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Efficiency analysis under uncertainty:
a simulation study*

Sriram Shankar†

We model production technology in a state-contingent framework assuming that the
firms maximise ex ante their preference function subject to stochastic technology
constraint; in other words, firms are assumed to act rationally. We show that rational
producers who face the same stochastic technology can make significantly different
production choices. Further, we develop an econometric methodology to estimate the
risk-neutral probabilities, efficiency scores and the parameters of stochastic technology
when there are two states of nature and only one of which is observed. Finally, we
simulate noiseless data based on our state-contingent specification of technology. Our
state-contingent estimator recovers technology parameters and other economic
quantities of interest without any error. But, when we apply conventional efficiency
estimators to the simulated data, we obtain biased estimates of technical efficiency.

Key words: data envelopment analysis, risk-neutral, state-contingent, stochastic
frontier analysis.

1. Introduction

The main difficulty in identifying changes in efficiency is to be able to
differentiate between real changes in efficiency and changes due to stochastic
shocks, such as interruptions in production due to natural calamity such as
drought or flood. In existing empirical work, these two sources of variation
cannot be separated out without making highly restrictive distributional
assumptions (Bhattacharyya et al.1995).Amajor shortcomingof conventional
(see Just and Pope 1978; Love and Buccola 1999; Kumbhakar 2002) efficiency
analysis is that it does not explicitly take into account the substitutability of
inputs (and the outputs) between the potential states of nature. This
shortcoming can be overcome by modelling uncertainty in a state-contingent
framework. The main theory behind state-contingent production has been
explained in a series of papers (Chambers and Quiggin 1998, 2002; Quiggin
and Chambers 2006) and a monograph by Chambers and Quiggin (2000).
O’Donnell and Griffiths (2006) econometrically estimate production fron-

tiers of rice farmers in the Philippines in a state-contingent framework. They
find that around three-quarters of average estimated output shortfalls were due
to unfavourable seasonal conditions and only one-quarter to inefficiency.
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Stochastic frontier approaches, on the other hand, suggest what would seem to
be unreasonably high levels of inefficiency. However, a limitation of their
approach is that they assume the technology tobeoutput cubicle, thereby ruling
out substitution of inputs between the various states of nature. This limitation
has been overcome by Nauges et al. (2011), who estimate a technology that is
state-general in nature.Using farmdata forFinland, they estimate state-general
specification of technology that permits substitutability between state-contin-
gent outputs. The estimated technical efficiency scores using their model were
higher than those estimated using conventional frontier models.
In efficiency studies, the efficient frontier is generally specified by either a

primal or dual representation of a nonstochastic technology, even though
most production technologies are stochastic in nature. Efficiency is then
measured relative to an estimate of this deterministic frontier. Data
envelopment analysis (DEA1) and stochastic frontier (SFA2) analysis are
two most commonly used estimation techniques to measure efficiency.
O’Donnell et al. (2010) and Shankar and Quiggin (2013) show that if the

decision-making environment is inherently uncertain, then the conventional
estimators provide us with biased estimates of production technology and the
elasticity of scale. In this paper, using the same specification of technology as
in Shankar (2013), we show that the conventional techniques used to analyse
efficiency are found to be deficient in modelling production under uncertainty.
The paper is organised as follows. Section 2 develops an estimation

methodology to recover efficiency levels, the parameters of a two-state
stochastic technology and the risk-neutral probabilities of every firm in the
sample, when only one of two state-contingent outputs is observed. Section 3
uses noiseless simulated data to demonstrate that our estimation methodology
can be used to recover unknown parameters and other economic quantities of
interest without error. Then, we apply conventional efficiency measurement
techniques such as DEA, SFA, state-dependent DEA (DEAS) and output-
cubical (OC) frontier estimators to the simulated data and discover that it gives
us biased estimates of efficiency levels and the parameters of the production
technology. Further, in Section 3, we simulate several data sets for a group of
rational firms each of which use just one input to produce a single output and
evaluate the performance of conventional DEA, SFA, DEAS and OC frontier
estimators. Finally, we offer some concluding comments in Section 4.

2. Estimation methodology for the two-state case

We model production using a constant elasticity of substitution (CES)
specification of technology, where the relationship between the total input
used ex ante across various states of nature and the ex post realisation of
stochastic output is given by

1 For example, see Seiford and Thrall (1990).
2 For example, see Aigner et al. (1977).
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x ¼ ða1z1b þ a2z2
bÞc=b ð1Þ

where as ≥ 0 can be either interpreted as a technology parameter related to
production of output in state of nature {s} or it can be conceived as a
realisation of an unobserved random variable determined by nature ex post.
The parameter b is a transformation of elasticity of substitution and is referred
to as substitution parameter, and the parameter c represents economy of scale.
A key element of the estimation methodology is the relationship between

the risk-neutral probabilities and the observable variables, and in Section 2.1,
we derive this relationship. In Section 2.2, we specify the econometric model
and the likelihood function.

