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Abstract. In this article, we examine prediction in the context of linear index
models when one or more of the regressors are endogenous. To facilitate both
within-sample and out-of-sample predictions, Stata offers the postestimation com-
mand predict (see [R] predict). We believe that the usefulness of the predictions
provided by this command is limited, especially if one is interested in out-of-sample
predictions. We demonstrate our point using a probit model with continuous en-
dogenous regressors, although it clearly generalizes readily to other linear index
models. We subsequently provide a program that offers one possible implementa-
tion of a new command, ivpredict, that can be used to address this shortcoming
of predict, and we then illustrate its use with an empirical example.

Keywords: st0397, predict, probit, logit, ivprobit, prediction, linear index, endoge-
nous regressors, ivpredict, out-of-sample prediction

1 Introduction

In a recent article, Skeels and Taylor (2014) explore current practice for prediction in
linear simultaneous-equations models. They demonstrate that a predictor based on
replacing unknown coefficients with consistent estimators thereof was itself inconsistent
for any population quantity of interest. Here we extend this result to a broader class of
linear index models when one or more of the regressors are endogenous. We focus on the
case of a probit model with a continuous endogenous regressor, although the intuition
clearly extends further (for example, to count-data models). Of particular concern is
the implication for current econometric practice in terms of Stata.

To facilitate both within-sample and out-of-sample predictions, Stata offers the intel-
ligent postestimation command predict (see [R] predict) (“intelligent” in that exactly
what predict returns is context dependent). For example, following least-squares esti-
mation of the linear regression model

y = Xβ + ε

using the regress command (see [R] regress), the predictions generated by the predict

command will take the form Xβ̂, where β̂ denotes the estimated value of β. Conversely,
following probit (see [R] probit) or logit (see [R] logit) estimation of a binary de-
pendent variable model of the general form P (y = 1) = F (Xβ), predict can return

c© 2015 StataCorp LP st0397



628 Prediction with endogenous regressors

predictions of either Xβ̂ or F (Xβ̂), where F (·) denotes either the standard normal or
the logistic distribution function.1 The common feature of these two examples is that,
under standard assumptions, the predictions returned by predict are, by design and
by default, realizations of consistent predictors for E(y | X).2 Such predictors are of
interest because the conditional expectations are mean squared prediction-error mini-
mizers. Moreover, because E(y | X) is a regression function, the predictions are readily
interpretable.

Unfortunately, when there are endogenous regressors, the linear index Xβ̂ is not
a consistent predictor for E(y | X) or for any other quantity related to the relevant
regression function, calling into question the usefulness of the predictions returned by
predict.3 In the next section, we establish notation and derive population quantities
of interest for a probit model with continuous endogenous regressors. In section 3, we
explore different predictors that may arise with this model. In section 4, we explore
various prediction options available in Stata and how they relate to the quantities de-
fined in section 3. In section 5, we present a program that illustrates how to generate
predictions consistent for population quantities of interest by augmenting the prediction
powers of Stata. In section 6, we use this program in an empirical example. In section 7,
we conclude with some discussion of the lessons to be learned.

2 A simultaneous probit model

Although the fundamental tenet of this article is applicable to any linear index model,
a concrete example helps to illustrate the idea. Here we consider a particular probit
model with continuous endogenous regressors.4

To begin, let y⋆i denote the ith observation on a latent endogenous variable, observed
only up to sign; let Y ′

i denote the ith observation on a set of n continuous endogenous
regressors; and let X ′

i and Z ′
i denote the ith observations on sets of KX included and

KZ excluded exogenous regressors, respectively, with K = KX +KZ and i = 1, . . . , N .
The model is then characterized as being composed of

(i) one structural equation of interest,

y⋆i = Y ′
i β +X ′

iγ + ǫi (1)

coupled with

1. In general, the latter behavior is probably the more useful and is the default.
2. More generally, the predict command aspires to generate predictions that are “numbers related

to the E(yj | xj)” (StataCorp 2015, 1889).
3. Here we are concerned with the usefulness of the predictions as forecasts. It is understood that

the quantities Xβ̂ may be calculated purely as intermediate steps in some other calculation. For
instance, the generalized residuals that are used to construct various test statistics require the
calculation of Xβ̂; see, for example, Pagan and Vella (1989) and Skeels and Vella (1999).

