerns, the Gaussian framework is widely used for specification tests in the one-way
error-components model; see, for instance, the tests for spatial models in panel data by
Baltagi, Song, and Koh (2003) and Baltagi et al. (2007).

c© 2015 StataCorp LP st0406
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Although there is much literature on testing for skewness and kurtosis in cross-
sectional and time-series data, including Tolga Ergün and Jun (2010), Bai and Ng
(2005), and Bera and Premaratne (2001), results for panel-data models are scarce. Un-
like in their cross-section or time-series counterparts, in simple error-components mod-
els, lack of Gaussianity may arise in more than one component. Thus an additional
problem to that of detecting departures from normality is in identifying which compo-
nent is causing it. Previous work on the subject includes Gilbert (2002), who exploits
cross-moments, and Meintanis (2011), who proposes an omnibus-type test for normality
in both components jointly, based on empirical characteristic functions.

The new command xtsktest implements a battery of tests to identify nonnormal-
ities in standard error-components panel models, and it is based on recent results by
Galvao et al. (2013). For standard regression models, the classical Jarque–Bera test
(implemented in Stata with sktest) is a simple procedure that detects departures from
Gaussianity in the form of skewness and excess kurtosis in the regression error term. A
natural concern of panel-data models is identifying which error component (if not both)
is the source of nonnormalities. The proposed test allows researchers to explore skew-
ness and excess kurtosis in each component separately or jointly. In this context, the
proposed procedure can be seen as extending the famous Jarque–Bera tests for simple
panel-data models.

In section 2, we review the results of Galvao et al. (2013) and present the tests. In
section 3, we describe the xtsktest syntax. In section 4, we then illustrate the procedure
by applying the new tests to an investment model studied by Fazzari, Hubbard, and
Petersen (1988). In section 5, we conclude with practical suggestions on the proper use
of the tests.

2 Skewness and kurtosis in the one-way error-compo-
nents model

Consider the standard panel-data one-way error-components model

yit = xitb+ ui + eit, i = 1, . . . , N, t = 1, . . . , T (1)

where b is a p-vector of parameters and ui, eit, and xit are copies of random variables u,
e, and x, respectively (b does not contain a constant). As usual, the subscript i refers
to individual, and t refers to time. Here ui and eit refer to the individual-specific and
to the remainder error component, respectively, both of which have mean zero.

The quantities of interest are each component’s skewness,

su =
E(u3)

{E(u2)}3/2 and se =
E(e3)

{E(e2)}3/2

and kurtosis,

ku =
E(u4)

{E(u2)}2 and ke =
E(e4)

{E(e2)}2
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Galvao et al. (2013) construct statistics for testing for skewness and kurtosis in the
individual-specific and the remainder components, separately and jointly. When the
underlying distribution is normal, the null hypotheses of interest become Hsu

0 : su = 0
and Hse

0 : se = 0 for skewness and Hku

0 : ku = 3 and Hke

0 : ke = 3 for kurtosis. Moreover,
under normality, the null hypotheses for these cases are given by

Hsu&ku

0 : su = 0 and ku = 3

Hse&ke

0 : se = 0 and ke = 3

The statistics for symmetry are

ŜK
(1)

u = Ê(u3) =
T 2 − 3T

T 2 − 3T + 2
E

(
ǫ̂
3

i

)
− 1

T 2 − 3T + 2
E

(
ǫ̂3i − 3ǫ̂iǫ̂2i

)

and

ŜK
(1)

e = Ê(e3) =
1

1− 3T−1 + 2T−2
E

(
ǫ̂3i − 3ǫ̂iǫ̂2i + 2ǫ̂

3

i

)

where ǫ̂it denotes the ordinary least-squares (OLS) residuals of model (1), a line over

a variable with a subscript i indicates a group average with ǫ̂ji = 1/T
∑T

i=1 ǫ̂
j
it, j = 1,

2, 3, 4, and E(Wi) = 1/N
∑N

i=1Wi for a generic variable Wi indexed by i. These
correspond to the statistics µ̂3 and ν̂3, respectively, in Galvao et al. (2013, 37). The
statistics for kurtosis are

K̂U
(1)

u = Ê(u4)− 3
{
Ê (u2)

}2

= E

(
ǫ̂
4

i

) T 3 − 4T 2 + 6T

T 3 − 4T 2 + 6T − 3

−
E

(
ǫ̂4i

)
− 4E

(
ǫ̂3i ǫ̂i

)
+ 6E

(
ǫ̂2i ǫ̂

2

i

)

T 3 − 4T 2 + 6T − 3

− (T − 1)(3T 3 − 12T 2 + 12T + 3)

