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Abstract. When several pretreatment periods are available, identification of the
treatment effect in a difference-in-differences framework requires an assumption re-
lating dynamics for controls and treated in absence of treatment. Mora and Reggio
(2012, Working Paper 12-33, Universidad Carlos III de Madrid) define a family
of alternative identifying assumptions and propose a model that, contrary to the
usual econometric specifications, allows one to identify the treatment effect for any
given assumption in the family. In this article, we introduce a command, didgq,
that implements the model presented in Mora and Reggio, reports the estimated
effect under alternative assumptions, and performs tests for the equivalence of
the estimates. We also explain how to use the command to obtain the standard
difference-in-differences estimator with or without polynomial trends.

Keywords: st0405, didq, difference-in-differences, treatment effect, identification,
fully flexible model

1 Introduction

Difference-in-differences (DID) methods are widely used to evaluate the impact of policy
interventions or other specific treatments on different outcomes of interest. DID esti-
mators require an assumption relating dynamics for controls and treated in absence
of treatment. The most common assumption for this is the “parallel paths” assump-
tion when there is only one pretreatment period. The parallel paths assumption requires
that, in absence of treatment, the average change in the outcome variable for the treated
equals the observed average change in the outcome variable for the controls. This as-
sumption implies that differences between the controls and the treated if untreated are
assumed to be time-invariant.

When several pretreatment periods are available, the assumption equivalent to paral-
lel paths is usually referred to as “common trends”. Under the common trends assump-
tion, in the absence of treatment, the average outcome change from any pretreatment
period to any posttreatment period for the treated is equal to the equivalent average
outcome change for the controls. This assumption is appealing if trends do not dif-
fer between the treated and the controls before treatment. Many researchers use the
absence-of-pretreatment trend differentials between the controls and the treated as an
argument in favor of the common trends assumption. In the presence of pretreatment-
trend differentials, it is customary to adjust the econometric specification to try to ac-
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commodate for those differences. Mora and Reggio (2012) (henceforth, MR) show that
the inclusion of trend polynomials is not innocuous. Different trend-modeling strategies
generally imply different assumptions regarding how trends for the controls and the
treated in the absence of treatment are related.

More specifically, it is common to introduce linear trends to account for trend differ-
ences between the treated and the controls. Researchers usually associate the parameter
for the interaction of a posttreatment dummy and the treated indicator with the treat-
ment effect. This practice, which is no longer consistent with common trends, is correct
if one assumes that the average acceleration for the treated under no treatment would
have been equal to the observed average acceleration for the controls. MR refer to this
assumption as parallel-2. They propose a family of alternative parallel-g assumptions
where ¢ is, at most, the number of pretreatment periods. They introduce a model that
they call the “fully flexible” model, and they identify the treatment effect under each
parallel-g assumption. A critical result in MR is that the treatment effect s periods after
treatment under any given parallel-¢ assumption can be expressed as the solution of an
equation in differences with the parameters of the fully flexible model.

Implementation of DID under common trends requires only standard least-squares
estimation of a very simple model. Because the treatment-effect estimate is identified
as the parameter of one of the regressors, testing its significance is straightforward.
In Stata, the user just needs to set the correct variable specification and employ the
command regress. In contrast, estimating treatment effects with the fully flexible
model in MR under alternative parallel assumptions requires two steps: first, standard
least-squares estimation of the fully flexible model is conducted, and second, the solution
of the equation in differences identifies the estimates. Computation of the standard
errors of the treatment-effect estimates must take into account that the solution of the
equation in differences is a linear combination of the parameters of the fully flexible
model.