4. See Greene (2012, sec. 17.3.5) for an excellent discussion of this model and various approaches to
it. See also Cameron and Trivedi (2005, sec. 16.8.2) and, especially, Cameron and Trivedi (2009,
sec. 14.8).
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(ii) that part of the reduced form required to complete the system

Y ′
i = [X ′

i, Z
′
i]Π + V ′

i (2)

together with

(iii) an endogeneity assumption among the jointly normally distributed disturbances,
which are otherwise uncorrelated across observations i = 1, . . . , N ,

[ǫi, V
′
i ]

′ ∼ N (0,Σ)

where

Σ =

[
1 ρ′Ω

1/2
22

Ω
1/2
22 ρ Ω22

]
(3)

is positive definite (written Σ > 0), with ρ denoting the vector of correlations
between ǫi and Vi, and

(iv) an observation rule of the form

yi =

{
1, if y⋆i > 0,

0, otherwise,
i = 1, . . . , N (4)

Given the joint normality of ǫi and Vi, it follows that
5,6,7

vec[y⋆i , Y
′
i ] ∼ N

(
vec [[X ′

i, Z
′
i]Πβ +X ′

iγ, [X
′
i, Z

′
i]Π] ,

[
1 β′

0 In

]
Σ

[
1 0
β In

])
(5)

and the conditional distribution of y⋆i given Yi can be shown to be (see, for example,
Mardia, Kent, and Bibby [1979, theorem 3.2.4])

y⋆i | Yi ∼ N
(
Y ′
i β +X ′

iγ + (Y ′
i − [X ′

i, Z
′
i]Π)Ω

−1/2
22 ρ, 1− ρ′ρ

)
(6)

5. Here vec[·] denotes the usual vec operator of matrix algebra; see, for example, Searle (1982, 332).
6. Here, as throughout the article, we have not made the conditioning on the exogenous variables

[X′
i, Z

′
i] notationally explicit because it is ubiquitous and should be taken as read.

7. We now have two mathematically equivalent statements of the model, namely, (1)–(4) and the joint
distribution (5) coupled with the observation rule (4). The latter statement of the model is more
convenient for our purposes here. For a discussion of the pros and cons of the two statements with
the classical linear simultaneous-equations model, see Poskitt and Skeels (2008).
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It follows immediately that8

E (yi | Yi) = Prob(yi = 1 | Yi) = Prob(y⋆i > 0 | Yi)

= Φ

(
Y ′
i β +X ′

iγ + (Y ′
i − [X ′

i, Z
′
i]Π)Ω

−1/2
22 ρ√

1− ρ′ρ

)
(7)

where Φ(·) denotes the standard normal distribution function.

Note that all the parameters of this model can be consistently estimated using max-
imum likelihood techniques. If we let the vector y and the matrix Y have rows yi and
Y ′
i , respectively, with i = 1, . . . , n, and we observe that the joint density of the sample

is

f(y, Y ;β, γ, ρ,Ω22) =

n∏

i=1

{Prob(yi = 0 | Yi)}(1−yi){Prob(yi = 1 | Yi)}yig(Yi)

=

n∏

i=1

{1− Prob(yi = 1 | Yi)}(1−yi){Prob(yi = 1 | Yi)}yig(Yi)

where g(Yi) denotes the marginal density of Yi, then the log likelihood is9

n∑

i=1

[(1− yi) ln{1− E (yi | Yi)}+ yi lnE (yi | Yi) + ln g(Yi)]

In section 3, we will explore some quantities of potential interest for prediction.

8. Equation (7) extends Greene (2012, eq. 17–32) to allow for multiple endogenous regressors.
9. This differs from the expression given by Greene (2012, 748), which exploits the symmetry of the

normal distribution about its mean to write

1− E (yi | Yi) = Φ

(
−Y ′

i β +X′
iγ + (Y ′

i − [X′
i, Z

′
i]Π)Ω

−1/2
22

ρ√
1− ρ′ρ

)

and characterizes sign information by

2yi − 1 =

{
1, if y1 = 1, and

−1, otherwise

Combining these two results with (7) yields

n∑

i=1

{(1− yi) ln(1− E (yi | Yi)) + yi lnE (yi | Yi)}

=

n∑

i=1

Φ

(
(2yi − 1)

(
Y ′
i β +X′

iγ + (Y ′
i − [X′

i, Z
′
i]Π)Ω

−1/2
22

ρ√
1− ρ′ρ

))

which establishes the equivalence of the two results.
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3 Prediction in the simultaneous probit model

In the standard probit model, composed of a latent model of the form

y⋆i = X ′
iγ

⋆ + εi εi ∼ N(0, σ2
ε) (8)

together with the observation rule (4), it is standard practice to normalize the latent
model to have unit variance. This reflects that it is impossible to measure the scale
of a dependent variable that is unobservable, a problem that manifests itself in an
inability to separately identify both γ⋆ and σ2

ε . As is well known, the usual coefficient
estimates are actually estimates of the ratio γ⋆/σε.

