%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

THE STATA JOURNAL

Editors

H. JosepH NEWTON
Department of Statistics
Texas A&M University
College Station, Texas
editors@stata-journal.com

Associate Editors

CHRISTOPHER F. BAUM, Boston College

NATHANIEL BECK, New York University

RiNo BELLOCCO, Karolinska Institutet, Sweden, and
University of Milano-Bicocca, Italy

MAARTEN L. Buis, University of Konstanz, Germany

A. CoLIN CAMERON, University of California—Davis

MaRIO A. CLEVES, University of Arkansas for
Medical Sciences

WiLLiAM D. DUPONT, Vanderbilt University

PuiLip ENDER, University of California—Los Angeles

DaviD EpPSTEIN, Columbia University

ALLAN GREGORY, Queen’s University

JAMES HARDIN, University of South Carolina

BEN JANN, University of Bern, Switzerland

STEPHEN JENKINS, London School of Economics and
Political Science

ULRICH KOHLER, University of Potsdam, Germany

Stata Press Editorial Manager
LisA GILMORE

Nichoras J. Cox
Department of Geography
Durham University
Durham, UK
editors@stata-journal.com

FRAUKE KREUTER, Univ. of Maryland—College Park

PETER A. LACHENBRUCH, Oregon State University

JENS LAURITSEN, Odense University Hospital

STANLEY LEMEsSHOW, Ohio State University

J. ScorT LONG, Indiana University

ROGER NEWSON, Imperial College, London

AUSTIN NIcHOLS, Urban Institute, Washington DC

MARCELLO PAGANO, Harvard School of Public Health

SopPHIA RABE-HESKETH, Univ. of California—Berkeley

J. PaTRICK ROYSTON, MRC Clinical Trials Unit,
London

PuiLlP RYAN, University of Adelaide

MARK E. SCHAFFER, Heriot-Watt Univ., Edinburgh

JEROEN WEESIE, Utrecht University

IAN WHITE, MRC Biostatistics Unit, Cambridge

NicuorAs J. G. WINTER, University of Virginia

JEFFREY WOOLDRIDGE, Michigan State University

Stata Press Copy Editors
DaviD CULWELL, SHELBI SEINER, and DEIRDRE SKAGGS

The Stata Journal publishes reviewed papers together with shorter notes or comments, regular columns, book
reviews, and other material of interest to Stata users. Examples of the types of papers include 1) expository
papers that link the use of Stata commands or programs to associated principles, such as those that will serve
as tutorials for users first encountering a new field of statistics or a major new technique; 2) papers that go
“beyond the Stata manual” in explaining key features or uses of Stata that are of interest to intermediate
or advanced users of Stata; 3) papers that discuss new commands or Stata programs of interest either to
a wide spectrum of users (e.g., in data management or graphics) or to some large segment of Stata users
(e.g., in survey statistics, survival analysis, panel analysis, or limited dependent variable modeling); 4) papers
analyzing the statistical properties of new or existing estimators and tests in Stata; 5) papers that could
be of interest or usefulness to researchers, especially in fields that are of practical importance but are not
often included in texts or other journals, such as the use of Stata in managing datasets, especially large
datasets, with advice from hard-won experience; and 6) papers of interest to those who teach, including Stata
with topics such as extended examples of techniques and interpretation of results, simulations of statistical
concepts, and overviews of subject areas.

The Stata Journal is indexed and abstracted by CompuMath Citation Index, Current Contents/Social and Behav-
ioral Sciences, RePEc: Research Papers in Economics, Science Citation Index Expanded (also known as SciSearch),
Scopus, and Social Sciences Citation Index.

For more information on the Stata Journal, including information for authors, see the webpage

http://www.stata-journal.com

http://www.stata-journal.com

Subscriptions are available from StataCorp, 4905 Lakeway Drive, College Station, Texas 77845, telephone
979-696-4600 or 800-STATA-PC, fax 979-696-4601, or online at

http://www.stata.com/bookstore/sj.html

Subscription rates listed below include both a printed and an electronic copy unless otherwise mentioned.

U.S. and Canada Elsewhere

Printed & electronic Printed & electronic

1-year subscription $115 1-year subscription $145
2-year subscription $210 2-year subscription $270
3-year subscription $285 3-year subscription $375
1-year student subscription $ 85 1-year student subscription $115
1-year institutional subscription $345 1-year institutional subscription $375
2-year institutional subscription $625 2-year institutional subscription $685
3-year institutional subscription $875 3-year institutional subscription $965
Electronic only Electronic only

1-year subscription $ 85 1-year subscription $ 85
2-year subscription $155 2-year subscription $155
3-year subscription $215 3-year subscription $215
1-year student subscription $ 55 1-year student subscription $ 55

Back issues of the Stata Journal may be ordered online at

http://www.stata.com/bookstore/sjj.html

Individual articles three or more years old may be accessed online without charge. More recent articles may
be ordered online.

http://www.stata-journal.com/archives.html

The Stata Journal is published quarterly by the Stata Press, College Station, Texas, USA.