In this article, we show how the command didq implements this two-step procedure
in Stata. The didq command fits the fully flexible model, and then it computes using
default treatment effects under all parallel assumptions from parallel-1 to parallel-¢g™2*,
where ¢™®* is set by the user. Treatment effects are evaluated for a period set by
the user. In addition, didq implements tests: a) for the equivalence of all parallel-q
assumptions between parallel-1 and parallel-Q), where @ is the number of pretreatment
periods; b) for each ¢ = 2,3,...,¢™®*, the equivalence of parallel-q and parallel-(¢ — 1);
and c) for each ¢ = 1,2,...,¢™® the absence of dynamics in treatment effects. didq
also offers the option to report the DID standard model with flexible common dynamics

and extensions that include a linear and a quadratic trend.

The rest of this article is structured as follows. In section 2, we briefly discuss MR
and state identification conditions of the treatment effect under alternative parallel-g
assumptions. In section 3, we describe the syntax of didq and illustrate its use through
several simulated examples. In section 4, we conclude.
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2 Identification conditions under alternative parallel as-
sumptions

Here we overview the identification of the treatment effect under alternative parallel
assumptions in DID applications. A more detailed explanation is found in MR.

2.1 The basic setup

In the simplest empirical DID application, we have information on the variable of interest
in at least two periods: before and after the treatment. Generally, we have information
for T' > 2 periods, and treatment starts sometime after the last pretreatment period,
t*, and finishes before the first posttreatment period, t* + 1. There are at least two
periods before treatment and one period after treatment. The effect of the treatment is
evaluated s periods after treatment, with 1 < s < T — t*.

Following conventional notation, we define Yj; as the observed outcome variable at
period ¢ for individual i. Let Y} denote the outcome in period ¢ when the individual
receives no treatment, and let Y;} denote the outcome in period ¢ when the individual
receives treatment. For a given individual, either Y2 or Y} is observed. Let D; =
1 if the individual receives treatment and let D; = 0 otherwise. Finally, let X; =
(X/y,...,X]p)', where X;; is a vector of time-varying individual characteristics. The
average treatment effect s periods after treatment on the treated given X is

a(s|X) = B (Vi o = Yoy [Xi = X, Dy = 1)

To estimate the average counterfactual E(Y ., ;| X; = X, D; = 1), one needs an assump-
tion on how the trend behavior of the treated if untreated compares with the observed
trend behavior of the untreated.

Let Ay = (1 —L*), s > 2, denote the s-period difference operator. MR propose
a family of alternative nonnested assumptions. For a given positive integer ¢ < t*,
parallel-g implies that, for any s, 1 < s < T — t*,

E(AATYS e [ |Xi=X,D;=1)=E(AAT'YS | Xi=X,D; =0)
where A7l = (1 — L)qfl. For example, parallel-1 implies that, in the absence of
treatment, average changes in outcome among those treated are equal to the average
changes among comparable controls. By contrast, parallel-2 implies that, in the absence
of treatment, average accelerations in outcomes among those treated are equal to the
average accelerations among comparable controls. When the number of pretreatment

periods is equal to 2, the common trends assumption implies parallel-1 and parallel-2
simultaneously.

Let us define DID (g, s) as the difference-in-g-differences operator s periods ahead,
DID (¢,5) = E (AAT Y 4oy | Xs =X, D; =1) — E(AATY, 1o |X; = X,D; =0)
MR show that under parallel-g,

ATl (s]X) = DID (g, 5) (1)
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where a (s|z) =0 for all 1 < s < T —t*. This result can be used to obtain recursively
a (s]X) for any value of s under any parallel-q.

Define the operator o (s|X) as the solution to (1). MR show that for any ¢ €
(2,...,t") and s such that 1 < s < T —t*, a4 (5| X) = o971 (5| X) if and only if

E (AT [X; = X, Dy = 1) = E (A7 'Y

X;=X,D;=0) (2)

This result sets pretreatment-trend conditions under which assumptions parallel-¢ and
parallel-(¢ — 1) are equivalent.