10 Fortunately, if one is interested
in E (yi | Xi) = Φ(X ′

iγ
⋆/σε), then this ratio is the required quantity. Letting γ̂ denote

a consistent estimator for γ⋆/σε, we conclude that ŷi = X ′
iγ̂ is probably not a very

interesting predictor on its own (because of the scale issues) but that Φ(ŷi) is.

Turning to the simultaneous probit model, our primary concern, we find the dis-
cussion is complicated by (1) not being a regression function, in contrast to (8). Con-
sequently, consistent estimation of the coefficients of (8) does not yield a consistent

predictor of the conditional mean of y⋆i given Yi. Specifically, if β̂ and γ̂ are consistent
estimators for β and γ, respectively, then

ŷi = Y ′
i β̂ +X ′

iγ̂

is not consistent for

E (y⋆i | Yi) = Y ′
i β +X ′

iγ + (Y ′
i − [X ′

i, Z
′
i]Π)Ω

−1/2
22 ρ (9)

In terms of (9), it is useful to distinguish between two cases: one where Yi is known and
the other where it is unknown and must be predicted. When Yi is known, maximum
likelihood can then be used to consistently estimate Π, Ω22, and ρ using the two-
step method discussed in Greene (2012, 747–750). Letting Π̂, Ω̂22, and ρ̂ denote these
estimators, we see that

Y ′
i − [X ′

i, Z
′
i]Π = Y ′

i − [X ′
i, Z

′
i]Π̂ + [X ′

i, Z
′
i](Π̂−Π) = V̂ + op(1)

and so a consistent predictor for the conditional mean of y⋆i given Yi is

ỹi = Y ′
i β̂ +X ′

iγ̂ + V̂ Ω̂
−1/2
22 ρ̂ (10)

Of course, if Yi is unknown, as would typically be the case when forecasting, then
(10) is not operational. Moreover, conditioning on Yi when it is unknown makes no
sense. Consequently, rather than working with the conditional distribution (6), we
might reasonably base our prediction on the relevant marginal distribution, which can
be obtained from (5) as

y⋆i ∼ N
(
[X ′

i, Z
′
i]Πβ +X ′

iγ, σ
2
y⋆

)
(11)

10. This is why, in the probit model, it is meaningful to interpret the signs and statistical significance
of estimated coefficients but not their magnitudes.
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where σ2
y⋆ = [1, β′]Σ[1, β′]′ = 1+ 2ρ′Ω

1/2
22 β + β′Ω22β. That is, the relevant conditioning

set is composed of the exogenous variables [X ′
i, Z

′
i] alone. Defining

Ŷi = [X ′
i, Z

′
i]Π̂

we see that E (y⋆i | Xi, Zi) can be consistently predicted by

y

∧

i = Ŷ ′
i β̂ +X ′

iγ̂ (12)

One advantage of this formulation is that it is also available when Yi is known, so y

∧

i is
also useful for within-sample predictions (c.f. Skeels and Taylor 2014).

Now suppose that the quantity of interest is the expected value of yi, that is, the
probability that y⋆i is positive. In this case, neither ỹi nor y

∧

i are adequate. Instead, for
known Yi, we have the predictor

Ê (yi | Yi) = Φ
(
ỹi/
√
1− ρ̂ ′ρ̂

)

whereas, conditioning on [X ′
i, Z

′
i] alone, (11) yields

Ê (yi) = Φ(y

∧

i/σ̂y⋆) (13)

All the required parameters can be estimated using the two-step maximum-likelihood
estimator mentioned above. However, for the purposes of prediction, all that is required
are the various ratios of parameters. For example, the parameters required for Ê (yi)

could be consistently estimated using a standard probit model with regressors Ŷi and
Xi. Again, Ê (yi | Yi) is operational only when Yi is known, whereas Ê (yi) is always
available. Note that Φ(ŷi) is not consistent for any population quantity of interest.

4 Stata and prediction

Here we explore the behavior of the predict command when used in conjunction
with various other commands for fitting probit models with endogenous regressors.
As described in section 1, this exploration is complicated by the behavior of predict
varying with circumstance. For example, to fit the model in section 3, Stata offers
the ivprobit command (see [R] ivprobit), which can fit the model either by using
maximum likelihood (the default) or by using Newey’s (1987) two-step minimum chi-
squared estimator with the twostep option. Both procedures allow the xb option (lin-
ear prediction, the default), while the maximum likelihood estimator also allows the
pr option, which purportedly generates the probability of a positive outcome—that is,
Prob(yi = 1 | Yi) = E (yi | Yi)—an option not available with the two-step estimator.