(T 3 − 4T 2 + 6T − 3)T 3
σ̂4
e −

6

T
σ̂2
uσ̂

2
e − 3σ̂4

u

and

K̂U
(1)

e =
E

(
ǫ̂4i

)
− 4E

(
ǫ̂3i ûi

)
+ 6E

(
ǫ̂2i ǫ̂

2

i

)
− 3E

(
ǫ̂
4

i

)

1− 4T−1 + 6T−2 − 3T−3

− (T − 1)(6T−2 − 12T−3)

1− 4T−1 + 6T−2 − 3T−3
σ̂4
e − 3σ̂4

e

where

σ̂2
e =

1

1− T−1
E

(
ǫ̂2i

)
− 1

1− T−1
E

(
ǫ̂
2

i

)

σ̂2
u =

T

T − 1
E

(
ǫ̂
2

i

)
− 1

T − 1
E

(
ǫ̂2i

)
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These correspond to the zero mean transformation of the statistics µ̂4 and ν̂4, respec-
tively, in Galvao et al. (2013, 38).

Alternative statistics can also be presented in a standardized way as ŜK
(2)

u =

Ê(u3)/[{Ê(u2)}3/2] and ŜK
(2)

e = Ê(e3)/[{Ê(e2)}3/2] for symmetry [(3) and (2), respec-

tively, in Galvao et al. (2013, 37)] and K̂U
(2)

u = Ê(u4)/[{Ê(u2)}2] − 3 and K̂U
(2)

e =

Ê(e4)/[{Ê(e2)}2]− 3 [zero mean transformation of the statistics in (5) and (4), respec-
tively, in Galvao et al. (2013, 38)] for kurtosis. Each statistic is consistent and, when
properly standardized, follows an N(0, 1) asymptotic law under the corresponding null
hypothesis. However, each may differ in small samples. Tests for joint symmetry and

kurtosis are constructed using (ŜK
(j)

u )2 + (K̂U
(j)

u )2 and (ŜK
(j)

e )2 + (K̂U
(j)

e )2, j = 1, 2,
each following a χ2

2 asymptotic law under the corresponding null hypothesis.

The variance of the statistics depends on the higher-order single- and cross-moments
of u and e (up to the sixth for skewness and eighth for kurtosis). Its computation is thus
very cumbersome. Moreover, the analytical variance depends on the statistic used for

skewness and kurtosis (for example, ŜK
(1)

e or ŜK
(2)

e ). Direct estimation of the asymp-
totic variances is possible using an outer product of the gradient strategy, but extensive
Monte Carlo experimentation shows that the bootstrap performs better. Following
Galvao et al. (2013), we implement the tests using the bootstrap, randomly drawing
individuals with replacement while maintaining the unaltered time-series structure to
estimate the variances of the skewness and kurtosis test statistics. The bootstrap

command in Stata offers a flexible and efficient computational framework to implement
these tests by specifying the cluster() option at the individual level.

Simulation experiments in Galvao et al. (2013) show that the tests are consistent (as
N → ∞) and responsive to both deviations in skewness and kurtosis and that deviations
in one component do not affect the empirical size in the other component, thus allowing
one to identify the source of skewness and kurtosis in each error component.

3 The xtsktest command

3.1 Syntax

xtsktest
[
varlist

] [
if
] [

, reps(#) seed(#) standard
]

3.2 Options

reps(#) specifies the number of bootstrap replications. The default is reps(50).

seed(#) specifies the seed for the random-number generator in the bootstrap proce-
dure; see [R] set seed.

standard specifies whether the skewness and kurtosis statistics are standardized by the
estimated variance. The default is no standardization.
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3.3 Remarks

xtsktest can be used both as a standard command or as a postestimation command
after an OLS or random-effects model (see [R] regress and [XT] xtreg). In the former,
the command requires at least one variable in the varlist, while in the latter, varlist
is not required. Example 1 shows the former; examples 2 and 3 use xtsktest as a
postestimation command.

3.4 Stored results

xtsktest stores the following in e():

Matrices
e(xtsk test) skewness and kurtosis test results, one per row; first column for point

estimation, second for standard errors, and third for p-values
e(joint test) joint skewness and kurtosis test results, one per row; first column for

chi-squared statistics and second for p-values

4 Empirical application: Investment equation

In this section, we apply the developed tests to the Fazzari, Hubbard, and Petersen
(1988) investment equation model, where a firm’s investment is regressed on an observed
measure of investment demand (Tobin’s q) and cash flow. This is one of the most well-
known models in the corporate investment literature, and we use this application to
illustrate our theoretical results. As a result of Fazzari, Hubbard, and Petersen (1988),
investment–cash-flow sensitivities became a standard metric for examining the impact
of financing imperfections on corporate investment (Stein 2003).