2.2 Alternative modeling strategies

The conventional DID estimator is obtained using standard linear regression techniques.
In the simplest case with only two periods, the treatment effect can be estimated under
parallel paths from a regression that includes a constant, the treatment indicator D;, a
dummy variable for the posttreatment period (Post;), and the interaction term Post; x
D;. In this setup, the treatment effect is identified by the parameter associated with
the interaction term.

With several pretreatment periods, the assumption equivalent to parallel paths is
common trends. MR show that common trends implies the validity of parallel-1 to
parallel-t*. Under common trends, the treatment effect can be estimated by ordinary
least squares in the standard model

T
E(Yi|Xi, Di) = BXi + 6+ 617 + 7" D; + vpPost; x D; (3)

T=to

where I] is a dummy for period 7. More-flexible specifications in applied work involve
the inclusion in the standard model of an interaction between D; and a linear or a
quadratic time trend. Including a linear time trend implies the validity of parallel-2 to
parallel-t*; while a quadratic time trend implies the validity of parallel-3 to parallel-¢*.

By contrast, MR consider the fully flexible model with group-specific, fully flexible
pretreatment and posttreatment dynamics:

T T
E(Yit|Xi, Di) = BXie +6+ > 617 +7°D;i+ Y 4P x I] x D; (4)
T=t2 T=t2

MR show that the treatment effect is identified under any parallel-g assumption,
Ao (s) = AAT2, (5)

Equation (5) implies that the identification strategy of the treatment effect will generally
differ under alternative parallel assumptions. Suppose that we have three pretreatment
periods and one posttreatment period. Consider the treatment effect under parallel-1,
that is, ¢ = 1. Because A® = 1, then o (1) = Ay2; = 72, — 2. In contrast,
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under parallel-2, a (1) = %IZH — 298 +~+E_,, while under parallel-3, a (1) = 'ytL;)Jrl —
3vE +3vE_, —vE_5. In general, only when v2 = 0 for all 7 < #*—that is, only
when pretreatment trends are equal between the treated and the controls—all parallel
assumptions are equivalent and o (1) = y2 +1- Therefore, the test of the null hypothesis
of common pretreatment trends (Ho: v2 = 0 for all 7 < t*) is a test for the simultaneous
equivalence of all parallel-q assumptions.

The fully flexible model also allows for the comparison of any two consecutive
parallel-¢ assumptions. Using conditions (2) and (5), we see that testing the null
Hy : A97142 = 0 versus the alternative H, : A" 1y2 # 0 with 1 < ¢ < t* is a
test for the equivalence of parallel-¢ and parallel-(¢ — 1). For example, in the case of
parallel-1 and parallel-2, the test would be Hy: 2 =2 _; versus Hy: vE #~vE_,.

Finally, the inclusion of fully flexible posttreatment-trend differentials also allows
us to implement tests on the dynamics of the treatment effect under any parallel-q
assumption. For example, under parallel-1, testing the null Hy: v 1s = et Lsi1 With
s=1,...,5—11is a test for the effect to be constant in the posttreatment period.

3 Stata implementation

In this section, we describe the command didq, which performs DID estimates under
alternative parallel-¢ assumptions. The following are minimum data requirements for
executing the command. First, the data must contain at least two observations per group
and period combinations. Second, there must be at least one period before treatment
starts and one period after treatment ends. The dataset must contain a variable that
identifies the period from which each observation is drawn as well as a time-invariant
treatment variable that signals treatment. The output and the treatment variables must
be numeric for the command to run. The time variable must be an integer (that is,
must be either byte, int, or long). In addition, for the computations in didq to be
meaningful, the difference between any two consecutive periods should be equal to 1.

The command didq first estimates an auxiliary regression using regress and then
computes—in Mata—the treatment effects and test statistics as linear combinations of
the estimates of the auxiliary regression. didq is by-able, allows weights, and is an
e-class ado. In addition to the treatment effects and their standard errors, didq also
saves the vector of coefficient estimates of the auxiliary regression and their variance—
covariance matrix.