Address changes should be sent to the Stata Journal, StataCorp, 4905 Lakeway Drive, College Station, TX
77845, USA, or emailed to sj@stata.com.

[0

t’? ,ﬁ\; Copyright © 2015 by StataCorp LP
B a

Press

Copyright Statement: The Stata Journal and the contents of the supporting files (programs, datasets, and
help files) are copyright © by StataCorp LP. The contents of the supporting files (programs, datasets, and
help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy
or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

The articles appearing in the Stata Journal may be copied or reproduced as printed copies, in whole or in part,
as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

Written permission must be obtained from StataCorp if you wish to make electronic copies of the insertions.
This precludes placing electronic copies of the Stata Journal, in whole or in part, on publicly accessible websites,
fileservers, or other locations where the copy may be accessed by anyone other than the subscriber.

Users of any of the software, ideas, data, or other materials published in the Stata Journal or the supporting
files understand that such use is made without warranty of any kind, by either the Stata Journal, the author,
or StataCorp. In particular, there is no warranty of fitness of purpose or merchantability, nor for special,
incidental, or consequential damages such as loss of profits. The purpose of the Stata Journal is to promote
free communication among Stata users.

The Stata Journal (ISSN 1536-867X) is a publication of Stata Press. Stata, STATQ, Stata Press, Mata, MaTta,
and NetCourse are registered trademarks of StataCorp LP.

http://www.stata.com/bookstore/sj.html
http://www.stata.com/bookstore/sjj.html
http://www.stata-journal.com/archives.html

The Stata Journal (2015)
15, Number 3, pp. 607-626

precombine: A command to examine n > 2
datasets before combining

Mark D. Chatfield
Menzies School of Health Research
Charles Darwin University

Darwin, Australia
Mark.Chatfield@menzies.edu.au

Abstract. In this article, I present a new command, precombine, that alerts
the user to, and provides assurance concerning, some problems that can occur
when multiple Stata datasets are merged and appended. It describes variables
that are common to multiple datasets as well as variables that are unique to one
dataset. Where value labels are attached to variables, it checks whether code sets
are identical across datasets. Summary statistics for values of all variables can also
be listed and left in memory along with the descriptions of each variable of each
dataset.

Keywords: dm0081, precombine, data management, merge, append, joinby, cross,
describe, uselabel, key, overlapping variables, common variables, same-named vari-
ables, label, value labels, code sets, codings, cfvars, vlc, cf, tabstat

1 Introduction

In his excellent book Data Management Using Stata: A Practical Handbook, Mitchell
(2010, 215) writes, “There are several problems that can arise when merging datasets.
Some problems produce no error messages and some produce innocent-looking messages.
Only upon deeper inspection are these underlying problems revealed. Knowing about
these problems can help you anticipate and avoid them”. Mitchell’s (2010) book contains
a chapter describing how to combine datasets using Stata. It covers problems with merge
and append that can arise when combining datasets, how the problems can be detected,
and how to resolve them. Problems can occur when merging datasets that have variables
with the same names (common variables), when appending datasets that have variables
that are not common, when storage types or variable labels differ for common variables,
and when value labels differ between datasets.

The precombine command alerts the user to, and provides assurance concerning,
some problems that can occur when multiple Stata datasets are combined. It describes
variables that are common to multiple datasets as well as variables that are unique to
one dataset. Where value labels are attached to variables, the command checks whether
code sets are identical across datasets.

Problems can also occur in relation to the values of variables that are common to
multiple datasets. For example, a merge results in unmatched observations because of
a data entry error. A program cannot be expected to detect problems of this nature.

© 2015 StataCorp LP dm0081

608 precombine

That said, precombine can summarize the values of each variable of each dataset, which
can help the user to get a quick feel for the data before combining the datasets.

2 Background

2.1 Common variables
Merging

merge is used to add new variables from a second dataset (the using dataset) to the
dataset in Stata’s memory (the master dataset) by joining observations through match-
ing one or more specified variables (key variables). Before merging two datasets, the
user should be familiar with the contents of each dataset and how the datasets relate to
each other. The key variables must have the same variable names in both the master
and using datasets before they can be used for merging. Other variables may also be
common to the datasets (overlapping variables). For instance, say the variables in the
master and using datasets are

e master: id, seq, x1, x2

e using: id, bar, x1, x2

and id is the key variable. Here the overlapping variables are x1 and x2.