2.1. Deriving risk-neutral probabilities

We assume that the firms seek to maximise their utility function W(y) where
y = (y1, y2) and ys = zs�wx, s 2 Ω is the ex post net return in the state of
nature {s}. The utility function W is continuously differentiable, nondecreas-
ing and quasi-concave in its arguments.
Following Shankar (2013) (see p. 144), for the CES specification, the risk-

neutral probability ps of a firm in state s can be written as

ps � cwaszs
b�1x

c�b
c ¼ 0 s 2 X ¼ f1; 2g ð2Þ

where the risk-neutral probability ps of a firm in state s is given by

ps � WsðyÞP
j2X

WjðyÞ 2 ð0; 1Þ ð3Þ

ps is referred to as risk-neutral probability in state of nature {s}, as it represents
the subjective probability that a risk-neutral firm would require in order to
make the same production choices as a rational firm with preferences W.
We can write (2) in terms of state-contingent output as

zs ¼ ð ps
cwas

Þ 1
b�1x

b�c
cðb�1Þ s 2 X ¼ f1; 2g ð4Þ

The risk-neutral probabilities in states of nature {1} and {2} can be written
in a compact form as

p1 ¼ e1½cwa1qb�1x
c�b
c � þ e2½1� cwa2q

b�1x
c�b
c � ð5Þ

p2 ¼ e1½1� cwa1q
b�1x

c�b
c � þ e2½cwa2qb�1x

c�b
c � ð6Þ

where q = e1z1 + e2z2 is the observed output; es = 1 if state of nature {s} is
realised ex post, s 2 Ω = {1, 2} (and 0 otherwise).
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2.2. Estimating productivity and efficiency

In a real world, many firms are not fully efficient. Therefore, we accommo-
date for inefficiency by using an input distance function given by

DIðx; z1; z2; a1; a2; b; cÞ ¼ x

ða1z1b þ a2z2bÞc=b
� 1 ð7Þ

Substituting for z1 and z2 using (4) in (7) we have

x ¼
fPs2X asð ps

cwas
Þ b
b�1g

cðb�1Þ
bðc�1Þ

TE
s 2 X ¼ f1; 2g ð8Þ

where TE represents technical efficiency. Taking a logarithm on both sides of
(8) and substituting for risk-neutral probabilities in (8) using (2) and
ps ¼ 1�Pj2Xnfsg pj; s 2 X ¼ f1; 2g, we have

lnq�1

c
lnxþe1

1

b
lna1þr1ðq;w; x; bÞ

� �
þe2

1

b
lna2þr2ðq;w; x; bÞ

� �
¼�u ð9Þ

where

r1ðq; w; x; bÞ ¼ 1

b
ln 1þ

a2½1�wa1cqb�1x
c�b
c

wa2c
�

b
b�1

x
bðb�cÞ
cðb�1Þ

a1qb

0
BB@

1
CCA; ð10Þ

r2ðq; w; x; bÞ ¼ 1

b
ln 1þ

a1½1�wa2cqb�1x
c�b
c

wa1c
�

b
b�1

x
bðb�cÞ
cðb�1Þ

a2qb

0
BB@

1
CCA; ð11Þ

b ¼ ðc; b; a1; a2Þ0 ð12Þ
and u ≥ 0 is a measure of technical inefficiency. Further, q = e1z1 + e2z2 is the
observed ouput; es = 1 if state of nature {s} is realised ex post, s 2 Ω = {1, 2}
(and 0 otherwise).
Since the risk-neutral probabilities must lie on a unit interval, we have the

following restriction on parameters in Equation (9):

0� e1½cwa1qb�1x
c�b
c � þ e2½1� cwa2q

b�1x
c�b
c � � 1 ð13Þ

An associated econometric estimating equation is as follows:

ln qnt � 1

c
ln xnt þ e1ntf1

b
ln a1 þ r1ntðqnt; wnt; xnt; bÞg

þ e2ntf1
b
ln a2 þ r2ntðqnt; wnt; xnt; bÞg ¼ vnt � unt

ð14Þ
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where the subscripts n and t represent firms and time periods, respectively,
(n = 1,. . ., N; t = 1, . . ., T), and vnt is a random variable representing
statistical noise.
Equation (14) can be rewritten in a compact form as follows:

rntðqnt; wnt; xnt; bÞ ¼ ent ¼ vnt � unt ð15Þ

where using (10) and (11), rnt(qnt, wnt, xnt, b) is given by

rntðqnt; wnt; xnt; bÞ¼ lnqnt�1

c
lnxntþ e1nt

1

b
lna1þ r1ntðqnt; wnt; xnt; bÞ

� �

þ e2nt
1

b
lna2þ r2ntðqnt; wnt; xnt; bÞ

� � ð16Þ

We make the following assumptions about the error terms vnt and unt in (15):