By default, the command will stop with an error message if the fully flexible model is
not implementable, that is, if there is a problem of multicollinearity in the fully flexible
model. This is intended behavior. All interactions between D; and the time dummies
for the pretreatment periods should be estimated to compute the effects under any
given parallel-¢ assumption. If the regress command in Stata automatically drops one
of the interactions to avoid the perfect multicollinearity issue, the interpretation of the
remaining coefficients changes, and the algorithm used to compute the effect under a
given parallel-¢ assumption is no longer valid.
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3.1 Syntax

didq depvar [mdepvars] [zf] [m] [weight}, treated(treatvar) time (timevar)
[pegin(#b) end(#e) q(#¢) ff standard linear quadratic force

cluster (varname) detail level (#) guxiliary]

depvar is the variable on which the effects are to be estimated, and it must be numeric.
The list indepvars is an optional variable list for the inclusion of controls in the model.

3.2 Options

treated (treatvar) specifies variable treatvar as the variable that signals treatment.
treatvar is time-invariant and must take value O for observations from the control
group and value 1 for observations from the treated group. treated() is required.

time (timevar) sets numeric variable timevar as the time variable. timevar specifies the
discrete periods from which the observations are taken and must be of type byte,
int, or long. Two consecutive periods should differ by 1 for the computations to be
meaningful. time () is required.

begin(#b) and end(#e) set the first and the last posttreatment periods on which we
want to evaluate the effects t* + 1 and t* 4+ 5, respectively. They take integers as
arguments only. When timevar = t* 4+ 1, then s = 1. Values t* + 1 and t* + S must
be such that

min (timevar) < t* + 1 < t* + S < max (timevar)

By default, begin() and end() are set equal to max (timevar); that is, the last
period in timevar is assumed to be the only posttreatment period. If one of the two
options is not specified, then the missing option is set equal to the one specified.

q(#¢q sets the highest parallel-¢ assumption, ¢™**, to be used in the estimations (rele-
vant only with option ££f). It must lie between 1 and ¢*, the number of pretreatment
periods. For example, with only two pretreatment periods, ¢™** may be, at most,
equal to 2. To compute estimates under both parallel-1 and parallel-2, we must set

g™ = 2. If we set ¢™® = 1, only the estimates under parallel-1 will be obtained.
If g O is not specified or if g™ is set equal to a value larger than ¢*, then didq sets
qmax — t*

ff, standard, linear, and quadratic refer to the model to be used, and hence, only
one of them may be specified.

£f fits the fully flexible model from (4); this is the default if no model is specified.
When the fully flexible model is chosen, didq computes all estimates a9 (s), ¢ =
1,...,¢™, and s = 1,..., 5, and their standard errors. In addition, three types of
tests are conducted: first, the test for the equivalence of all parallel-g assumptions
between 1 and t*; second, for any ¢ € (2,...,¢™*), the equivalence of parallel-¢ and
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parallel-(¢ — 1); and third, if S > 1, for any q € (1,...,¢™®), the test of absence of
dynamics in treatment effects, that is, Hy: a(¢q,8) = a(¢,s — 1) for s =2,...,S.

standard fits the standard model with common flexible dynamics from (3). linear
and quadratic fit the extended standard model with a linear and quadratic trend
interaction with D;, respectively. The output displayed under each of these three
options includes the estimate and standard error of the DID estimator as well as tests
for the absence of dynamics in treatment effects between t* + 1 and t* 4.5 under the
respective model. In addition, the output includes the test of the equivalence of all
parallel-g assumptions implicitly assumed in each model. Hence, it reports the test
of the equivalence of all parallel assumptions between parallel-1 and parallel-t* with
standard, between parallel-2 and parallel-t* with 1inear, and between parallel-3
and parallel-t* with quadratic.