Before proceeding with a merge, the user should identify the common variables
between the datasets. If there are any overlapping variables, the user can choose how
to handle them by choosing, for each overlapping variable, one of the following four
options:

1. Retain the overlapping variable (this is the default option). The values of over-
lapping variables will be combined in a way that depends on whether the user
performs a “standard merge” (this is the default option) or an “update merge”.

a. In a standard merge, the data in the master dataset are the authority and
are inviolable. Matched observations will contain values of the overlapping
variables from the master dataset, while unmatched observations will contain
values from the using dataset.

b. An update merge differs from a standard merge in that matched observations
will update missing values from the master dataset with values from the using
dataset. Optionally, where there are conflicting nonmissing values, values
from the using dataset can also take precedence over values from the master
dataset. (See [D] merge for examples.)

2. Plan to merge on the overlapping variables as well as the key variables. Gould
(2011) recommends merging on all overlapping variables that are expected to be

M. D. Chatfield 609

constant within the key variables—as well as on the key variables—to prevent
wrong observations from being combined.

3. Rename the overlapping variable in the master and using datasets before merging
(this would be a popular option). This option obviously makes sense if the meaning
of the variable differs between datasets. It also makes sense when the meaning
of the variable is the same, but the user wishes to compare the contents of the
overlapping variable. Renaming the variable in both datasets (using previously
unused variable names) is encouraged to prevent possible confusion of the origin
(and hence the interpretation) of the variables.

4. Drop the overlapping variable from one of the datasets before merging. This
option risks possible confusion of the origin (and hence the interpretation) unless
the variable has a new name in the combined dataset.

If the two datasets in the above example are merged using any of options 1-3 for
x1 and x2, the resulting merged dataset will contain variables named id, seq, x1, x2,
and bar and (optionally) a new variable to mark (merge) results (for example, _merge).
Except for when the storage type of overlapping variables differs between datasets, merge
currently provides no clues as to what the overlapping variables are. The user may miss
some existing overlapping variables and not be aware of exactly how the overlapping
variables have mixed. This is quite plausible, for example, when merging datasets that
contain many variables.

Appending

append is used to add new observations from a dataset or datasets to the master dataset.
Usually, all variable names need to be common between the datasets. Variable names
that are unique to a dataset may need to be renamed so that values of these variables
are combined with the values of corresponding variables in the other datasets.

Storage type

By default, merge and append issue error messages when there are mismatches in the
generic storage type of common variables (that is, when a variable is a string in one
dataset and numeric in another). If the force option is specified (and there are no such
generic storage type mismatches in the key variables for merge), Stata issues a warning
message before combining the data and treats values of these common variables in the
using dataset as if they were missing.

If there are conflicts in numeric storage types of common variables (Stata has five
numeric storage types), the storage type that is more precise will be used regardless of
whether this storage type was in the master or using dataset. For string variables of
different lengths, the longer string storage type will prevail. Stata will issue a warning
if the more precise numeric or longer string storage type is in the using dataset; Stata
will not do so if this is the case for variables in the master dataset.

610 precombine

Variable labels

When combining datasets, Stata will keep the variable labels for common variables in
the master dataset. Stata will not inform you of differences in variable labels of common
variables.

The user-written command cfvars (Cox 2011) identifies variable names that are
common to two datasets (if any) and variable names that are unique for each dataset.
precombine not only identifies these variables but also describes each variable’s storage
type, variable label, and associated value label (if any) as recorded by Stata’s describe
command. precombine also works for more than two datasets.

2.2 Value labels

A value label comprises a value-label name and an associated code set, and it is attached
to one or more variables in a dataset.

Where a value-label name is used in multiple datasets and the multiple datasets are
combined, Stata will issue a warning message—for example, (label yesnolbl already
defined) —to alert the user that the code set associated with the value-label name in
the master dataset will be the code set used in the combined dataset. At this point,
the user should verify that the code sets are the same between datasets. This can be a
somewhat laborious task, and a user may choose not to bother checking this and instead
proceed assuming there are no problems.

Suppose now that a common variable is labeled with valuelabell (Iblnamel+ codesetl)
in the master dataset and valuelabel2 (Iblname2+ codeset2) in the using dataset. When
the datasets are combined, no warning is currently produced, and the common variable
is labeled with wvaluelabell. This could lead to some incorrectly labeled data if codeset!
and codeset2 are not compatible and to some data no longer being labeled if codeset2
is an expansion of codesetl. The user should check for this potential problem before
combining labeled datasets.