For both estimators, predict with the xb option works as advertised. That is, the
predictions generated are of the form

ŷi = Y ′
i β̂ +X ′

iγ̂
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where β̂ and γ̂ denote the estimates of β and γ, respectively, generated by ivprobit.
However, as demonstrated in the previous section, it is not entirely clear why anyone
should be interested in ŷi because it does not correspond to any population quantity of
interest. Moreover, it is not clear how to interpret functions such as Φ(ŷi), because this
is not a consistent estimator of the regression function specified in (7) except, of course,
in the special case ρ = 0. If ρ = 0, then simultaneity is obviously not a problem, and
the use of any estimator designed to cater for it will be, at best, inefficient relative to
the ordinary probit estimator.

One might argue that prediction of the simple-minded form discussed here is not
of particular interest in most microeconometric applications and that the primary use
of such predictions is to provide intermediate quantities for use in subsequent calcula-
tions. Although that may be true in certain cases, in others it is not. For example, the
conditional-moment tests described in Pagan and Vella (1989) are based on the general-
ized residuals of Cox and Snell (1968), which are based on deviations from the relevant
conditional expectations. Consequently, practitioners must be aware of exactly when
they cannot rely on predictions of the form ŷi.

Perhaps most surprising is the behavior of the pr option for predict, which is
available with maximum likelihood estimation only. This option generates Φ(ŷi), which
does not correspond to any population quantity of interest. This is surprising because,
at least for within-sample predictions, the correct quantities are necessarily calculated
in construction of the log likelihood but are not returned as predictions.

For out-of-sample predictions, matters are complicated because Yi is not observed
and must be forecast. As previously explained, this suggests the use of y

∧

i (or functions
of it) to forecast population quantities of interest.

ivprobit is not the only available estimation command; several user-written com-
mands are available.11 Closest in functionality to ivprobit are the cmp (Roodman 2011)
and cdsimeq (Keshk 2003) commands.12 Several commands implement Amemiya’s
(1978) generalized least-squares estimator for probit models with endogenous regressors,
including the ivprob command (Harkness 2001) and the probitiv command (Gelbach
1999).13 These latter commands are for a slightly different model than that of section 2.
The specific difference is that they are constructed for systems of structural equations
characterized by the presence of the dichotomous endogenous variable as a regressor
in the equations for the continuous endogenous variable, making this latter equation
structural as well. Contrast this with (2), which is a reduced-form equation rather than
a structural equation. In light of these differences, our treatment of these commands
will be cursory at best.

11. The list of commands considered here should be considered indicative rather than exhaustive.
12. These are “closest” in that they handle the same model as ivprobit. cdsimeq is written specifi-

cally for the model discussed in this article, whereas ivprobit provides only a tiny subset of the
functionality of cmp.

13. The authors of the various packages also refer to Newey (1987) and the discussion of Maddala
(1983, 242–252) for further descriptions of what they are implementing. The discussion in this
article corresponds to Maddala’s (1983, 244–245) Model 3.
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Neither probitiv nor cdsimeq produced predictions of any sort, with the predict

command resulting in errors when used. With respect to prediction, the ivprob com-
mand behaves exactly as ivprobit with the twostep option, which is reasonable because
it also is a two-step estimator. Hence, it produces linear predictions of the form ŷi but
not predictions of the probability of a positive outcome. Finally, in our experience,
cmp also generates the same prediction behavior as ivprobit. That said, cmp offers
an option, reducedform, for use with the predict command, which reads as though
it should use predictions Ŷ ′

i in place of the actual Y ′
i in constructing predictions, as

suggested here. Unfortunately, that was not our experience, and we could observe no
change in prediction behavior when this option was used. Consequently, we were unable
to conclude that cmp could produce the predictions that we were seeking.14

5 A program for consistent predictions: ivpredict

At the suggestion of a referee, we offer a program, ivpredict, that complements the
functionality provided by predict in linear index models with endogenous regressors.
We offer the routine primarily as a proof of concept.15 Notionally, however, the routine
has applicability to a wide variety of linear index models, although we have not explored
this beyond the probit model considered in this article. An example using this program
in the context of an empirical application appears in section 6.

5.1 Implementation

The program is presented in table 1.

14. We acknowledge the possibility that we were using the option incorrectly, but we did invest con-
siderable time in trying to make it work because it would have absolved us from needing to write
the next section.

