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Abstract. We present a command, penlogit, for approximate Bayesian logistic
regression using penalized likelihood estimation via data augmentation. This com-
mand automatically adds specific prior-data records to a dataset. These records
are computed so that they generate a penalty function for the log likelihood of
a logistic model, which equals (up to an additive constant) a set of independent
log prior distributions on the model parameters. This command overcomes the
necessity of relying on specialized software and statistical tools (such as Markov
chain Monte Carlo) for fitting Bayesian models, and allows one to assess the infor-
mation content of a prior in terms of the data that would be required to generate
the prior as a likelihood function. The command produces data equivalent to
normal and generalized log-F' priors for the model parameters, providing flexible
translation of background information into prior data, which allows calculation of
approximate posterior medians and intervals from ordinary maximum likelihood
programs. We illustrate the command through an example using data from an
observational study of neonatal mortality.
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1 Introduction

Philosophical objections to Bayesian methods have lost much force over recent decades
because examples of successful applications of these methods have grown. Nonetheless,
Bayesian analyses remain uncommon in many disciplines. This slow adoption is un-
surprising, given that Bayesian methods are rarely covered in basic courses and thus
remain somewhat mysterious to many scientists. This coverage failure may in turn be
attributed to a pervasive yet incorrect belief that Bayesian statistics requires computa-
tional formulas and software fundamentally different from familiar frequentist statistics
such as p-values and confidence intervals.

Approximate Bayesian analyses, however, can be carried out easily using penalized
likelihood (PL) estimation, which in turn can be implemented via data augmentation.
The accuracy of these approximations are as good as or better than the accuracy of
the corresponding frequency approximations that underpin maximum likelihood (ML)
estimates and to date have given results similar to analyses based on posterior sampling
(Greenland 2001, 2003; Cole et al. 2012; Sullivan and Greenland 2013; Cole, Chu, and
Greenland 2014).

Data augmentation begins by translating prior distributions into prior-data records,
an exercise that displays the information content of prior distributions in familiar
terms of experimental results and sample size (Landaw, Sampson, and Toporek 1982;
Bedrick, Christensen, and Johnson 1996; Higgins and Spiegelhalter 2002; Greenland
2006, 2007b, 2007a; Sullivan and Greenland 2013). Once this translation is made,
Bayesian analyses can be carried out with any statistical software that implements
standard likelihood methods. This approach runs faster than simulation methods like
Markov chain Monte Carlo (MCMC) and does not introduce complex convergence criteria
or simulation error.

In this article, we present a new command, penlogit, that fits penalized logistic re-
gression via data augmentation and thus can be used to carry out approximate Bayesian
logistic regression. The article is organized as follows: In section 2, we introduce PL
estimation in the context of logistic regression and illustrate how it can be employed
to carry out Bayesian analyses. In section 3, we describe the syntax and the options
of the penlogit command. In section 4, we present a simulation study comparing the
empirical performance of standard logistic regression and penalized logistic regression
on sparse data. In section 5, we use data from an observational study on neonatal mor-
tality to present some practical examples of Bayesian analyses using penalized logistic
regression. In section 6, we conclude.

2 Methods and formulas
2.1 Penalized log likelihood

We will define a penalized log likelihood (PLL) as a log likelihood with a penalty function
added to it. Suppose we have a sample of N binomial observations, each with y; successes
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out of n; trials, and a p-dimensional vector of covariates «; = (z;1,...,2;p) (including
a constant, if any), ¢ =1,..., N. In the case of ungrouped data, y; is either equal to 1
or to 0, while n; = 1. Suppose we wish to fit a logistic regression model to these data,

In {%} = logit {7 (zi)} = i%ﬂj

where 7(x;) denotes the proportion of successes in group i, given ;.

The corresponding PLL will then be
N

PLL (B;x) = Z [ln {expit (szﬁ) } y; +In {1 — expit (sz,B)} (n; — yz)] +P(B) (1)

i=1

In{L(B;z)}

where 8 = (81, ..., 3p) indicates the vector of unknown regression parameters, In{L(-)}
is the log likelihood of a standard logistic regression model, expit(z) is equivalent to
exp(x)/{1 + exp(z)}, and P(8) is the penalty term (Le Cessie and van Houwelingen
1992). The purpose of the penalty is to pull or shrink the final parameter estimates
away from the ML estimates, toward values m = (mq,...,my).

Ideally, the choice of these values should be guided by background information out-
side of the likelihood and should be good guesses for the parameters in 3, although
a commonly used default value of 0 is often chosen for those parameters for which
background information is limited or controversial. Zero is especially appropriate for
coefficients of exposures in exploratory studies (“fishing expeditions” ), whereas it would
not be appropriate for coefficients of known outcome predictors (typically, at least age
and sex) for which considerable background information is available. An advantage of
penalized estimation is that the penalty can be restricted to those coefficients for which
the value to shrink toward is easy to specify; then analysis becomes partial-Bayes or
semi-Bayes (Cox 1975; Greenland 2000).

2.2 Bayesian perspective

From a Bayesian perspective, one can think of the penalty as arising from a prior dis-
tribution on the parameters. Specifically, a prior distribution for a model parameter
is a probability distribution that incorporates a priori information—that is, informa-
tion apart from the data being analyzed—that the data analyst has about a given
parameter. Prior distributions that are spread out carry weak background information,
whereas priors concentrated on a limited portion of the parameter space carry extensive
background information. The two extreme cases are priors with +o0o and 0 variance,
respectively. In the former case, we have no background information at all and thus we
rely only on the data for our analyses, whereas in the latter scenario, prior information
is so strong that the data information about the parameter is ignored.

The latter scenario is in effect for every parameter that is omitted from the model
without further checking whether it should be entered; for example, when product terms
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are not entered in the model, all coefficients of such terms are effectively assumed to
be 0, which corresponds to using a normal prior with 0 mean and 0 variance. To
incorporate less rigid background information into the parameter estimates, we instead
enter the term in the model but specify a prior with a nonzero variance. We then add
the logarithm of the prior density function as the penalty term in the log likelihood. The
PLL is then (apart from an additive constant) equal to the logarithm of the posterior
distribution of B given the data (Greenland 2001).

Bayesian analyses are sometimes criticized for their sensitivity to choice of prior.
This sensitivity can, however, be exploited to show how sensitive or robust inferences
may be to changing assumptions about background information (Bayesian sensitivity
analysis) and to show weaknesses of the data in light of such information. In this view,
it can be valuable to have some flexibility in the location, scale, and shape of the prior.
We will thus consider two basic families of priors for logistic coefficients: the normal
and the generalized log-F' distributions.