force computes estimates even with perfect multicollinearity issues in the auxiliary
regression. If the regress command drops one of the interactions to avoid the per-
fect multicollinearity issue, the algorithm used to compute the effect under a given
parallel-g assumption is no longer valid. However, if the variable or variables auto-
matically dropped are not the interactions between the pretreatment time dummies
and D;, the effect estimates are still valid.

cluster (varname) specifies the clustered sandwich estimator. The default is the Hu-
ber/White/sandwich estimator.

detail is relevant only when the fully flexible model is fit. When this option is chosen,
didq additionally displays ¢ ratios, p-values, and confidence intervals of all effect
estimates.

level(#) sets the confidence level, as a percentage, for confidence intervals. The
default is 1level(95), and it is relevant only with the detail option.

auxiliary displays the auxiliary regression. This option is important when there is
perfect multicollinearity. In this case, didq stops with an error message by default.
Using the option auxiliary combined with the option force checks whether the
perfect multicollinearity problem affects any of the parameter estimates used to
estimate the treatment effect. If so, the results obtained with the force option are
invalid and should not be used. If the perfect multicollinearity issue arises from the
additional controls, the didq estimates obtained with the force option are valid.
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3.3 Stored results

didgq stores the following in e():

Scalars
e() number of observations
e(common_trend) Wald test of the joint significance of all interactions of pretreatment
time dummies and the treatment dummy

Matrices

e(alpha) g™ x S matrix where element alpha (g, s) corresponds to & (g, s)

e(std-alp) g@™* x S matrix where element std_alp (g, s) corresponds to std {a (g, s)}

e(beta) vector of estimates in auxiliary regression. The first elements of e(beta)
are the estimates of the coefficients for the interactions between the
treatment variable and the time dummies in the fully flexible model.
For the standard, linear, and quadratic models, the first elements are
the estimates of the coefficients of the interactions between the treatment
variable and the corresponding polynomial elements (that is, constant,
linear, and quadratic terms). In all models, the estimate of the coefficient
of the treatment dummy is next. Then, the estimates for the coefficients
for the common time dummies follow. Finally, e(beta) includes estimates
for the coefficients for the additional controls (when available) and
the constant.

e(Vbeta) (co)variance estimates in auxiliary regression

e(tests) equivalence tests and tests on the equality of the effect on all posttreatment
periods

e(p-values) p-values for the equivalence tests and tests on the equality of the effect on
all posttreatment periods

3.4 Some examples

Consider the simulated data didq_examples.dta. Variable t records the observation
period and ranges from 1 to 5. Variable output is the outcome on which we want to
estimate the treatment effect, and D is the treatment indicator. The data, with 250
observations in each of 5 periods, were generated from a particular case of the standard
model
5
Yit = 0 + Ty + Z(STIT,t ++PD; + ’Y}QPOStt X Dy +

T=2

where z;; ~ N (0,0.25), I, , =1 (t =7), Post, =1 (t > 4), wjy ~ N (0,1),Pr(D; =1) =
05, D; 1L x4, § = 4P =48 =1, and 6, = ¢ for all t = 2,...,5. In this model,
conditional on exogenous x;;, controls and treated outcomes are subject to a common
linear trend. The treated differ on average from controls before treatment by a constant
P and after treatment by v + ’yg . Under all parallel-q, ¢ = 1,2,3, the treatment
effect is identified as v5 = 1.

Example 1

Assume that you want to use observations from periods 3 and 4 only. The following
example estimates the treatment effect at period 4 with the standard model without
additional controls under the parallel paths assumption:
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. use didq_examples
(Simulated data for illustration purposes)

. preserve
. drop if t<3 | t>4
(750 observations deleted)

. didq output, treated(D) time(t) standard
Unconditional Standard Model

Output: output Number of obs = 500
Sample Period: 3:4 HO: Common Pre-dynamics = n/a
Treatment Period: 4:4
All s HO: s=s-1
All g 1.083984 n/a
(0.2005)

Robust Standard Errors in parenthesis

. restore

The heading of the output display provides basic information on the model, the de-
pendent variable, and the sample. Because there is only one pretreatment period, no
test for common pretreatment dynamics is applicable. The standard model assumes the
equivalence of all parallel-q assumptions, and it assumes that the effect has no dynam-
ics. The estimated effect, 1.08, is thus presented under A11 q and All s categories.
Because there is only one posttreatment period, the test for dynamics of the treatment
effect is also not applicable.