The user-written command vlec (Nichols 2008) enables, for one or more variables, a
quick comparison of the code set used in a specified dataset with the code sets attached
to the value-label name if also used in another dataset. precombine is recommended
over vlc because it compares the code sets for all value-label names in the datasets,
it works in the previously mentioned [blnameI-versus-lblname2 scenario, and it makes
comparisons easy by specifying where there are differences in the code sets (if there are

any).
2.3 Values of variables

Users usually look at, and perhaps summarize, the values of variables in each dataset
to get a feel for the data before combining the datasets. Stata’s codebook command
is a very helpful tool for this. codebook produces a summary of each variable’s values
that differs according to whether a variable is string or numeric (although the number
of missing values and the number of unique nonmissing values are reported for both). If

M. D. Chatfield 611

the variable is string, example values are listed. If the variable is numeric, codebook has
a rule for deciding whether to produce summary statistics (as would be desirable for a
continuous variable) or a frequency tabulation (which is nice when data are categorical
or discrete) when there are not many values. To simplify quick comparisons of common
variables between datasets, precombine can output some of the summaries (such as
summary statistics that are returned by Stata’s summarize command) conveniently on
a separate line for each variable of each dataset.

3 The precombine command
3.1 Syntax

precombine [ﬁlename] [ﬁlenam@] [, currentdataset uniquevars

describe (variabledetaillist) summarize (statnamelist) clear}

You may enclose filename in double quotes and must do so if filename contains blanks
or other special characters.

3.2 Options

currentdataset examines the dataset currently in memory together with the specified
filenames.

uniquevars lists variables that appear in one dataset.

describe (variabledetaillist) lists details of variables that appear in multiple datasets.
When uniquevars is specified, the option lists details of variables that appear in
one dataset. Most of the details come from Stata’s describe, replace command.
variabledetaillist is a sequence of variabledetails separated by spaces.

variabledetail Description

type storage type

format display format

vallabname value-label name

varlab variable label

ndta number of datasets that include variable

isnumeric whether numeric or string (this can be inferred from type)
position variable number in dataset

1. It is difficult to list examples of a string variable and tabulate frequency distributions of a numeric
variable on one line of output, so precombine does not do this. vlc can tabulate, and save as
a dataset, the frequency distribution of coded numerical variables provided they appear in every
dataset. A more general method, however, would be to append datasets and, after one studies
output from precombine and takes any necessary action, to generate a variable to distinguish the
datasets the observations came from if need be and to then create two-way tables of variables with
the dataset name.

612 precombine

summarize (statnamelist) lists summary statistics of variables that appear in multiple
datasets. When uniquevars is specified, the option lists summary statistics of vari-
ables that appear in one dataset. Most of the summary statistics come from Stata’s
summarize command for numeric variables. statnamelist is a sequence of statnames
separated by spaces.

statname Description

nmiss number of observations with missing values
(also works for string variables)

nobs number of observations with nonmissing values
(also works for string variables)

nuniq number of unique values
(also works for string variables)

mean mean

sd standard deviation

min minimum

max maximuim

pl 1st percentile

p5 5th percentile

p10 10th percentile

p25 25th percentile

p50 50th percentile

p75 75th percentile

p90 90th percentile

p95 95th percentile

P99 99th percentile

sum sum of variable

skewness skewness
kurtosis kurtosis

clear specifies that the data in memory be cleared and replaced with all possible descrip-
tions and summary statistics for each variable in each dataset, even if the original
data have not been saved to disk.

3.3 Description

precombine produces reports to assist users in safely merging and appending datasets.
If no datasets have been specified, all datasets in the current working directory are
examined. The following reports are produced:

e For variables that appear in multiple datasets,

— alist of the datasets that the variables appear in (optionally including details
and summary statistics of the variables)

M. D. Chatfield 613

— where the variables are numeric in one dataset and string in another, a list
of the storage types (Stata will issue an error or a warning message if you
attempt to merge and append these datasets)

— where a value label is attached, a list of code sets if they are not identical

e For variables that appear in one dataset (and when the uniquevars option is
specified),

— alist of the variables and the dataset that they appear in (optionally including
details and summary statistics of the variables)

e Where the same value-label names are used in multiple datasets,

— a list of the datasets that the value-label names are used in (Stata will issue
a warning message when you merge and append these datasets)

— confirmation that the associated code sets are identical between datasets or
a list of code sets when not identical

The above code sets are the sets of value labels associated with a variable. If a label
is too long (for example, greater than 2,045 characters; see [D] labelbook), it may be
truncated so that it fits in a string variable. Note that this definition completely ignores
the value-label name. In addition to these reports, all details and summary statistics
about each variable of each dataset can be left in memory.