Normal priors

Normal priors for 3; are symmetric and unimodal, and therefore the prior mean, mode,
and median equal the same value m;. Equivalently, they impose a log-normal distri-
bution on exp(f;), where exp(m;) is the prior median odds ratio; however, exp(m;) is
neither the prior mode nor the prior mean odds ratio. The amount of background infor-
mation carried by these priors is controlled by their variance (v;): smaller values mean
that the priors are more concentrated around m; and therefore carry more background
information.

The 100(1 — a)% equal-tailed prior limits for the odds ratio—that is, that pair
of numbers such that the data analyst would give 100(1 — «)% probability that the
true odds ratio is between these two numbers, ignoring the analysis data, with equal
probability of falling above or below the interval—is exp(m; £ 21 _q4/25€prior,j), Where
Z1_q/2 is the (1 — a/2) quantile of a standard normal distribution.

Suppose we specify independent normal priors for the first ¢ model parameters (with
g < p). Each of these priors is characterized by its prior mean m; and its prior variance
vj, j =1,...,q. Letting ,@ denote the vector of these coefficients, the penalty function
in (1) is defined as
2

r(B) - _% z: (8; = m;) @)

Uj

We note that some literature defines the penalty function as —2 times the quantity
subtracted from the log likelihood; in the normal case, this makes the penalty equal the
sum of squares in (2), and more generally makes the penalty a quantity added to the
deviance function (which is —2 times the log likelihood).
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Generalized log-F priors

Generalized log-F priors subsume normal priors as a limiting case and provide a more
flexible tool to translate background information about the model parameters 8 into
prior distributions (Greenland 2003, 2007a). Log-F distributions are unimodal but,
unlike normal priors, can be skewed if prior information is directional, favoring protective
(left-skew) or harmful (right-skew) associations (assuming ¥ = 1 indicates an adverse
event). Log-F priors are the natural conjugate-prior family for logistic regression.

These priors are characterized by four parameters: the prior mode m;, the degrees of
freedom df; ; and df; ;, and the scale parameter s;. The df; ; = dfy ; = df; case produces
a symmetric log-F' prior that approaches normality and whose variance decreases as df;
increases. If df; is small, the tails of the prior become heavier than those of a normal
prior. To skew the prior while keeping the mode at m;, we increase the difference
between df; ; and dfy ;. If df;; < dfy;, the log-F' distribution becomes left-skew,
whereas if df; ; > dfy ;, the distribution becomes right-skew. Unless df; ; = dfy ; = dfj,
the prior mode m; is neither the mean nor the median of the prior. The scale parameter
s; allows expansion or contraction of the prior distribution around m; without changing
its shape. If s; > 1, the distribution expands, while if 0 < s; < 1, the distribution
contracts.

To evaluate the resulting prior, we calculate the exact 100(1 — «)% prior limits on
the odds-ratio scale. Let f, /o and fi_,/2 be the (/2) and (1 — a/2) quantiles of an F’
distribution with df; ; and dfs ; degrees of freedom. The 100(1 — «)% prior limits for
the odds ratio are calculated as

[exp(my) 15, exp (my) 17 4 | (3)
All the other percentiles can be obtained in an analogous fashion; for example, the prior
median (50th percentile) is equal to exp(m;) fo'so-

Suppose we specify independent generalized log-I' priors on the coefficients in the
vector 3 of the first ¢ model parameters (with ¢ < p). Each of these priors is charac-
terized by a parameter vector (m;,dfs ;,dfs ;,s;), 7 =1,...,q. The penalty function in
(1) is defined as

q

~ dej ﬂj — mj df17j + dfg,j ﬂj — mj
j=1

where n; = In (dfy j/dfs ;) (Greenland 2001, 2003, 2009; Brown, Spears, and Levy 2002;

Jones 2004).

Specifying the priors

Specification of priors for the model coefficients is the major aspect of Bayesian analysis
that differentiates it from a classical frequentist analysis. One way to specify a prior
for the model coefficient §; is starting from, say, 95% prior limits and then calculating
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the hyperparameters (that is, the prior’s parameters) from there. Suppose that reason-
able 95% prior limits for the odds ratio exp(f8;) are (wrj,wu;) = [exp(BL;), exp(Bu;)]
conditional on the remaining covariates. Under normality, it is easy to calculate the cor-
responding mean and variance for 3; by reversing the usual steps for interval estimation:

mj = (’%];76[]7) = ln{(ij X WUj)}

ol

(4)
and

LIEAN
o Bu = Bu)\P ) e
”j_{ 25196 } ~ ) 2x1.96 5)

For generalized log-F priors, calculating hyperparameters starting from prior limits
is less straightforward. However, one can always start by specifying a normal prior with
reasonable 95% limits and calculating its hyperparameters using (4) and (5). Then,
given that log-F' priors subsume normal priors as a limiting case, one can impose the
same normal prior employing a rescaled symmetric log-F' distribution with a large num-
ber of degrees of freedom (see section 2.3). Lastly, by increasing the difference between
df; ; and dfs j, it is possible to obtain a prior distribution with the desired skewness
that correctly reflects the asymmetric prior information for §;. Equation (3) can be
used to evaluate the resulting 95% prior limits on the odds ratio scale, and this exercise
can be repeated for different o to understand the implications of the prior.

Posterior distribution

Apart from a multiplicative constant k, the PL(3; x) equals the posterior density f(3|x),
q
PL(B; @) o< f (Blz) = k x L(B;2) < [[ £;(8)
j=1

where f;(8;) is the prior density for 8; (Greenland 2001). Thus, the maximum pe-
nalized-likelihood (MPL) estimate of 5, (Bpost,;) is the mode of the posterior distribu-
tion, also known as the maximum a posteriori estimate (Landaw, Sampson, and Toporek
1982). Furthermore, Bpost,; is the approximate posterior mean and median, while the
estimated standard error is the approximate standard deviation of the posterior dis-
tribution (Sepost;). The odds ratio estimate exp(Bpost,;) and its 100(1 — «)% Wald
confidence limits exp(Bpost,j T 21—a/25€post,j) are the approximate posterior median and
100(1 — )% posterior limits, that is, the (/2) and (1 — «/2) quantiles of the posterior
distribution of exp(p;). Ideally, the data analyst would give 100(1 — )% probability
that the true odds ratio is between these numbers, after analyzing the data, assuming
the prior used represents what the analyst would give before seeing the data and that
the regression model represents the probabilities the analyst would assign to the data
when the parameters are known. These posterior limits approach the usual frequen-
tist confidence limits when all the prior variances are allowed to grow arbitrarily large
(which represents negligible prior information).
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If the posterior distribution of a given parameter is not approximately normal—
or equivalently, if the penalized profile log likelihood is not very closely quadratic—
Wald posterior limits may no longer be adequate. To obtain more accurate posterior
limits, it is possible to use posterior sampling or penalized profile-likelihood posterior
limits (Greenland 2003; Cole et al. 2012; Sullivan and Greenland 2013; Cole, Chu, and
Greenland 2014).