Tobin’s q is the ratio of the market valuation of a firm and the replacement value
of its assets. A high value of q for a firm indicates an attractive investment opportu-
nity, whereas a low value of q indicates the opposite. Investment theory is also inter-
ested in the effect of cash flow, because the theory predicts that financially constrained
firms are more likely to rely on internal funds to finance investment (see, for example,
Erickson and Whited [2000]). The baseline model in the literature is

Iit/Kit = α+ βqit−1 + γCFit−1/Kit−1 + ui + eit

where I denotes investment, K denotes capital stock, CF denotes cash flow, q denotes
Tobin’s q, u represents the firm-specific effect, and e is the innovation term.

We check for skewness and kurtosis in both u and e using the proposed tests. We are
interested in testing for skewness and kurtosis for at least three reasons. First, testing
normality plays a key role in forecasting models at the firm level. Second, asymmetry in
both components is used for solving measurement-error problems in Tobin’s q. The op-
erationalization of q is not clear-cut, so estimation poses a measurement-error problem.
Many empirical investment studies found the q theory of investment to perform poorly,
although this theory has a good performance when measurement error is purged as in
Erickson and Whited (2000). Their method requires asymmetry in the error term to



J. Alejo, A. Galvao, G. Montes-Rojas, and W. Sosa-Escudero 827

identify the effect of q on firm investment. Third, skewness and kurtosis by themselves
provide information about the industry investment patterns. Skewness in u determines
that a few firms either invest or disinvest considerably more than the rest, while kurtosis
in u determines that a few firms locate at both sides of the investment line—that is,
some invest a large amount, while others disinvest a large amount. Skewness or kurtosis
in e shows that the large values of investment correspond to firm-level shocks.

We follow Almeida, Campello, and Galvao (2010), who considered a sample of man-
ufacturing firms (standard industrial classifications 2,000 to 3,999) from 2000–2005 with
data from Compustat’s PST and Full Coverage files. Only firms with observations in
every year are used to construct a balanced panel of firms for the five-year period. More-
over, following those authors, we eliminate firms for which cash holdings exceeded the
value of total assets and those displaying asset or sales growth exceeding 100%. Our
final sample consists of 410 firm-years and 82 firms. Because we consider only the firms
that report information in each of the five years, the sample consists mainly of relatively
large firms.

To demonstrate the use of xtsktest in this case, we must first open the dataset and
declare it to be panel data; see [XT] xtset.

. version 13

. use investment.dta

. xtset idcode time
panel variable: idcode (strongly balanced)
time variable: time, 2 to 6

delta: 1 unit

First, we consider an OLS estimation of the effect of Tobin’s q and cash flows on
investment.

. regress investment tobinq cashflow

Source SS df MS Number of obs = 410
F(2, 407) = 89.07

Model .536747282 2 .268373641 Prob > F = 0.0000
Residual 1.22632448 407 .003013082 R-squared = 0.3044

Adj R-squared = 0.3010
Total 1.76307176 409 .004310689 Root MSE = .05489

investment Coef. Std. Err. t P>|t| [95% Conf. Interval]

tobinq .0384663 .0094022 4.09 0.000 .0199834 .0569492
cashflow .1117721 .0096142 11.63 0.000 .0928724 .1306718

_cons .0669764 .0087876 7.62 0.000 .0497016 .0842512
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Second, we consider a one-way error-components random-effects model.

. xtreg investment tobinq cashflow, re

Random-effects GLS regression Number of obs = 410
Group variable: idcode Number of groups = 82

R-sq: Obs per group:
within = 0.1014 min = 5
between = 0.3583 avg = 5.0
overall = 0.2779 max = 5

Wald chi2(2) = 84.09
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000

investment Coef. Std. Err. z P>|z| [95% Conf. Interval]

tobinq .0673706 .0129138 5.22 0.000 .04206 .0926812
cashflow .0824715 .0115191 7.16 0.000 .0598944 .1050486

_cons .0516002 .0127921 4.03 0.000 .0265281 .0766722

sigma_u .0380806
sigma_e .03857635

rho .49353308 (fraction of variance due to u_i)

The results show a positive and significant effect of both Tobin’s q and cash flows
on investment flows in both models. The random-effects model also shows that there is
considerable variation across firms in terms of unobservables. Half the variation is due
to the firm-specific component ui, and the other half is due to the remainder component
eit. Note that the presence of firm-specific effects determines that OLS standard errors
are not correct, while the random effects are.