4 Examples

Example 1

I construct the following example to illustrate every reporting feature of precombine.
Suppose there are two Stata datasets: _examination.dta and _medical_records.dta.
To show how precombine improves on the status quo, let’s also suppose that there
are two Stata users: Catherine (who has downloaded precombine) and Adam (who
is not aware of precombine). Both users expect that a child’s ID uniquely identifies
observations in each dataset, and both users wish to merge the two datasets to achieve
the same analysis objectives. In this example, Catherine and Adam each can uncover
the same problems (though their approaches differ), and their response to the problem
they both uncover happens to be identical (despite there being other valid responses).
The users are followed up with until they have merged the datasets and determined
whether they can safely ignore any warning messages given. Of course, the users would
proceed to consider other features of the merge—such as the merge results—but this
is not the focus of this article. For clarity, the (labeled and formatted) values in each
dataset relating to the first child are listed below. It is very likely that the users would
look at and perhaps summarize (for example, using codebook) the values of variables
in each dataset to get a feel for the data before merging the datasets.

614 precombine

. use _examination, clear

list if id==1, noobs abbreviate(12)

id sex exam_anaemic exam_date region

1 Female Not sure 04apr2014 Darwin

. use _medical_records, clear

list if id==1, noobs abbreviate(12)

id sex hx_anaemia hx_date region

1 F Yes 01jan2013 Alice Springs

Adam begins by examining each dataset and studying the output.

. use _examination, clear
. describe

Contains data from _examination.dta

obs: 533

vars: 5 21 Nov 2014 15:35

size: 9,594

storage display value

variable name type format label variable label
id int %9.0g Child ID
sex float %9.0g sexlbl Sex of child
exam_anaemic float %9.0g yesnolbl Child anaemic on examination
exam_date float %td Examination date
region float %9.0g darwinlbl

Region where exam took place

Sorted by: id

label list
sexlbl:
1 Male
2 Female
yesnolbl:
0 No
1 Yes

9 Not sure
darwinlbl:
1 Darwin

M. D. Chatfield

. use _medical_records, clear

. describe

Contains data from _medical_records.dta

615

obs: 524

vars: 5 21 Nov 2014 15:35

size: 7,860

storage display value

variable name type format label variable label

id int %9.0g Child ID

sex strl %9s Sex of child
hx_anaemia float %9.0g yesnolbl Ever diagnosed as anaemic?
hx_date float %td Date of 1st anaemia diagnosis
region float %13.0g regionlbl

Region where first anaemic

Sorted by: id

. label list
regionlbl:

1 Darwin

2 Alice Springs
yesnolbl:

0 No

1 Yes

Meanwhile, Catherine begins by using precombine. Immediately, six reports are pro-
duced. (Note that some uninteresting output has been suppressed. Note also that the
reports appear nicer when the Results window is stretched wide.)

. precombine _examination _medical_records,
> describe(type format vallabname varlab) uniquevars

Reports relevant to the combining of the following datasets:
[vars: 5 obs: 533] _examination
[vars: 5 obs: 524] _medical_records

Variables that appear in multiple datasets:

variable dataset type | format | vallabname
varlab
id _examination int %9.0g
Child ID
id | _medical_records int %9.0g
Child ID
region _examination | float %9.0g darwinlbl
Region where exam took place

616

region | _medical_records | float | %13.0g regionlbl
Region where first anaemic
sex _examination float %Q.Og sexlbl
Sex of child
sex _medical_records stril %9s
Sex of child

precombine

First report: Catherine sees that if she merges on id, she will have two overlapping
variables, region and sex. The variable labels associated with region indicate that the
meaning of the variable region differs between datasets, and Catherine decides to re-
name the variable in each dataset before merging so that it is no longer an overlapping
variable. Catherine expects the information concerning the sex of the child to be con-
stant within id, and she decides to merge on both id and sex. Catherine sees that while
id is stored and labeled the same in the datasets, this is not the case for sex. sex is nu-
meric and coded in _examination.dta but stored as a string in medical _records.dta.
She decides to change the storage type of sex in _medical _records.dta to match that
of sex in _examination.dta.

When merging/appending, expect an error/warning message
for the following variable(s) being a string in one dataset and numeric in

another:
variable dataset type
sex _examination float
sex _medical_records stril

Second report: Because Catherine specified that she wanted the storage type to be
listed for variables, she learns nothing new with this report.

Differences exist in the code sets* for these variables between datasets:
(*The set of {value, label} ignoring any differences in vallabname)

variable dataset value label vallabname
region _examination 1 Darwin darwinlbl
region _medical_records 1 Darwin regionlbl
region _medical_records 2 Alice Springs regionlbl

Third report: Catherine learns that differences exist in the code sets for region
between datasets (and the value-label names are different). In this example, Catherine
can ignore this because she has already decided to rename region in each dataset so

M. D. Chatfield 617

that it is no longer an overlapping variable. (In some situations, this particular report
would be useful to show that a common variable has different value-label names and
code sets between datasets.)