For penalized profile-likelihood posterior limits, let 3, (5;) be the vector of the re-
stricted MPL estimates when component j of 3 is held fixed at §;, and let PPL(8;; ) =
PL(B,0st(55); ) be the corresponding restricted maximum. The penalized profile-
likelihood posterior limits are found by solving

—91n {PPL(ﬂj;m))} = =2 [In{PPL (Bj;2)} — In {PL (B,0st; ®) }| = Sa

PL (Bpost: T

where S,, is the (1 — ) quantile of a x? distribution so that the probability coverage
of the resulting limits approximates 100(1 — «)%. For example, if 100(1 — a)% = 95%,
then Sa = 50.05 = 3.84.

Normality of either the likelihood or the prior may be sufficient to make the pos-
terior distribution normal enough to use the Wald posterior limits (Greenland 2007b).
However, when a skewed prior is used or when the data are sparse, the use of penalized
profile-likelihood or posterior-sampling limits will usually be necessary (Greenland 2003,
2007a). See Greenland (2003) for an example comparing Wald, profile, and posterior-
sampling limits when using highly skewed priors, and see Greenland (2007a) for a more
detailed discussion on profile posterior checks.

The approximations used in PL estimation work well in the context of observational
epidemiology. Approximation errors are, in fact, negligible when considering the un-
certainties about the data-generation processes, and they are typically far below the
magnitude of random errors and biases such as uncontrolled confounding, measurement
error, and selection bias (Greenland 2001, 2007b). PL estimation is therefore a valuable
alternative to posterior sampling such as MCMC, which requires specialized software
and introduces complex convergence criteria. Moreover, PL estimation runs quicker
than MCMC, thus simplifying Bayesian sensitivity analyses (Greenland 2006). Even
if one prefers to sample from the posterior distribution, PL estimation can still pro-
vide good starting values and validity checks for the chosen sampler (Greenland 2007b;
Sullivan and Greenland 2013).

2.3 Data augmentation

Instead of directly maximizing the PLL in (1), an equivalent way of carrying out approx-
imate Bayesian logistic regression is to use data augmentation (Landaw, Sampson, and
Toporek 1982; Bedrick, Christensen, and Johnson 1996; Greenland 2001, 2003; Green-
land and Christensen 2001). With this procedure, one prior-data record is added to the
actual dataset for each prior (plus one column of offset terms if necessary). The prior-
data records will generate a penalty function that imposes the desired prior constraints
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on the model parameters. No specialized software is needed for Bayesian analysis using
data augmentation; in fact, any statistical software that implements ML estimation will
suffice. Moreover, data augmentation has the advantage of showing the strength of the
priors being imposed on f; in terms of number of cases [(df; ;)/(2 % s3)] and noncases
[(df,;)/(2x s3)] that would supply data information about the coefficient approximately
equivalent to the information supplied by the prior (Greenland 2006, 2007a).

With data augmentation, perfectly normal priors can be imposed employing sym-
metric log-F priors with a large number of degrees of freedom (say, df; ; = dfs ; = df; =
1800). These priors are rescaled by the factor s; = {(v; x dfj)/4}%, where v; is the de-
sired prior variance for the normal distribution. The scale factor s; is then divided into
all the regressor values in the prior data, including the offset, and the numbers of added
cases and noncases are multiplied by sf to compensate for the rescaling (Greenland
2007a; Sullivan and Greenland 2013).

See Greenland (2006, 2007a) and Sullivan and Greenland (2013) for practical de-
tails on data augmentation. For more technical details, see Greenland (2001, 2003),
Greenland and Christensen (2001), and references therein.

2.4 Frequentist—Bayesian parallels

Although in this paper we focus on PL from a Bayesian perspective, PL estimates can
also be derived as frequentist “shrinkage” estimates when the penalty is viewed as a
loss function for estimation errors. This dual interpretation illustrates how Bayesian
and frequentist interpretations can be viewed as complementary, rather than conflicting
(Greenland 2006, 2007b; Sullivan and Greenland 2013; Cole, Chu, and Greenland 2014).
Use of normal priors, as illustrated here, corresponds to using a sum of squared error
(quadratic) loss function, and is a useful tool for model expansion and for estimate stabi-
lization when dealing with sparse data (Greenland 2001, 2007b; Sullivan and Greenland
2013).

Regression with a quadratic penalty (2), m = (0,...,0), and the v; assumed to
equal a constant v is also known as ridge regression, which can be used to allow partial
entry of regressors into the model by shrinking the parameters toward 0 (Le Cessie
and van Houwelingen 1992; Steyerberg 2008; Hastie, Tibshirani, and Friedman 2009);
in this formulation, v is replaced by a tuning or ridge parameter A equal to 1/v or
1/(2v). Ridge regression cannot set model parameters to 0, and thus it cannot exclude
regressors from the model. However, it can be used as an alternative to conventional
variable-selection methods, such as those based on significance levels (for example, p-
value < 0.05 for inclusion) or changes in estimates (for example, at least 10% relative
change upon inclusion), which can lead to distorted tests and estimates (Greenland
1989; Maldonado and Greenland 1993). The optimal value of the ridge parameter is
usually estimated using cross-validation to minimize some measure of prediction error
(for example, mean squared error or mean classification error) or using empirical Bayes
(marginal ML) methods (Steyerberg 2008; Hastie, Tibshirani, and Friedman 2009; Efron
2012).
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Bayesian shrinkage parallels empirical Bayes but prespecifies v based on contextual
(external) information, with larger values representing greater prior uncertainty; the
degree of the shrinkage is then controlled directly by the data analyst (Greenland 2007b).

Sparse data arise when there are only a few or no subjects at certain covariate pat-
terns, or when the number of regressors approaches the number of cases or noncases.
Sparse-data bias can happen not only in small samples but also in large samples, as
the simulation in section 4 and the example in section 5 will show. In these situations,
conventional frequentist estimates often result in inflated odds-ratio estimates and ex-
cessively wide confidence intervals, even if no other bias is present. Weakly informative
priors can be used to stabilize estimates that suffer from sparse-data artifacts. Use of
priors or penalties also allows the inclusion of more confounders in the model, which can
potentially reduce the bias in effect estimates (Greenland 2008). A similar frequentist
approach to sparse data is Firth’s method, which shrinks estimates toward 0, which for
logistic regression involves maximization of the PLL in (1), where P(8) = 1/21n|1(3)|
and I(8) is the Fisher information matrix (Firth 1993; Heinze and Schemper 2002).