Here we consider the use of xtsktest as an estimation command of the skewness
and kurtosis of each component. We can implement the command in the following
three equivalent ways: as a single command (example 1), as a postestimation command
after OLS, or as a postestimation command after random effects. We consider the
implementation with 500 bootstrap replications and with a random-number seed (= 123)
(default options have 50 bootstrap replications and no random-number seed).
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. * Example 1, command mode

. xtsktest investment tobinq cashflow, reps(500) seed(123)
(running _xtsktest_calculations on estimation sample)

Bootstrap replications (500)
1 2 3 4 5

.................................................. 50

.................................................. 100

.................................................. 150

.................................................. 200

.................................................. 250

.................................................. 300

.................................................. 350

.................................................. 400

.................................................. 450

.................................................. 500

Tests for skewness and kurtosis Number of obs = 410
Replications = 500

(Replications based on 82 clusters in idcode)

Observed Bootstrap Normal-based
Coef. Std. Err. z P>|z| [95% Conf. Interval]

Skewness_e .0000387 .0000137 2.81 0.005 .0000117 .0000656
Kurtosis_e 9.33e-06 1.92e-06 4.87 0.000 5.58e-06 .0000131
Skewness_u .0000511 .0000171 2.99 0.003 .0000176 .0000847
Kurtosis_u 4.27e-08 1.27e-06 0.03 0.973 -2.44e-06 2.53e-06

Joint test for Normality on e: chi2(2) = 31.64 Prob > chi2 = 0.0000
Joint test for Normality on u: chi2(2) = 8.93 Prob > chi2 = 0.0115

The output shows the observed coefficients of the four statistics (without standard-

ization, ŜK
(1)

e = 0.0000387, K̂U
(1)

e = 9.33e − 06, ŜK
(1)

u = 0.0000511, and K̂U
(1)

u =
4.27e − 08) used for symmetry and kurtosis for each error component in the first col-
umn. The next columns show the standard errors computed by bootstrap replications,
the z statistics, the p-values, and the 95% confidence intervals using the normal ap-
proximation. Finally, the lower part of the output shows the joint test for normality
on each component of the error term and the respective p-values. The tests reveal
that both components are asymmetric (with right symmetry), while only the remain-
der component e has excess kurtosis. Thus, while we expect the occurrence of large
positive investment shocks [E(e3) > 0], these are systematic in some firms [that is,
E(u3) > 0]. Asymmetry thus produces the rejection of the null hypothesis of normality
in both error components, although the rejection is stronger for the remainder than for
the firm-specific component.

We also evaluate symmetry and kurtosis in each component using the standardized

statistics, ŜK
(2)

e , K̂U
(2)

e , ŜK
(2)

u , and K̂U
(2)

u . These can be implemented with the option
standard.
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. * Example 2, standardized coefficients

. xtsktest investment tobinq cashflow, reps(500) seed(123) standard
(running _xtsktest_calculations on estimation sample)

Bootstrap replications (500)
1 2 3 4 5

.................................................. 50

.................................................. 100

.................................................. 150

.................................................. 200

.................................................. 250

.................................................. 300

.................................................. 350

.................................................. 400

.................................................. 450

.................................................. 500

Tests for skewness and kurtosis Number of obs = 410
Replications = 500

(Replications based on 82 clusters in idcode)

Observed Bootstrap Normal-based
Coef. Std. Err. z P>|z| [95% Conf. Interval]

Skewness_e .6040947 .1523494 3.97 0.000 .3054954 .902694
Kurtosis_e 3.645848 .6932803 5.26 0.000 2.287044 5.004653
Skewness_u .9857612 .2176725 4.53 0.000 .5591309 1.412391
Kurtosis_u .0220666 .4963144 0.04 0.965 -.9506917 .994825

Joint test for Normality on e: chi2(2) = 43.38 Prob > chi2 = 0.0000
Joint test for Normality on u: chi2(2) = 20.51 Prob > chi2 = 0.0000

Note: standardized coefficients

As expected, the results do not differ from those presented with the nonstandardized
statistics. The numeric results, however, provide an easier interpretation of the excess

kurtosis in the remainder component with a value of K̂U
(2)

e = 3.645848 and the firm-

specific component K̂U
(2)

u = 0.0220666. The joint test for normality in u, however,
provides a higher chi-squared value with a clearer rejection than in the previous examples
using nonstandardized coefficients.

5 Conclusion

In this article, we implemented tests for skewness and symmetry and kurtosis of the
error components in linear panel-data random-effects models. xtsktest allows one to
evaluate each error component’s third and fourth moments. This can be used as an
alternative to the Jarque–Bera test in panel-data models.

As previously discussed, checking for skewness and kurtosis in the error components
plays an important role in testing and estimation in linear panel-data models. Devi-
ations from symmetry and kurtosis of three invalidate methods that are not robust
to normality. Moreover, estimating third and fourth moments is also important for
forecasting in panel-data models (see Baltagi [2008] for a discussion).
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