1. vnt is a symmetrically distributed random variable; and
2. vnt and unt are independently and identically distributed across observa-

tions.

Following the methodology outlined in Aigner et al. (1977), the density
function of the compound error ɛnt can be written as follows:

feðentÞ ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðr2u þ r2vÞ

p U
�entðru=rvÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr2u þ r2vÞ
p

 !" #
exp

�e2nt
2ðr2u þ r2vÞ
� �

ð17Þ

where ɛnt = vnt�unt, vnt is normally distributed with mean 0 and variance r2v ,
that is vnt � Nð0; r2vÞ, and unt is half-normally distributed, that is
unt � Nð0; r2uÞ

�� ��.
In order to provide intuitive interpretation, the variances in the above

equation are re-parameterised such that r2 ¼ r2u þ r2v and k = ru/rv. Then,
(17) can be rewritten as follows:

feðentÞ ¼ 2

r
ffiffiffiffiffiffi
2p

p U
�entk
r

� �� 	
/

ent
r


 �
ð18Þ

where / and Φ(.) are the standard normal probability density function (pdf)
and cumulative distribution function (cdf), respectively.
For the entire sample (n = 1, . . ., N; t = 1, . . ., T), the log-likelihood

function is given by

lnLðq; w; xjbÞ ¼ �NT

2
ln
pr2

2
þ
XT
t¼1

XN
n¼1

ln Uð�rntðqnt;wnt; xnt;bÞk
r

Þ
� 	

� 1

2r2
XT
t¼1

XN
n¼1

rntðqnt;wnt; xnt;bÞ2
ð19Þ
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where q = (q11, q12, . . ., qNT)
0, w = (w11, w12, . . ., wNT)

0, x = (x11, x12, . . .,
xNT)

0 and b = (c, a1, a2, b)0.
And the corresponding restriction on each observation in the sample is

given by as follows:

0� e1nt½cwa1qntb�1xnt
c�b
c � þ e2nt½1� cwa2qnt

b�1xnt
c�b
c � � 1 ð20Þ

Technical efficiency is then calculated by separating the composite error
term into two components using the transformation suggested in Jondrow
et al. (1982).

3. Numerical simulations

In Section 3.1, we validate our estimation methodology using simulated data
and compare the performance of our state-contingent estimator with
conventional estimators. In Section 3.2, we perform a simulation experiment
to show that conventional estimators provide us with biased estimates of
efficiency scores.

3.1. Numerical examples using simulated data

The input demand x is simulated by substituting Equation (4) into Equation
(1), and the state-contingent outputs z1 and z2 are generated using Equation
(4). The following equation expresses input demand in terms of the risk-
neutral probabilities and the technology parameters:

x ¼ ½a1ð p1
a1wc

Þ b
b�1 þ a2ð p2

a2wc
Þ b
b�1�cðb�1Þ

bðc�1Þ ð21Þ

Therefore, in Table 1, the input demand x is simulated using (21), and
state-contingent outputs (z1, z2) are simulated using Equation (4). In our
simulation, we assigned equal probabilities to each state of nature. The
realised state of nature and the output corresponding to this state of nature
are listed in columns 6 and 7, respectively, in Table 1. Finally, the values of
the parameters used to generate this table were b = 2, a1 = 1.5, a2 = 0.5,
w = 0.5 and c = 1.25. Furthermore, all producers in Table 1 are assumed to
be technically efficient.
Given that the state of nature {s} is observed, the econometric equation for

the conventional OC frontier estimator with Cobb–Douglas functional can be
written as follows:

lnðqntÞ ¼ e1nt½�a lnða1Þ� þ e2nt½�a lnða2Þ� þ a lnðxntÞ þ vnt � unt ð22Þ

where ejnt = 1 if j = s 2 {1, 2} (and 0 otherwise) and qnt = e1ntz1nt + e2ntz2nt.
The subscripts n and t represent firms and time periods, respectively
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(n = 1, . . ., 25; t = 1), vnt is a two-sided random variable representing statis-
tical noise, and unt is a one-sided random variable representing inefficiency.
We apply a conventional OC frontier estimator to the simulated data

shown in Table 1. Table 1 shows that the OC stochastic frontier estimator
provides biased estimates of efficiency scores. But the ML estimator that
assumes a CES specification of technology renders every firm to be fully
efficient. The associated risk-neutral probabilities and unobserved state-
contingent outputs were also recovered without error.
We draw the risk-neutral probabilities from a triangular3 distribution.