15. Obvious improvements to our humble offering would include the ability to pass options to some
of the commands used within. We do not pursue this for two reasons. First, we would much
rather Stata improve the interaction between predict and those estimation routines specifically
designed to deal with endogenous regressors, thereby rendering ivpredict redundant. Second, if
this is not to happen, at the very least, an ivpredict-like command should be developed by better
programmers than us.
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Table 1. ivpredict.do

capture program drop ivpredict
program ivpredict

gettoken stub 0 : 0
gettoken subcmd 0 : 0
gettoken dependent 0 : 0
gettoken endo rest : 0 , parse(" :")
gettoken paren exog : rest
gettoken inexog exexog : exog , match(check)
matrix myb=e(b)
capture matrix coef = myb[1,"`dependent´:"]
if _rc !=0 {

matrix coleq myb = `dependent´
matrix coef = myb

}
* Initialize variables returning predictions
capture drop `stub´pr
capture drop `stub´xb
generate `stub´xb=0
* Create `stub´xb (predictions of the index)
foreach var in `endo´ {

capture drop p`var´
regress `var´ `inexog´ `exexog´
predict p`var´
local pendo "`pendo´ p`var´"
matrix coeff=coef[1,"`dependent´:`var´"]
scalar coefff=det(coeff)
capture replace `stub´xb = `stub´xb + p`var´ * coefff
matrix drop coeff
scalar drop coefff

}
foreach var in `inexog´ {

matrix coeff=coef[1,"`dependent´:`var´"]
scalar coefff=det(coeff)
capture replace `stub´xb = `stub´xb + `var´ * coefff
matrix drop coeff
scalar drop coefff

}
* Be careful with the constant
capture matrix coeff=coef[1,"`dependent´:_cons"]
if _rc == 0 {

scalar coefff=det(coeff)
capture replace `stub´xb = `stub´xb + coefff
matrix drop coeff
scalar drop coefff
`subcmd´ `dependent´ `pendo´ `inexog´
capture predict `stub´pr, pr

}
else {

`subcmd´ `dependent´ `pendo´ `inexog´, noconstant
capture predict `stub´pr, pr

}
end
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Like the predict command, the ivpredict program is used after an estimation
command. Its first task is to gather coefficient estimates. It then attempts to produce
predictions of the expected values of y⋆i and, if applicable, yi using (12) and (13),
respectively. That is, the predictions produced are conditioned on X ′

i and Z
′
i alone but

not on Y ′
i . Additionally, various intermediate results are also produced, as explained in

section 5.2 below.

Two aspects of the code are worth mentioning. First, the construction of y

∧

i would
be done more directly using matrix computations. However, in the example in section 6,
we exceeded matsize; so, for better or worse, we have explicitly rolled out the matrix
calculation as a set of loops mimicking the sums

y

∧

= Ŷ β̂ +Xγ̂ =

n∑

j=1

Ŷj β̂j +

KX∑

k=1

Xkγ̂k

where the subscripts refer to either columns of data matrices or rows of coefficient
vectors.

Second, Stata displays inconsistent behavior in how different estimation commands
present results when working with systems of equations. Suppose that rather than using
ivprobit, the model in section 6 was fit using two-stage least squares with ivregress

(see [R] ivregress), such as

ivregress 2sls ins $xlist2 (linc=$ivlist2)

Comparing the contents of e(b) immediately following each of these estimation com-
mands reveals two related differences. ivprobit provides results for both the structural
equation of interest and the reduced-form equations used to generate the instruments.
In contrast, ivregress provides coefficient estimates only for the structural equation
of interest.16 One consequence of these differing quantities of results is that in the case
of ivprobit, the column names of e(b) are decorated with equation names, whereas
those for ivregress are not. This created some complications, which is why we have a
somewhat-convoluted definition of coef in ivpredict.do (see table 1).17

5.2 Results

ivpredict returns the results of fitting each reduced equation (one per endogenous
regressor) together with estimation results for (13) or its equivalent.

One new variable is always generated, with a name of the form ‘stub’xb, where ‘stub’
is replaced with whatever text was supplied with ivpredict. This variable contains the

16. The behavior of ivregress is also shared by ivreg2 (Baum, Schaffer, and Stillman 2002).
17. Our treatment of these different column-naming approaches is somewhat ad hoc and will break if

ivpredict is used following an estimation command that adopts yet another approach. We have
not encountered such a command, and so we believe that ivpredict stands as a proof of concept,
although we certainly do not claim that our experimentation with different estimation commands
has been exhaustive.
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predictions y

∧

i [equation (12)], which correspond to those predictions of the conditional
expectation of the linear index that would be obtained using predict following the
ivprobit command, except that Y ′

i has been replaced by Ŷ ′
i in construction of the

index.

A second variable may also be created, containing either probabilities that the latent
variable is positive or, equivalently, Ê(yi) [equation (13)], the probability of a “success”.
This variable will be called ‘stub’pr. Note that this latter variable is produced only
when modeling variables that are binary in nature by using commands such as logit,
probit, and ivprobit. In particular, ivpredict will not produce probabilities of the
form Prob(a < yi < b), such as can be obtained from predict following the use of
regress.18

The important aspect of these various predictions is that they are predictions of
the conditional expectations of the variables y⋆i and yi, given all the instruments in the
model (X ′

i and Z
′
i). In particular, we do not condition on Y ′

i .