Variables that appear in only one dataset:

variable dataset type format vallabname
varlab
exam_anaemic _examination float %9.0g yesnolbl

Child anaemic on examination

exam_date _examination float %td

Examination date

hx_anaemia | _medical_records float %9.0g yesnolbl

Ever diagnosed as anaemic?

hx_date _medical_records float J%td

Date of 1st anaemia diagnosis

Fourth report: Catherine learns the names of variables that are unique to each
dataset as well as the other variable details she specifically asked for, such as the asso-
ciated value-label names. In this example, this helps Catherine when renaming region
to avoid existing variable names and similarly to avoid changing the name of an exist-
ing value-label name to another that already exists. Catherine can also now see which
value-label names are associated with which variables. (When one merges in general,
this report may not be of much help, especially if values are not labeled.)

When the following datasets are combined, expect warning message(s) of the form
(label <vallabname> already defined)

vallabname dataset
yesnolbl _examination
yesnolbl _medical_records

Fifth report: Catherine learns that when the datasets are combined, she can ex-
pect to see the warning message: (label yesnolbl already defined). This warn-
ing means that a value label named yesnolbl is associated with some variables in
_examination.dta (exam_anaemic, here) and that a value label also named yesnolbl
is associated with some variables in medical_records.dta (hx_anaemia, here). The
warning informs the user that the value labels in each dataset may differ.

618 precombine

ignore the warning message(s) for the following vallabnames AT YOUR PERIL
as differences in the code sets exist:

vallabname dataset value label
yesnolbl _examination 0 No
yesnolbl _examination 1 Yes
yesnolbl _examination 9 Not sure
yesnolbl _medical_records 0 No
yesnolbl _medical_records 1 Yes

Sixth report: Catherine learns that there are differences in the code sets associated
with yesnolbl in each dataset. She can see from the list that the value 9 is labeled
Not sure in _examination.dta. This difference may not be that important in this
example, but Catherine decides to rename the value-label name in _examination.dta
before merging.

After investigating how sex is coded in _examination.dta and identifying what
(string) values sex can take in _medical_records.dta (not shown), Catherine follows
through with her previously determined changes.

. use _medical_records, clear
. rename region hx_region

. generate sex_tmp = 1 if sex=="M"
(260 missing values generated)

. replace sex_tmp = 2 if sex=="F"
(260 real changes made)

. drop sex

. rename sex_tmp sex

. label define sexlbl 1 "Male" 2 "Female"
. label values sex sexlbl

. label variable sex "Sex of child"

. save medical_records2, replace
(note: file medical_records2.dta not found)
file medical_records2.dta saved

. use _examination.dta, clear

. rename region exam_region

. label copy yesnolbl yesnounsurelbl
. label drop yesnolbl

. label values exam_anaemic yesnounsurelbl

She makes changes to medical _records.dta and saves it as a new dataset called
medical records2.dta. She then makes changes to _examination.dta and, believing
she may now be ready to merge (1:1 on id and sex using medical_records2.dta),
uses the precombine command again to verify that things are as she anticipates they
will be and to help her decide whether to ignore warning messages of the form (label
<vallabname> already defined).

M. D. Chatfield

. precombine medical_records2, currentdataset

> describe(type format vallabname varlab) uniquevars

Reports relevant to the combining of the following datasets:

[vars: 5
[vars: 5

obs: 533]

<current>
obs: 524] medical_records2

Variables that appear in multiple datasets:

619

variable dataset type format vallabname varlab
id <current> int %9.0g Child ID
id medical_records2 int %9.0g Child ID
sex <current> float %9.0g sexlbl Sex of child
sex medical_records2 float %9.0g sexlbl Sex of child
Variables that appear in only one dataset:
variable dataset type format vallabname
varlab
exam_anaemic <current> | float %9.0g | yesnounsurelbl

Child anaemic on examination

exam_date

<current> float

Jhtd

Examination date

exam_region <current> float %9.0g darwinlbl
Region where exam took place
hx_anaemia ‘ medical_records2 ‘ float ‘ %9.0g ‘ yesnolbl
Ever diagnosed as anaemic?
hx_date ‘ medical_records2 ‘ float ‘ %td ‘
Date of 1st anaemia diagnosis
hx_region | medical_records2 float | %13.0g regionlbl

Region where first anaemic

620

precombine

When the following datasets are combined, expect warning message(s) of the form
(label <vallabname> already defined)

vallabname dataset
sexlbl <current>
sexlbl medical_records2

. however you CAN safely ignore the warning message(s)
as the code sets are consistent between datasets

Things are just as she hoped, and she now performs the merge.

As anticipated

by precombine, the warning message (label sexlbl already defined) appears, but
Catherine knows she can safely ignore it because she has been told by precombine that
the code sets are consistent between datasets (confirming that she did indeed define
sex1bl on one dataset so that it matched the definition in the other). Catherine finishes
with a good merged dataset.