Although we do not discuss them here, other penalties can be useful. For example,
the lasso penalty takes the sum of absolute error as a loss function and corresponds
to using Laplace (double-exponential) priors. The result can be quite different from
quadratic penalization, especially in that more unstable coefficients may be shrunk all
the way to 0 and thus eliminated from the model. The lasso is thus valuable when
the goal is to reduce the number of variables in a predictive model rather than to
simultaneously estimate all the original coefficients (Hastie, Tibshirani, and Friedman
2009).

3 The penlogit command

3.1 Description

penlogit provides estimates for the penalized logistic model, whose PLL is defined in
(1), using data augmentation priors.

3.2 Syntax

penlogit depvar [indepvars] [zf] [m] [wez’ght] [ R
nprior (varname m v [varname mu... ])
1fprior (varname m dfy dfz s [vamame mdfi dfs s ... }) ppl (varlist)

nppl(#) binomial (varname) level(#) or nolist noconstant]

by, statsby, and xi are allowed; see [U] 11.1.10 Prefix commands. fweights are
allowed; see [U] 11.1.6 weight. After penlogit estimation, it is possible to use postesti-
mation commands like test, testparm, lincom, predict, and predictnl; see [R] test,
[R] lincom, [R] predict, and [R] predictnl.
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By default, no priors are imposed on the model coefficients. If no priors are imposed
by the user (that is, if neither option nprior() nor lfprior() is used), penlogit
reproduces the results obtained by logit (see [R] logit).

3.3 Options

nprior (varname m v [varname mu... ]) imposes a normal prior with mean = mode =
median = m and variance v on the desired model parameter (log odds-ratio).

1fprior (varname m df; dfs s [varname mdf, dfs s ... ]) imposes a generalized log-F'
prior with mode m, degrees of freedom df; and dfs, and scale factor s on the desired
model parameter (log odds-ratio).

ppl (wvarlist) specifies the variables for which penalized profile-likelihood limits are re-
quired. It calls an adapted version of the pl1f command (Royston 2007).

nppl (#) evaluates penalized profile-likelihood at # equally spaced points. The default
is npp1(100).

binomial (warname) specifies the variable containing the binomial denominator when
the data are grouped (that is, when depvar contains the total number of successes
or failures).

level (#); see [R] estimation options.

or displays the exponentiated coefficients (odds ratios) and corresponding standard
errors and confidence intervals.

nolist suppresses the summary of prior distributions in terms of exact prior percentiles
(50th, 2.5th, and 97.5th) and data approximately equivalent to priors.

noconstant suppresses the constant term.
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3.4 Stored results

penlogit stores the following in e ():

Scalars
e(N) number of observations
e(N_da) number of observations including the augmented data
e(k) number of parameters
e(ic) number of iterations

e(converged)

1 if converged, 0 otherwise

e(pll) PLL
Macros
e(cmd) penlogit
e(cmdline) command as typed
e(depvar) name of dependent variable
e(indepvars)  names of independent variables
e(wtype) weight type
e (wexp) weight expression
e(properties) b V
e(predict) program used to implement predict
Matrices
e(b) coefficient vector
e(V) variance—covariance matrix of the estimators
e(ppl) penalized profile-likelihood limits
e(ilog) iteration log (up to 20 iterations)
e(nprior) m and v of the normal priors
e(1lfprior) m, df1, df2, and s of the log-F priors
Functions
e(sample) marks estimation sample

4 Simulation

In this section, we present a simulation study comparing the empirical performance of
standard logistic regression and penalized logistic regression on sparse data.

We generated 1,000 samples from a standard logistic model in each of four different
simulation scenarios arising from the combination of two data-generating mechanisms
and two sample sizes. In all simulation scenarios, we generated 10 independent and
identically distributed binary covariates z; such that x; ~ Bernoulli(0.5), i = 1,..., 10.
The exp(fB) associated with each of these 10 covariates was set to 4 and 10 for the
first and second data-generating mechanisms, respectively. The two sample sizes were
n = 500 and n = 5000. Binary outcomes y; were sampled from a Bernoulli distribution
with parameter p; = expit(8y + Z}il Bixij), 5 =1,...,n. The intercept coefficient Sy
varied across the four simulation scenarios and was calculated to obtain an expected
outcome F(Y) (which is the marginal probability of ¥ = 1) equal to 0.05 for the
simulation scenarios with n = 500 and equal to 0.005 for the simulation scenarios with
n = 5000, where
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1 1 10
E(Y): Z Z {E(Y|X1:xl,...,Xl():iL'lo)XHPI‘(Xi:{Ei)}
£1=0  z10=0 i=1
10 k
— kzzo {expit (Bo + kB) x <10> 0.510}

The four values of By were —11.6 [ = In(4),n = 500], —14.37 [8 = In(4),n = 5000],
~18.21 [8 = In(10),n = 500], and —21.84 [3 = In(10), n = 5000].

The following code produces 1 of the 1,000 samples used in the first simulation
scenario [ = In(4),n = 500]. It can be easily adapted to the other simulation scenarios
and might prove useful to the reader who wants to replicate this simulation study using
the Stata command simulate.

. clear

. set obs 500

number of observations (_N) was O, now 500
. local intercept = -11.6

. local beta = 1n(4)

. local xbeta
. foreach i of numlist 1/10 {

2. generate x i”~ = rbinomial(1, 0.5)
3. local xbeta "“xbeta” + “beta” * xi™"
4. }

. generate xb = “intercept” “xbeta“

. generate y = rbinomial(l, invlogit(xb))

We analyzed the simulated data using both standard logistic regression and penalized
logistic regression. First, we imposed weakly informative normal priors with mean 0 and
variance 4 on each of the 10 coefficients (/31,. .., S10). These priors have an exact prior
median odds ratio of 1 and 95% exact prior limits of [0.02, 50]. Then, we imposed weakly
informative normal priors with mean In(2) and variance 1, so that the exact prior 50th,
2.5th, and 97.5th percentiles on the odds-ratio scale were 2, 0.28, and 14.21, respectively.
Each of the variance-4 priors supplied data information roughly equivalent to 0.9 cases
and 0.9 noncases, while each of the variance-1 priors supplied data information roughly
equivalent to 2.5 cases and 2.5 noncases.