5.3 Use

We illustrate the use in the following two examples. For i = 1, . . . , n, consider the model

y⋆i = Y1iβ1 + Y2iβ2 +X1iγ1 +X2iγ2 + ǫi (14)

[Y1i, Y2i] = [X1i, X2i, Z1i, Z2i]Π + [V1i, V2i]

coupled with the observation rule (4). The coefficients in the structural equation are
scalars, but Π is of dimension (4× 2).

Example 1

The code

ivpredict mypredict probit y Y1 Y2 : (X1 X2) Z1 Z2

creates the two sets of predictions described in section 5.2, stored in the variables
mypredictxb and mypredictpr.

Example 2

Now suppose that (14) is replaced in the model by

y⋆i = Y1iβ1 + Y2iβ2 + ǫi (15)

18. As mentioned above, there is no mechanism for passing the bounds (a, b) to ivpredict.
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Here the appropriate code to generate the predictions of interest is

ivpredict mypredict probit y Y1 Y2 : ( ) Z1 Z2

Observe that although there are no exogenous variables included in (15), it is still
necessary to include an empty list surrounded by parentheses. Again, the predictions
will be stored in the newly created variables, mypredictxb and mypredictpr. More
generally, the syntax of ivpredict is

ivpredict stub cmd depvar enreg : (inexog) exexog

where

stub is the stub of the names of any predictions produced. Specifically, predictions
of the linear index will be saved in stubxb, and predictions of probabilities will
be saved in stubpr;

cmd is the estimation command used to fit (13) or its equivalent;

depvar is the left-hand-side endogenous regressor (y in the notation of section 2);

enreg is the list of right-hand-side endogenous regressors (Y in the notation of sec-
tion 2);

: is a required separator of the endogenous variables from the list of instruments;
and

(inexog) is the list of instruments (or predetermined variables) included in the struc-
tural equation of interest (excluding the intercept), and exexog are those instru-
ments excluded from this equation. In the notation of section 2, (inexog) and
exexog are denoted X and Z, respectively. Note that the parentheses around
inexog are required, and in the event that inexog is empty, it is still necessary
to include an empty pair of parentheses: ( ). It is assumed that an intercept
appears somewhere in the system of equations, although it need not appear in
the structural equation of interest.

All arguments of ivpredict, as specified above, are required.

We believe that because cmd is user specified, ivpredict will work for other linear
index models. For example, if one was fitting a structural model using ivpoisson, then
setting cmd to poisson should work. However, this has not been tested extensively.

6 An application using ivpredict

In this section, we provide a concrete example of the use of ivpredict, and we illustrate
one of the vagaries of its use.
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Our application is drawn from Cameron and Trivedi (2009, sec. 14.8).19 It uses data
from the Health and Retirement Study (HRS) to model the probability of the elderly
purchasing private supplementary insurance (ins), with the logarithm of household
income (linc) as the sole endogenous right-hand-side variable. Exogenous variables in
the structural equation are measures of individual characteristics, including age, gender,
race, ethnicity, marital status, years of education, a health-status dummy variable,
the total number of chronic conditions, and the number of limitations on activities of
daily living (respectively, age, female, white, hisp, married, educyear, hstatusg,
chronic, and adl). The structural equation also includes the square of age (age2) as
an explanatory variable. The names of all of these exogenous variables compose the
elements of the global macro $xlist2 in the output discussed below. The exogenous
variables excluded from the structural equation that serve as additional instruments
are the individual’s retirement status and his or her spouse’s retirement status (retire
and sretire, respectively). In the output discussed below, the global macro $ivlist2

is the concatenation of $xlist2, retire, and sretire. The original dataset contains
observations on 3,206 individuals, although 9 data points are lost during estimation
because, for these individuals, household income is allegedly 0, and so it is impossible
to construct the endogenous regressor linc.

The commands used to generate the output are contained in the file example.do,
which is presented in table 2.

Table 2. example.do

do ivpredict.do

use http://www.stata-press.com/data/mus/mus14data, clear
generate linc = ln(hhincome)
global xlist2 female age age2 educyear married hisp white chronic adl hstatusg
global ivlist2 $xlist2 retire sretire
ivprobit ins $xlist2 (linc = $ivlist2), vce(robust)
predict ivins, xb
predict ivinspr, pr
ivpredict mypredict probit ins linc : ($xlist2) retire sretire
correlate ivins mypredictxb
correlate ivinspr mypredictpr

After some initial setup, the first task of commands in example.do is to fit the model
using ivprobit and, on the basis of these results, obtain predictions of the form ŷi and
Φ(ŷi) using the predict command. These predictions are stored in the variables ivins
and ivinspr, respectively. The ivprobit estimation results are presented in table 3.