Example 2

Suppose that we also want to use the data from period 2. In the fully flexible model
with two pretreatment periods, there are two alternative assumptions (parallel-1 and
parallel-2) that lead to two alternative estimates.

. didq output if (t>1 & t<5), treated(D) time(t)
Unconditional Fully Flexible Model

Output: output Number of obs = 750
Sample Period: 2:4 HO: Common Pre-dynamics = .6931
Treatment Period: 4:4 p-value = .4051
s=1 HO: g=g9-1 HO: s=s-1
q=1 1.083984 n/a
(0.2005)
q=2 1.250342 -.1663581 n/a
(0.3453) [0.4051]

Robust Standard Errors in parenthesis
p-values in brackets

By default, the beginning and end of the treatment period represent the last period in
the estimating sample. Because there are two pretreatment periods, the test for common
pretreatment dynamics is displayed. Each alternative estimate of the treatment effect is
displayed under the corresponding q line. Line g=1 corresponds to assuming parallel-1,
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and 1.08 is the estimate under parallel-1. This is the same estimate (and the same
standard error) as the estimate of the treatment effect with the standard model using
only periods 3 and 4. The estimate under parallel-2, which is displayed in line q=2, is
slightly larger at 1.25. The display also includes the test of the equivalence between
parallel-2 and parallel-1 (at line g=2 and column HO: g=q-1). With two pretreatment
periods, this test is equivalent to the test on common predynamics, so the p-value is
the same.! The conclusion of the test is that both parallel assumptions are equivalent,
meaning that the controls and the treated have common pretreatment dynamics.

Example 3

With only three periods, the treatment-effect estimate under parallel-2 is equivalent to
the estimate of the treatment effect with the standard model and linear deterministic
trends.

. didq output if (t>1 & t<5), treated(D) time(t) linear
Unconditional Linear Trend Model

Output: output Number of obs = 750
Sample Period: 2:4 HO: Common Pre-dynamics = n/a
Treatment Period: 4:4
All s HO: s=s-1
All g 1.250342 n/a
(0.3453)

Robust Standard Errors in parenthesis

Given that the linear model implies parallel-2 and beyond, the test for common predy-
namics requires at least three pretreatment periods. In this example, there are only two
pretreatment periods, so the test is not applicable.

Example 4

Consider the full sample, that is, three pretreatment periods (¢t = 1,2,3) and two
posttreatment periods (t = 4,5). With multiple posttreatment periods, options begin ()
and end () should be used to identify the interval in which to obtain the effects estimates.
Under the fully flexible model, we can obtain three alternative estimates for the effect
in period 4 and three alternative estimates for the effect in period 5.

1. The statistic of the equivalence of the parallel assumptions is the estimated effect on the last
pretreatment period under parallel-2. The test statistic on the common dynamics is the Wald test
of the joint significance of all pretreatment v/ in (4).
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. didq output, treated(D) time(t) begin(4) end(5)
Unconditional Fully Flexible Model

Output: output Number of obs = 1250
Sample Period: 1:5 HO: Common Pre-dynamics = 1.359
Treatment Period: 4:5 p-value = .507
s=1 s=2 HO: g=qg-1 HO: s=s-1

q=1 1.083984  1.002169 .1756106
(0.2005) (0.1926) [0.6752]

q=2 1.250342  1.334885 -.1663581 .09156826
(0.3453)  (0.5245) [0.4051] [0.7622]

q=3 1.3656318 1.679811 -.1149753 .1244636
(0.6308) (1.4784) [0.7388] [0.7242]