Table 1 shows the simulated 50th, 5th, and 95th percentiles of the MPL estimate of
exp(1) under each scenario, for standard logistic regression (ML) and penalized logistic
regression (PL). Results for the remaining nine coefficients are similar and therefore not
displayed.
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Table 1. Median (5th, 95th percentiles) of the simulated distribution of the MPL estimate
of exp(f1)

Sample size Method Prior on (5 Odds Ratio
4 10
500 ML — 4.6 (1.9,15) 15 (4.3, 115)*
PL Normal(0, 4) 3.7(1.8,9.3) 6.9 (3.1, 16)
PL Normal(In(2), 1) 3.3 (1.8,6.6) 4.8 (2.7, 8.7)
5,000 ML — 4.2 (1.8, 12)> 12 (4.0, 58)°
PL Normal(0, 4) 3.8 (1.8,9.1) 7.6 (3.2, 21)

PL Normal(In(2), 1) 3.6 (1.8, 7.0) 5.7 (3.0, 11)

Each scenario was simulated 1,000 times.
& Excluded 6 simulations because of convergence not achieved.
> Excluded 8 simulations because of convergence not achieved.
¢ Excluded 45 simulations because of convergence not achieved.

In all four scenarios, standard logistic regression suffered from sparse-data bias,
which produced a higher proportion of simulations with extreme values of exp(1) com-
pared with penalized logistic regression. For example, in the scenario with n = 500
and exp(B) = 10, standard logistic regression did not converge in 6 out of 1,000 simula-
tions, and in the remaining 994 simulations, 5% of the estimates of exp(f;) were larger
than the absurd value of 115 (25% were larger than 28). On the other hand, penalized
logistic regression always converged and resulted in less extreme estimates. The prior
distributions used in this simulation study did not reflect any particular a priori infor-
mation; still they were useful devices for providing stable inference and estimation in
the presence of sparse data, by reducing sparse-data bias.

5 Examples

Greenland (2007a, 2007b) and Sullivan and Greenland (2013) used data from a study on
neonatal mortality during the first full year of electronic fetal monitoring at a teaching
hospital (Neutra et al. 1978) to illustrate how to conduct approximate Bayesian analysis
via data augmentation. We used the same data to illustrate the penlogit command.

5.1 Univariate analysis

Table 2 shows the cross-tabulation of the data based on the exposure (X = 1, no
monitoring; X = 0, monitoring) and the outcome (Y = 1, death; Y = 0, survival).
Given that fetal monitoring was developed to rapidly detect fetal distress during labor,
babies whose mothers were in the “no monitoring” group were expected to have higher
odds of dying during the neonatal period (0 to 28 days) (odds ratio above 1). However,
at the time of the study, the magnitude of the association was unclear.
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Table 2. Cohort data on fetal monitoring and neonatal death (Neutra et al. 1978)

Fetal monitoring®

X = X =0 Total

Deaths (Y = 1) 14 3 17
Survivals (Y =0) 2,284 691 2,975
Total 2,298 694 2992

& “No monitoring” is coded as X = 1.

We fit a standard logistic regression model using the command penlogit by not
specifying any prior on the model parameters. The response variable was the number
of deaths (deaths), and the binary indicator for the monitoring status was the only
covariate (nomonit). We also specified the following options: binomial(n) to indicate
that the data are grouped, and ppl(nomonit) to obtain profile-likelihood confidence
intervals for the covariate nomonit.

. clear
. input nomonit deaths n

nomonit deaths n
1. 0 3 694
2. 1 14 2298
3. end
. penlogit deaths nomonit, binomial(n) ppl(nomonit)
Logistic regression No. of obs = 2

Log likelihood = -3.7351204

deaths Coef. Std. Err. z P>zl [95% Conf. Intervall
nomonit .3449013 .6376887 0.54 0.589 -.9049456 1.594748
_cons -5.439528 .5786022 -9.40 0.000 -6.573567 -4.305488

deaths [95% PL Conf. Intervall]

nomonit -.7781632 1.814143

The ML estimate for the odds ratio was exp(0.345) = 1.41, while the 95% Wald
confidence limits were exp(0.345 &+ 1.96 x 0.638) = [0.40,4.92]. Given the sparseness
of the data (only three deaths among the unexposed mothers), profile-likelihood confi-
dence limits should provide more accurate coverage, because they do not depend on the
normality of the likelihood function. In this example, 95% profile-likelihood confidence
intervals for the odds ratio were [exp(—0.778),exp(1.814)] = [0.46,6.13], indicating an
asymmetric profile-likelihood.
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Normal priors

Suppose that a positive but not strong association was expected. We translated this
background information into a normal prior for the log odds-ratio (Buomenit) OT, equiv-
alently, into a lognormal prior for the odds ratio [exp(Buomenit)], such that the 95%
prior limits on the odds-ratio scale were between 0.5 and 8. These limits were obtained
by setting m = In(2) = 0.693 and v = 0.50 [see (4) and (5)]; the prior median odds
ratio was thus exp(m) = 2 and its 95% prior limits were exp{ln(2) + 1.96v/0.50} =
[0.50,8.00]. With the penlogit command, this prior was imposed by specifying the
option nprior (nomonit 1n(2) 0.5); we also specified the option or to get the results
directly on the odds-ratio scale.

. penlogit deaths nomonit, binomial(n) ppl(nomonit) nprior(nomonit 1n(2) 0.5) or
Penalized logistic regression No. of obs = 2

Normal prior for nomonit: exact prior median OR (95% PL): 2.00 (0.50, 8.00)
Data approx. equivalent to prior: cases=4.54 noncases=4.54 exp(offset)=.955

Penalized log likelihood = -7.7746667

deaths | Odds Ratio  Std. Err. z P>|z]| [95% Conf. Intervall
nomonit 1.657991 .8080274 1.04 0.300 .6378911 4.309412
_cons .0037967 .0018163 -11.65 0.000 .0014866 .0096966

deaths [95% PL Conf. Intervall]

nomonit .6703909 4.562727

The approximate posterior median and 95% Wald posterior limits for the odds ra-
tio were, respectively, 1.66 and [0.64,4.30], while the 95% penalized profile-likelihood
posterior limits were [0.67,4.56]. In this case, the profile posterior limits and the Wald
were quite similar, indicating that the addition of the normal prior made the penalized
profile-likelihood almost symmetric. Given the data and this specific prior informa-
tion on the association between monitoring and neonatal death, we would give 95%
probability that the true odds ratio is between 0.67 and 4.56.