19. Cameron and Trivedi (2009, 449) provide a more complete description of the data. The
data are contained in the file mus14data.dta, which is available from http://www.stata-
press.com/data/mus.html.
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Table 3. Output from example.do: ivprobit estimation results

. ivprobit ins $xlist2 (linc = $ivlist2), vce(robust)

(output omitted )

Probit model with endogenous regressors Number of obs = 3,197
Wald chi2(11) = 382.34

Log pseudolikelihood = -5407.7151 Prob > chi2 = 0.0000

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

linc -.5338185 .3852357 -1.39 0.166 -1.288867 .2212296
female -.1394069 .0494475 -2.82 0.005 -.2363223 -.0424915

age .2862283 .1280838 2.23 0.025 .0351886 .5372679
age2 -.0021472 .0009318 -2.30 0.021 -.0039736 -.0003209

educyear .1136877 .0237927 4.78 0.000 .0670548 .1603205
married .7058269 .2377731 2.97 0.003 .2398002 1.171854

hisp -.5094513 .1049488 -4.85 0.000 -.7151473 -.3037554
white .156344 .1035713 1.51 0.131 -.0466521 .3593401

chronic .0061943 .0275259 0.23 0.822 -.0477556 .0601441
adl -.1347663 .03498 -3.85 0.000 -.2033259 -.0662067

hstatusg .2341782 .0709769 3.30 0.001 .095066 .3732904
_cons -10.00785 4.065795 -2.46 0.014 -17.97666 -2.039039

/athrho .67453 .3599915 1.87 0.061 -.0310404 1.3801
/lnsigma -.331594 .0233799 -14.18 0.000 -.3774178 -.2857703

rho .5879518 .235547 -.0310305 .8809738
sigma .7177787 .0167816 .6856296 .7514352

Instrumented: linc
Instruments: female age age2 educyear married hisp white chronic adl

hstatusg retire sretire

Wald test of exogeneity (/athrho = 0): chi2(1) = 3.51 Prob > chi2 = 0.0610

Note that in this example, the null hypothesis of exogeneity of linc is barely accepted
if testing at the 5% level of significance but clearly rejected if testing at the 10% level.

As explained in section 5.2, ivpredict presents estimation results for each reduced-
form equation that is fit. In this example, the only endogenous regressor is linc. This
is modeled by least squares, and predictions for linc are stored in the new variable
plinc. Here the naming convention for each new variable created at this stage is to
prepend the name of the endogenous regressor with the letter ‘p’.

The next step is to replace each endogenous regressor (linc, in this example) by its
linear predictor (plinc) and then obtain values for y

∧

i and Φ(y

∧

i/σ̂y⋆), which are stored
in mypredictxb and mypredictpr, respectively. Note that the ivprobit coefficient
estimates are the ones used by ivpredict to construct y

∧

i (or mypredictxb).

When constructing mypredictpr, ivpredict refits the model by (in this case, pro-
bit) maximum likelihood but now with plinc replacing linc in the list of regressors.
This procedure automatically adjusts the coefficient estimates for scaling by σ̂y⋆ . These
probit results are the second set appearing in table 4.
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Table 4. Output from example.do: ivpredict estimation results

. ivpredict mypredict probit ins linc : ($xlist2) retire sretire

Source SS df MS Number of obs = 3,197
F(12, 3184) = 188.99

Model 1173.12053 12 97.7600445 Prob > F = 0.0000
Residual 1647.03826 3,184 .517285885 R-squared = 0.4160

Adj R-squared = 0.4138
Total 2820.15879 3,196 .882402626 Root MSE = .71923

linc Coef. Std. Err. t P>|t| [95% Conf. Interval]

female -.0936494 .0297304 -3.15 0.002 -.151942 -.0353569
age .2669284 .0627794 4.25 0.000 .1438361 .3900206

age2 -.0019065 .0004648 -4.10 0.000 -.0028178 -.0009952
educyear .094801 .0043535 21.78 0.000 .0862651 .1033369
married .7918411 .0367275 21.56 0.000 .7198291 .8638531

hisp -.2372014 .0523874 -4.53 0.000 -.3399179 -.134485
white .2324672 .0347744 6.69 0.000 .1642847 .3006496

chronic -.0388345 .0100852 -3.85 0.000 -.0586086 -.0190604
adl -.0739895 .0173458 -4.27 0.000 -.1079995 -.0399795

hstatusg .1748137 .0338519 5.16 0.000 .10844 .2411875
retire -.0909581 .0288119 -3.16 0.002 -.1474499 -.0344663
sretire -.0443106 .0317252 -1.40 0.163 -.1065145 .0178932