Robust Standard Errors in parenthesis
p-values in brackets

The three alternative estimates for the effect at period 4 are shown under the heading
s=1, while those for period 5 are shown under the heading s=2.2 With three pre-
treatment periods, the test for common pretreatment dynamics is a test for the joint
equivalence of parallel-1, parallel-2, and parallel-3. Two tests for the equivalence of
parallel assumptions are additionally shown under column HO: g=q-1: the first is the
equivalence of parallel-1 and parallel-2 in line g=2, and the second is the equivalence of
parallel-2 and parallel-3 in line q=3. Because there are multiple posttreatment periods,
we can conduct, for any given parallel assumption, a test on the equality of the effect
on all posttreatment periods. These tests are shown in column HO: s=s-1.

Example 5
Additional controls can be added to improve the accuracy of the estimates.

. didq output x1, treated(D) time(t) begin(4) end(5)
Conditional Fully Flexible Model

Output: output Number of obs = 1250
Sample Period: 1:5 HO: Common Pre-dynamics = 2.721
Treatment Period: 4:5 p-value = .2566
s=1 s=2 HO: g=qg-1 HO: s=s-1

q=1 1.123735 1.081014 .0608667
(0.1820) (0.1723) [0.8051]

q=2 1.326644  1.484831 -.2019087 .400746
(0.3148) (0.4776) [0.2678] [0.5267]

q=3 1.445622  1.844765 -.1199781 .2430778
(0.5743) (1.3449) [0.7015] [0.6220]

Robust Standard Errors in parenthesis
p-values in brackets

2. If there are more than three posttreatment periods, the default display reports the effects for only
s=1, s=2, and s=3. To display all the effects, the option detail should be used.
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Example 6

The tests in examples 4 and 5 suggest that the standard model is appropriate for these
simulated data because we cannot reject common pretreatment dynamics and equal
dynamic effects.

. didq output x1, treated(D) time(t) begin(4) end(5) standard
Conditional Standard Model

Output: output Number of obs = 1250
Sample Period: 1:5 HO: Common Pre-dynamics = 2.721
Treatment Period: 4:5 p-value = .2566
All s HO: s=s-1

All g .9404042 .0611879
(0.1131) [0.8046]

Robust Standard Errors in parenthesis
p-values in brackets

Using the standard model with the full sample and additional controls, we obtain a
reduction in the standard error of the estimated effect. In contrast with example 1,
we can test both pretreatment dynamics and equal dynamic effects. The common
predynamics test is the test of the joint equivalence of parallel-1, parallel-2, and parallel-
3, and it is the same as the test in example 5. The test of equal dynamic effects (in
column HO: s=s-1) is a Wald test of Hy: 7P = 7¥ in a standard model where the
treatment effects can differ by period.

5
yit=5+$+Z5TIT¢+’YDDZ‘+%?I4 x D +v2I5 x D; + uj
T=2

4 Conclusions

Identification of treatment effects using cross-sections when the dataset contains multi-
ple pretreatment periods depends on specific assumptions about pretreatment dynamics
and how they inform the counterfactual for the treated in the absence of treatment. MR
discuss the most popular models used in the empirical literature and present the fully
flexible model. For all these models, they derive the identification conditions of the
treatment effect in terms of alternative assumptions.

In this article, we present the new command didq, which performs DID estimations
under alternative assumptions as proposed by MR. We illustrate how to use the command
didq through several examples. didq is a helpful tool for analyzing the robustness
of estimated effects to alternative identifying assumptions and dynamic specifications.
Moreover, equivalence and dynamics tests can be used to validate alternative models.

Other methods are available for estimating treatment effects in Stata. teffects
provides six estimators of potential-outcome means, average treatment effects, and av-
erage treatment effects on the treated using observational data. In addition, the package
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diff performs several DID estimations of the treatment effect in the standard model
(Villa 2012).
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