Generalized log-F priors

Because in this example prior information was directional, pointing toward positive
associations between no monitoring and neonatal death, an asymmetric prior better
reflects the available background information. To illustrate, we impose an asymmetric
log-F prior on the parameter Byononit With a similar lower bound for the 95% prior limits
as in the previous example but with no contextually meaningful upper bound. We set
the prior mode as in the previous example [m = In(2)] and skewed the distribution
to the right by setting df; = 2000 and df; = 2. We set the scale parameter s equal
to 1. The 2.5th and 97.5th percentiles of an F' distribution with 2,000 and 2 degrees
of freedom are 0.271 and 39.497, respectively; thus, by using (3), an exact 95% prior
interval for the odds ratio was 2(0.271,39.497) = [0.54, 78.99]. This prior is asymmetric
and far more spread out than the normal prior of the previous example.
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With the penlogit command, we specified the option lfprior (nomonit 1n(2)
2000 2 1) to impose this prior.

. penlogit deaths nomonit, binomial(n) ppl(nomonit)
> 1lfprior(nomonit 1n(2) 2000 2 1) or

Penalized logistic regression No. of obs = 2

Log-F prior for nomonit: exact prior median OR (957 PL): 2.88 (0.54, 78.99)
Data approx. equivalent to prior: cases=1000.00 noncases=1.00 exp(offset)=500

Penalized log likelihood = -4.7798817

deaths | Odds Ratio Std. Err. z P>|z]| [95% Conf. Intervall
nomonit 1.579411 .8384043 0.86 0.389 .5580191 4.47035
_cons .0039551 .0020068 -10.90 0.000 .001463 .0106921

deaths [95% PL Conf. Intervall

nomonit .6287842 5.313271

The approximate median of the posterior distribution for exp(Snononit) Was 1.58. In
this example, given the sparseness of the data and the asymmetry of the prior, the
resulting posterior distribution is not normal enough to trust Wald posterior limits,
and penalized profile-likelihood limits are preferable. The 95% Wald and penalized
profile-likelihood posterior limits were [0.56, 4.47] and [0.63, 5.31], respectively.

Suppose now that we wanted to contract the log-F' prior without changing its shape,
keeping the prior mode at In(2). To do this, we set the scale parameter s to 0.5. The
exact 95% prior limits on the odds ratio implied by a log-F distribution on Bgemonit
with mode m = In(2), df; = 2000, dfy = 2, and s = 0.5 are 2(v/0.271,/39.497) =
[1.04,12.57]. This prior is much less spread out than before rescaling and therefore is
much more informative.

. penlogit deaths nomonit, binomial(n) ppl(nomonit)
> lfprior(nomonit 1n(2) 2000 2 0.5) or

Penalized logistic regression No. of obs = 2

Log-F prior for nomonit: exact prior median OR (95% PL): 2.40 (1.04, 12.57)
Data approx. equivalent to prior: cases=4000.00 noncases=4.00 exp(offset)=250

Penalized log likelihood = -4.8267735

deaths 0dds Ratio Std. Err. z P>zl [95% Conf. Intervall
nomonit 1.779013 .6651933 1.54 0.123 .8548803 3.702143
_cons .003576 .0014357 -14.03 0.000 .001628 .0078549

deaths [95% PL Conf. Intervall

nomonit .9666144 4.391295
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The stronger prior information implied by the rescaled log-F' prior resulted in nar-
rower 95% posterior limits compared with the unrescaled log-F prior. Given the sparse-
ness of the data and the asymmetric prior distribution, we ignored the Wald poste-
rior limits. Accepting the penalized profile-likelihood posterior limits, we would assign
roughly 95% probability that the true odds ratio was between 0.97 and 4.39, given the
data. The approximate posterior median was 1.78.

The results from the four univariate analyses are summarized in table 3.

Table 3. Results from approximate Bayesian analyses of the data in table 2

Exact prior Approximate posterior
Prior on Buomonit percentiles percentiles®
50th  2.5th  97.5th 50th  2.5th  97.5th
Normal(0, +00)” — — — 1.41 040 4.92

1.41  0.46 6.13

Normal(In(2), 0.5) 200 050 800  1.66 0.64  4.30
1.66 0.67  4.56

log-F(In(2), 2000, 2,1)  2.88 0.54  78.99 158 059 447
158 063 531

log-F(In(2), 2000, 2, 0.5) 2.40 1.04 12,57 1.78 085  3.70
1.78 097 439

& For each prior, the 2.5th and 97.5th percentiles in the first row are Wald
limits, while those in the second row are penalized profile-likelihood limits.
b No prior (results from table 2 alone; “percentiles” are the ML estimates and

approximate confidence limits).

To illustrate the equivalence between PL estimation and data augmentation, we
directly maximized the PLL of the previous example by using the mlexp command. The
divisor 2 at the end of the penalty term is needed because Stata applies the penalty to
each record in the dataset.
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. quietly mlexp (1n(invlogit({bO}+{nomonit}*nomonit))*deaths
> + 1n(1-(invlogit ({bO}+{nomonit}*nomonit)))*(n-deaths) + (1000* (({nomonit}-
> 1n(2))/0.5+1n(2000/2)) - 1001*1n(1+exp(({nomonit}-1n(2))/0.5+1n(2000/2))))/2)

. lincom [nomonit]_cons, or

(1) [nomonit]_cons = 0

729

O0dds Ratio Std. Err. z P>|z|

[95% Conf.

Interval]

(1) 1.779012 .6651927 1.54 0.123

.85488

3.702139

5.2 Multivariable analysis

The full dataset included 14 covariates. All were binary indicators with the exception of
early age (0=20+ years, 1=15-19 years, 2=under 15 years), gestational age (0=38+
weeks, 1 =36-38 weeks, 2 =33-35 weeks; under 33 weeks excluded), isoimmunization
(0 = no, 1 = Rh, 2 = ABO), labor progress (0 = normal, 0.33 = prolonged, 0.67 =
protracted, 1 =arrested), and past abortion (0=none, 1=1, 2=2+) (see table 4).

Table 4. Priors for the 14 regressors included in the penalized logistic regression

Exact prior

Covariate® Variable name Prior percentiles

50th  2.5th  97.5th
No monitor nomonit Normal(In(2), 0.5) 2.00  0.50 8.00
Early age teenages Normal(In(2), 0.5) 2.00  0.50 8.00
Gestational age gestage Normal(In(4), 0.5) 4.00 1.00 16.00
Past abortion abort Normal(0, 0. 5) 1.00 0.25 4.00
Labor progress dyslab Normal(In(2), 0.5) 2.00 0.50 8.00
Public ward ward Normal(In(2), 0.5) 2.00  0.50 8.00
Malpresented malpres Normal(In(4), 0.5) 4.00 1.00 16.00
Nonwhite nonwhite Normal(In(2), 0.5) 2.00 0.50 8.00
Nulliparity nullip Normal(In(2), 0.5) 2.00 0.50 8.00
Isoimmunization isoimm Normal(In(2), 0.5) 2.00 0.50 8.00
Hydramnios hydram Normal(ln(4), 0.5) 4.00 1.00 16.00
PCA placord Normal(In(2), 0.5) 2.00  0.50 8.00
Twin, triplet twint Normal(In(4), 0.5) 4.00 1.00 16.00
PROM prerupt Normal(In(2), 0.5) 2.00  0.50 8.00

PCA = placental/cord abnormality; PROM = prolonged rupture of membranes

(30+ hours).