_cons -7.702456 2.118657 -3.64 0.000 -11.85653 -3.548385

(option xb assumed; fitted values)

Iteration 0: log likelihood = -2139.7712
Iteration 1: log likelihood = -1989.887
Iteration 2: log likelihood = -1988.8213
Iteration 3: log likelihood = -1988.8206
Iteration 4: log likelihood = -1988.8206

Probit regression Number of obs = 3,206
LR chi2(11) = 301.90
Prob > chi2 = 0.0000

Log likelihood = -1988.8206 Pseudo R2 = 0.0705

ins Coef. Std. Err. z P>|z| [95% Conf. Interval]

plinc -.5086222 .5010422 -1.02 0.310 -1.490647 .4734024
female -.1540794 .0678164 -2.27 0.023 -.286997 -.0211618

age .3250768 .1683096 1.93 0.053 -.0048039 .6549576
age2 -.0024523 .0012331 -1.99 0.047 -.0048692 -.0000354

educyear .1255632 .0475677 2.64 0.008 .0323322 .2187942
married .7501984 .3865768 1.94 0.052 -.0074781 1.507875

hisp -.5781927 .1604455 -3.60 0.000 -.8926601 -.2637253
white .1547357 .1336158 1.16 0.247 -.1071465 .4166179

chronic .013837 .0270804 0.51 0.609 -.0392396 .0669136
adl -.1552079 .0501382 -3.10 0.002 -.2534769 -.0569388

hstatusg .2522909 .1073601 2.35 0.019 .0418689 .4627129
_cons -11.55901 5.208077 -2.22 0.026 -21.76666 -1.351369

Note the aforementioned vagary of ivpredict. Observe that the sample size used
to fit the probit model is the full 3,206 observations rather than the 3,197 used to fit
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the reduced-form model. This is because linc has been replaced by predictions of it
(namely, plinc). Therefore, losing nine observations because linc is undefined in those
cases is immaterial to plinc. That is, in the notation of section 2, provided that we
have observations on X ′

i and Z ′
i, we can produce forecast Ŷ ′

i regardless of whether or
not Y ′

i is well defined. This slight inconsistency is something that the user may wish to
ponder. If deemed a problem, then it can be addressed by simply dropping the offending
observations from the overall analysis before invoking ivpredict.

To further explore the practical implications of the different prediction methods,
we look at correlations between the pairs (ivins and mypredictxb) and (ivinspr and
mypredictpr). These are 0.6885 and 0.6704, respectively, which are not especially large.
This provides some prima facie evidence that getting the prediction model correct can
substantially impact the predictions obtained.

In closing, we emphasize that ivpredict is potentially useful for many linear index
models with one or more endogenous right-hand-side variables and not just for endoge-
nous probit estimation with one endogenous regressor. For example, ivpredict can be
used for linear, logit, tobit, or Poisson regression. When fitting a linear model using
two-stage least squares, one simply uses regress for cmd.

7 Concluding remarks

In linear index models with endogenous regressors, simply replacing parameters with
consistent estimators thereof does not necessarily yield consistent estimators of the ex-
pectations of interest. In section 3, we illustrate this phenomenon. Of course, the
developments we discuss in sections 2 and 3 are not new. For instance, equation (6)
[or (7)] provides a foundation for one form of the Hausman (1978) test for exogeneity,
which involves augmenting the structural equation of interest with reduced-form resid-
uals and then testing that the coefficients of these artificial regressors are jointly zero.
Similarly, Terza, Basu, and Rathouz (2008), and the references cited therein, explore
issues of estimation in probit models with endogenous regressors, among other things.
Another example of this phenomenon, that of the linear simultaneous-equations model,
is explored by Skeels and Taylor (2014).

In section 4, we explore how Stata, and some user-written extensions to Stata,
deal with prediction in probit models with endogenous regressors. The overwhelming
impression is that none of them address the problem particularly well. In light of this
assessment, we recommend that predict offer an additional option that provides yi

∧

rather than ŷi. Indeed, if this new option were available, then it makes sense for it to
impact the behavior of the pr option as well so that probability predictions are based
on (13) rather than Φ(ŷi). In section 5, we discuss a program that provides a slightly
less-elegant solution than that offered by the more-intelligent predict command in
Stata. As noted throughout the article, although the various types of predictions we
discuss here all have important uses, those that correspond to conditional expectations
are typically the easiest to interpret.
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