. merge 1:1 id sex using medical_records2
(label sexlbl already defined)

(output omitted)

. drop _merge

. describe

Contains data from _examination.dta

obs: 533
vars: 8 21 Nov 2014 15:35
size: 15,990
storage display value
variable name type format label variable label
id int %9.0g Child ID
sex float %9.0g sexlbl Sex of child
exam_anaemic float %9.0g yesnounsurelbl
Child anaemic on examination
exam_date float %td Examination date
exam_region float %9.0g darwinlbl
Region where exam took place
hx_anaemia float %9.0g yesnolbl Ever diagnosed as anaemic?
hx_date float ’td Date of 1st anaemia diagnosis
hx_region float %13.0g regionlbl

Region where first anaemic

(output omitted)
. list if id==1, noobs abbreviate(12)

01jan2013

id sex exam_anaemic exam_date exam_region hx_anaemia
1 Female Not sure 04apr2014 Darwin
hx_date hx_region

Alice Springs

M. D. Chatfield 621

Adam finished studying his list of variables and value labels in each dataset. He sees
that if he merges on id, sex will be an overlapping variable. He expects the information
concerning the sex of the child to be constant within id, and he decides to merge on
both id and sex. Adam also sees that while id is stored and labeled the same in both
datasets, this is not the case for sex. sex is numeric and coded in _examination.dta,
but stored as a string in _-medical _records.dta. He decides to change the storage type
of sex in _medical records.dta to match that of sex in _examination.dta. However,
Adam did not see that region is also an overlapping variable or that there are differences
in the code sets for yesnolbl. After investigating what (string) values sex can take in
medical_records.dta (not shown), he proceeds to merge the datasets as follows:

. use _medical_records, clear

. generate sex_tmp = 1 if sex=="M"
(260 missing values generated)

. replace sex_tmp = 2 if sex=="F"
(260 real changes made)

. drop sex

. rename sex_tmp sex

. label define sexlbl 1 "Male" 2 "Female"
. label values sex sexlbl

. label variable sex "Sex of child"

. merge 1:1 id sex using _examination
(label sexlbl already defined)
(label yesnolbl already defined)

(output omitted)

. drop _merge

Adam gets two warning messages concerning value labels, and he considers double
checking that the code sets are consistent between datasets. However, because he defined
sex1bl on one dataset so that it would match the definition in the other, he trusts that
he did this correctly and ignores the warning message. He also thinks he has already
checked that the code sets associated with yesnolbl are identical. Adam finishes with
a different merged dataset. He no longer has information on the region where the
exam took place (because a variable called region exists in medical_records.dta—
this variable describes the region where the child was first anemic). He also does not
have the label associated with the code 9 for the variable exam_anaemic: the code set
associated with yesnolbl from the master dataset (_medical_records.dta) was used,
and this code set was not exactly the same as the code set associated with yesnolbl
from the using dataset (_examination.dta).

. list if id==1, noobs abbreviate(12)

id | hx_anaemia hx_date region sex | exam_anaemic
1 Yes | 01jan2013 | Alice Springs | Female 9
exam_date

04apr2014

622 precombine

Example 2

A user might like to examine a summary of the values of certain variables between
datasets. precombine, clear can create a dataset of summary statistics of each vari-
able (along with descriptives such as variable storage type) from each dataset, and then
the user can select what details he or she would like to see, on which variables, in what
format, sorted as specified.

. precombine _examination _medical_records, clear
(output omitted)

. list variable dataset type nmiss nobs nuniq mean min max, sepby(variable) noobs

variable dataset type | nmiss | nobs | nuniq mean
id _examination int 0 533 533 267
min max
1 533
variable dataset type | nmiss | nobs | nuniq mean
id | _medical_records int 0 524 524 | 270.7271
min max
1 533
variable dataset type | nmiss | nobs | nuniq mean
region _examination | float 0 533 1 1
min max
1 1
variable dataset type | nmiss | nobs | nuniq mean
region | _medical_records float 0 524 2 1.080153
min max
1 2
variable dataset type | nmiss | nobs | nuniq mean
sex _examination | float 0 533 2 1.497186
min max
1 2
variable dataset type | nmiss | nobs | nuniq mean
sex | _medical_records stril 0 524 2
min max

M. D. Chatfield 623

variable dataset type nmiss nobs nuniq mean
exam_anaemic _examination | float 0 533 3 1.20075
min max
0 9
variable dataset type nmiss nobs nuniq mean
exam_date _examination | float 0 533 2 19848.85
min max
19817 19899
variable dataset type nmiss nobs nuniq mean
hx_anaemia _medical_records float 0 524 2 .25
min max
0 1
variable dataset type nmiss nobs nuniq mean
hx_date _medical_records float 410 114 104 19390.46
min max
19004 19689