@ Variables are binary indicators except early age (0=20+ years, 1 =15-19 years,
2 =under 15 years), gestational age (0 =38+ weeks, 1 =36-38 weeks, 2 =233-35
weeks; under 33 weeks excluded), isoimmunization (0 =no, 1 = Rh, 2 = ABO),
labor progress (0 = normal, 0.33 = prolonged, 0.67 = protracted, 1 = arrested),

and past abortion (O=none, 1=1, 2=2+).
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We fit a logistic model with all 14 variables and no priors.

. use http://www.imm.ki.se/biostatistics/data/neutral978.dta, clear
(Neutra et al. (1978), Effect of fetal monitoring on neonatal death rates., NEJM)

. penlogit death nomonit teenages gestage abort dyslab ward malpres
> nonwhite nullip isoimm hydram placord twint prerupt, ppl(hydram) or

Logistic regression No. of obs = 2992
Log likelihood = -81.929411

death | 0Odds Ratio  Std. Err. z P>zl [95% Conf. Intervall
nomonit 1.248125 .8700669 0.32 0.751 .3183365 4.893617
teenages 1.609509 1.171998 0.65 0.513 .386254 6.706774
gestage 4.890897 1.74671 4.44 0.000 2.428816 9.848778
abort .7202864 .5081269 -0.47 0.642 .1807274 2.87069
dyslab .4997072 .5246818 -0.66 0.509 .0638223 3.912541
ward .8642985 .5278453 -0.24 0.811 .2611062 2.860951
malpres 3.894239 2.944569 1.80 0.072 .8847073 17.14137
nonwhite 1.88514 1.190201 1.00 0.315 .5469274 6.49767
nullip 1.548766 .8840647 0.77 0.443 .505946 4.740974
isoimm 3.044235 1.869858 1.81 0.070 .9133672 10.14638
hydram 60.25478 72.38386 3.41 0.001 5.72066 634.6539
placord 3.101652 3.529087 0.99 0.320 .3334942 28.84681
twint 8.20637 6.338866 2.73 0.006 1.805741 37.29467
prerupt .5407285 .6036719 -0.55 0.582 .0606309 4.822417
_cons .000995 .0008698 -7.91 0.000 .0001793 .0055204

death [95% PL Conf. Intervall]

hydram 2.792485 478.1916

Although the model fit successfully converged, some of the estimates were inflated
because of data sparsity. For example, the binary indicator of hydramnios during preg-
nancy (hydram) had an ML estimate for the odds ratio of 60—one order of magnitude
above clinical expectation—a consequence of only one death among nine hydramnios
pregnancies.

Stepwise regression (stepwise command with options pr(0.10) and pe(0.05)) se-
lected only gestage, hydram, and twint from the original 14 variables, but it did not
bring the estimate for the hydramnios coefficient to a plausible value (odds ratio = 46.5).
Moreover, stepwise regression—Tlike other variable-selection algorithms—completely ig-
nores background information and does not address the problem of confounding (omit-
ted variables might confound the estimates of the selected variables). Firth’s (1993)
method (user-written command firthlogit; Coveney [2008]) did not solve the sparse-
data problem either, with an estimated odds ratio for the hydramnios parameter (95%
confidence limits) equal to 68.2 ([9.2, 505.3]). Thus, in this example, neither stepwise
regression nor Firth’s method gave satisfactory results.

We addressed the sparse-data problem by deriving penalty functions from priors. In
our example (Greenland 2001), the 14 model parameters were given three possible nor-
mal priors, reflecting the background clinical information on the different risk factors.



A. Discacciati, N. Orsini, and S. Greenland 731

Prior information on the risk factors was expressed in terms of 95% prior limits. In
particular, 95% prior limits on the odds ratio scale were [0.25, 4], [0.5, 8], and [1, 16]
for those factors identified as “uncertain”, “probably positive”, and “probably strong”,
respectively. Hyperparameters of the prior distributions were then calculated using (4)
and (5), yielding the following priors: Normal(0, 0.5), Normal(In(2), 0.5), and Nor-
mal(In(4), 0.5) (see table 4). No prior was placed on the intercept. We reduced to 50
the points at which the penalized profile-likelihood is evaluated, using the nppl(50)
option.

penlogit death nomonit teenages gestage abort dyslab ward malpres nonwhite
nullip isoimm hydram placord twint prerupt, nprior(nomonit 1n(2) 0.5 teenages
1n(2) 0.5 gestage 1n(4) 0.5 abort O 0.5 dyslab 1n(2) 0.5 ward 1n(2) 0.5
malpres 1n(4) 0.5 nonwhite 1n(2) 0.5 nullip 1n(2) 0.5 isoimm 1n(2) 0.5
placord 1n(2) 0.5 twint 1n(4) 0.5 hydram 1n(4) 0.5 prerupt 1n(2) 0.5)
ppl(nomonit teenages gestage abort dyslab ward malpres nonwhite nullip

isoimm hydram placord twint prerupt) nppl(50) or

VVVVVYV.:.

Penalized logistic regression No. of obs = 2992
(output omitted )
Penalized log likelihood = -141.1233

death | Odds Ratio  Std. Err. z P>|z| [95% Conf. Intervall
nomonit 1.730433 .8569543 1.11 0.268 .6555687 4.567635
teenages 1.620486 .T765477 1.01 0.314 .633496 4.145212
gestage 4.520217 1.344752 5.07 0.000 2.523069 8.098217
abort .8317827 .3907586 -0.39 0.695 .3312292 2.088773
dyslab 1.223829 .652187 0.38 0.705 .4306356 3.478019
ward 1.272606 .5546753 0.55 0.580 .5416152 2.990177
malpres 3.853277 1.925586 2.70 0.007 1.446978 10.26121
nonwhite 1.764528 .7961023 1.26 0.208 .7287721 4.272334
nullip 1.548364 .6589724 1.03 0.304 .6723691 3.565646
isoimm 2.412273 1.159756 1.83 0.067 .9401376 6.189583
hydram 6.067147 4.13142 2.65 0.008 1.5972 23.04675
placord 2.256392 1.384533 1.33 0.185 .6778182 7.511313
twint 5.237714 2.749351 3.15 0.002 1.872121 14.65378
prerupt 1.216663 .6493625 0.37 0.713 .4274287 3.463197
_cons .0007097 .0004794 -10.73 0.000 .0001889 .002667

death [95% PL Conf. Intervall]

nomonit .6827299 4.795116
teenages .6086605 4.012307
gestage 2.516992 8.145448
abort .3052927 1.930884
dyslab .4125252 3.345546
ward .5342302 2.972514
malpres 1.391036 9.91937
nonwhite . 7124589 4.212519
nullip .6739125 3.608426
isoimm .8498436 5.672315
hydram 1.573366 22.51026
placord .6508624 7.170668
twint 1.797856 14.12272

prerupt .40767 3.315775
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The approximate posterior median and 95% penalized profile-likelihood limits for the
hydramnios parameter on the odds ratio scale were 6.06 and [1.57,22.52], respectively.
Despite the rather weak prior imposed on the hydramnios parameter, the PL estimates
were far more reasonable than the ML estimates.