. format min max %td

. list variable dataset nmiss nobs nuniq min max if regexm(variable, "date")==1,
> sepby(variable) noobs

variable dataset nmiss nobs nuniq min
exam_date _examination 0 533 2 04apr2014
max
25jun2014
variable dataset nmiss nobs nuniq min
hx_date _medical_records 410 114 104 12jan2012
max
27nov2013
Example 3

When one prepares to append datasets, precombine with the uniquevars option can
be helpful. In this example, the command ensures that the datasets will be appended
nicely—all variables appear in all datasets. Summary statistics can be listed at the
same time.

624

. precombine http://www.stata-press.com/data/r14/capop
> http://wuw.stata-press.com/data/r14/ilpop
> http://wuw.stata-press.com/data/r14/txpop, uniquevars describe(type)

> summarize(nmiss min max)

Reports relevant
obs: 3]
obs: 3]
obs: 3]

[vars: 2
[vars: 2
[vars: 2

to the combining of the following datasets:

precombine

http://www.stata-press.com/data/r14/capop
http://www.stata-press.com/data/r14/ilpop
http://www.stata-press.com/data/r14/txpop

Variables that appear in multiple datasets:

variable

dataset

type

nmiss

min

county

http://www.

stata-press.com/data/r14/capop

stril

county

http://www.

stata-press.com/data/r14/ilpop

str7

county

http://www.

stata-press.com/data/r14/txpop

str7

pop

http://www.

stata-press.com/data/r14/capop

long

798364

9878554

pop

http://www.

stata-press.com/data/r14/ilpop

long

103729

‘ 5285107

pop

http://www.

stata-press.com/data/r14/txpop ‘

long

149797

‘ 4011475

There are no variables that appear in only one dataset,
i.e. every variable appears in multiple datasets.

. use http://www.stata-press.com/data/r14/capop, clear

. append using http://www.stata-press.com/data/r14/ilpop
> http://www.stata-press.com/data/r14/txpop

M. D. Chatfield 625

Example 4

precombine can clarify how more than two datasets relate to one another and can
indicate what unwanted overlapping variables exist. It can automatically look at all
Stata datasets in a folder.

. cd "M:\Respiratory Study\Tables imported from database into Stata"

. precombine, describe(type format vallabname varlab)

5 Concluding remarks

precombine is a new command that enables users to examine multiple Stata datasets be-
fore combining them. It describes variables common to multiple datasets as well as vari-
ables unique to one dataset. Where value labels are attached to variables, precombine
checks whether code sets are identical across datasets. It can also help users to get a
quick feel for the data by listing some summary statistics for the values of variables.

While precombine was written to alert the user to, and provide assurance concern-
ing, some problems that can occur when multiple datasets are merged and appended,
precombine can also help when a user is interested in the distribution of certain vari-
ables in various datasets (whether the user wishes to combine the datasets). Users can
use the command with the clear option to summarize the distribution of values of
some (especially continuous) variables, to examine amounts of missing data, or to sim-
ply describe aspects of the variables (for example, storage type) over multiple datasets.
The names of all variables (and the datasets they occur in) will then be known (and
searchable), and summary statistics for a specified subset of variables can be seen by
issuing another Stata command (for example, browse if). Of course, other approaches
can also help in this more general setting (for example, using the cf command when
there are two nearly identical datasets).

6 Acknowledgments

I am grateful for suggestions on drafts of the article from Matthew Stevens and Michael
Binks (Menzies), Suzanna Vidmar (Murdoch Children’s Research Institute, Australia),
and an anonymous reviewer who also inspired me to add the summarize and clear
options to the command.

626 precombine

7 References

Cox, N. J. 2011. cfvars: Stata module to compare variable name lists in two data sets.
Statistical Software Components S457004, Department of Economics, Boston College.
https://ideas.repec.org/c/boc/bocode/s457004.html.

Gould, W. 2011. Merging data, part 1: Merges gone bad. The Stata Blog:
Not Elsewhere Classified. http://blog.stata.com/2011/04/18/merging-data-part-1-
merges-gone-bad/.

Mitchell, M. N. 2010. Data Management Using Stata: A Practical Handbook. College
Station, TX: Stata Press.

Nichols, A. 2008. vlc: Stata module to compare value labels across datasets. Sta-
tistical Software Components S456907, Department of Economics, Boston College.
https://ideas.repec.org/c/boc/bocode/s456907.html.

About the author

Mark Chatfield is a senior biostatistician and is Head of Biostatistics at Menzies School of
Health Research, Charles Darwin University. He has been a Stata user for 13 years.