Figure 1 shows the normal prior for Snyaran from table 4 (long-dashed line), the
approximate profile posterior density for fuyaran (solid line), and the profile-likelihood
function for Snyaran (rescaled to have area 1 under the curve) (short-dashed line). The
dot on the short-dashed line indicates the ML estimate, while the square on the solid
line indicates the maximum a posteriori. This figure exhibits the skewness of the profile
likelihood due to the sparseness of the data. The reason the approximate posterior
distribution is closer to the prior is that the prior contained almost three times the
information in the likelihood (approximate prior information of 2 versus approximate
likelihood information of 0.7 from the actual data). Moreover, the posterior distribution
became almost perfectly symmetrical because of the symmetrizing effect of the normal
prior.

Density

Bhydram

Figure 1. Normal prior for Buyaran from table 4 (long-dashed line), approximate pro-
file posterior density for Buyaram (solid line), and profile-likelihood function for Bnyaram
(rescaled to have area 1 under the curve) (short-dashed line)

Posterior percentiles from penalized logistic regression via data augmentation and
from MCMC (Sullivan and Greenland 2013, 2014) showed exceptionally good agreement,
considering the approximation error in data augmentation and the simulation error in
MCMC (see table 5).
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Table 5. Approximate posterior percentiles from penalized logistic regression via data
augmentation and from MCMC

Covariate® Variable Approximate posterior percentiles
name Data augmentation” MCMC®
50th  2.5th 97.5th 50th  2.5th  97.5th
No monitor nomonit 1.7 0.68 4.8 1.8 0.71 5.0
Early age teenages 1.6 0.61 4.0 1.6 0.59 4.0
Gestational age gestage 4.5 2.5 8.1 4.6 2.5 8.3
Past abortion abort 0.83 0.31 1.9 0.79 029 19
Labor progress dyslab 1.2 0.41 3.3 1.2 0.40 3.3
Public ward ward 1.3 0.53 3.0 1.3 0.53 3.0
Malpresented malpres 3.9 14 9.9 3.8 1.4 10
Nonwhite nonwhite 1.8 0.71 4.2 1.8 0.70 4.2
Nulliparity nullip 1.5 0.67 3.6 1.6 0.67 3.6
Isoimmunization isoimm 24 0.85 5.7 2.3 0.81 5.6
Hydramnios hydram 6.1 1.6 23 6.0 1.6 22
PCA placord 2.3 0.65 7.2 2.2 064 7.1
Twin, triplet twint 5.2 1.8 14 5.3 1.8 14
PROM prerupt 1.2 041 33 1.2 039 3.3

PCA = placental/cord abnormality; PROM = prolonged rupture of membranes
(30+ hours).

@ Variables are binary indicators except early age (0 = 20+ years, 1 = 15-19 years,
2 = under 15 years), gestational age (0 = 38+ weeks, 1 = 36-38 weeks, 2 = 33-35
weeks; under 33 weeks excluded), isoimmunization (0 = no, 1 = Rh, 2 = ABO),
labor progress (0 = normal, 0.33 = prolonged, 0.67 = protracted, 1 = arrested),
and past abortion (0 = none, 1 =1, 2 = 24).

b The 2.5th and 97.5th percentiles are from penalized profile-likelihood.

¢ MCMC analysis was carried out using the genmod procedure in SAS 9.2. A non-
informative normal prior with mean 0 and variance 1,000,000 was placed on the
intercept. Number of MCMC samples was set to 100,000.

6 Conclusion

We presented a new command, penlogit, that fits penalized logistic regression via
data augmentation. We focused on how PL can be used to carry out approximate
Bayesian analyses by applying a penalty term to impose the desired prior distributions
on the model parameters. Using data from an epidemiological study, we illustrated
how background information on different risk factors for neonatal mortality can be
translated into prior distributions and how to interpret the results. We also showed how
the Bayesian approach can be useful to deal with the frequentist sparse-data problem,
which neither stepwise regression nor Firth’s method were able to address satisfactorily
in our example.
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There are several advantages of carrying out approximate Bayesian analyses using
PL estimation via data augmentation with the penlogit command. First, data aug-
mentation uses ML estimation and so does not require the use of specialized software
or unfamiliar commands. Second, unlike MCMC, PL estimation does not introduce com-
plex convergence criteria of the Markov chains to the posterior distribution, which is a
condition difficult to verify with absolute assurance. Third, it runs much faster than
MCMC and thus simplifies Bayesian sensitivity analyses. For these reasons, even if one
wants to use MCMC to sample from the posterior distribution, penlogit can provide
reasonable starting values and convergence checks for the MCMC, and can also be used
for sensitivity analyses.

In epidemiologic regression examples to date, penalized profile-likelihood limits have
produced posterior summaries almost indistinguishable from those derived by posterior
simulation (Greenland 2001, 2003; Cole et al. 2012; Cole, Chu, and Greenland 2014);
that is unsurprising, given that typical PLLs from generalized linear models are smooth,
unimodal, and concave downward. PL estimation does have some limitations, however.
Because it is based on relative heights of the posterior density, it is unsuitable for poste-
rior distributions that are multimodal or have otherwise complex shapes; in those cases,
posterior sampling will be necessary to visualize and summarize the distribution. More
generally, and unlike MCMC, PL estimation uses the same type of asymptotic approxima-
tions as does ordinary ML, although for normal and symmetric log-F' priors, it converges
more rapidly to the desired behavior because of the stabilizing and symmetrizing effect
of the penalty function (Sullivan and Greenland 2013).

Future developments include the creation of a set of commands to carry out PL
estimation via data augmentation for conditional logistic, log-linear (Poisson), and Cox
regression models as described in Greenland (2007b) and Sullivan and Greenland (2013).
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