Including the risk-neutral probability corresponding to risk-free production
plan, that is p1 = 0.75, and the mode of the triangular distribution, that is
p1 = 0.5, there are a total of 25 observations in the sample. Columns 2, 3, 4, 5,
6 and 7 in Table 1 report risk-neutral probabilities, inputs used, outputs in
state of nature {1} and {2}, realised states of nature and output in the realised
state of nature, respectively.

Table 1 Simulated data: (a1,a2) = (1.5, 0.5), b = 2, c = 1.25, w = 0.5

Firm p1 x z1 z2 s zs DEA SFA DEAS OC

1 0.030 50.978 0.339 32.836 2 32.836 1.000 0.938 1.000 0.9925
2 0.042 47.940 0.457 31.256 1 0.457 0.015 0.014 0.238 0.0327
3 0.147 27.455 1.144 19.919 1 1.144 0.059 0.056 0.596 0.1218
4 0.244 15.953 1.371 12.746 1 1.371 0.108 0.107 0.714 0.2146
5 0.246 15.772 1.373 12.626 2 12.626 1.000 0.992 1.000 0.8773
6 0.306 11.172 1.389 9.449 2 9.449 1.000 1.000 1.000 0.8386
7 0.320 10.305 1.384 8.820 1 1.384 0.157 0.157 0.721 0.2952
8 0.369 7.772 1.347 6.910 2 6.910 1.000 1.000 1.000 0.7933
9 0.380 7.298 1.336 6.538 1 1.336 0.205 0.204 0.696 0.3641
10 0.418 5.889 1.292 5.396 1 1.292 0.242 0.237 0.673 0.4100
11 0.479 4.235 1.215 3.964 2 3.964 1.000 0.968 1.000 0.7001
12 0.500 3.805 1.189 3.567 2 3.567 1.000 0.956 1.000 0.6798
13 0.504 3.730 1.184 3.497 1 1.184 0.339 0.323 0.617 0.5197
14 0.546 3.060 1.139 2.842 2 2.842 1.000 0.919 1.000 0.6322
15 0.548 3.033 1.137 2.814 2 2.814 1.000 0.917 1.000 0.6300
16 0.549 3.019 1.136 2.801 2 2.801 1.000 0.916 1.000 0.6289
17 0.566 2.807 1.121 2.580 1 1.122 0.439 0.391 0.608 0.6021
18 0.595 2.506 1.101 2.249 1 1.101 0.500 0.423 0.661 0.6409
19 0.657 2.075 1.086 1.701 2 1.701 1.000 0.769 1.000 0.4984
20 0.704 1.906 1.106 1.395 2 1.395 1.000 0.678 1.000 0.4341
21 0.750 1.854 1.159 1.159 2 1.159 1.000 0.577 1.000 0.3678
22 0.791 1.895 1.238 0.982 1 1.238 0.920 0.605 1.000 0.8784
23 0.864 2.192 1.476 0.697 1 1.476 0.803 0.636 1.000 0.9444
24 0.944 2.928 1.919 0.341 1 1.919 0.712 0.644 1.000 0.9996
25 0.979 3.434 2.189 0.141 2 0.141 0.044 0.041 0.044 0.0289

Mean 0.662 0.579 0.823 0.5650

DEA, data envelopment analysis; DEAS, state-dependent DEA; OC, output-cubical; SFA, stochastic
frontier analysis.

3 The risk-neutral probabilities in the tables below are chosen in way that the histogram of
p1 (and p2) is triangular in shape.
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An output oriented model with variable returns to scale (VRS) was used to
compute efficiency scores for the DEA technique. In case of the SFA, we used
a random-effect stochastic frontier model with Cobb–Douglas functional
form to compute efficiency scores. The SFA specification can be written as
follows:

ln zs ¼ a0 þ a1 ln xþ v� u s 2 f1; 2g ð23Þ

where v is the symmetric two-sided normally distributed error term
representing statistical noise, and u is the one-sided half-normally distributed
error term representing technical inefficiency.
The technology is not risky if p2

p1
¼ a2

a1
¼ 1

3 , that is, if (p1, p2) = (0.75, 0.25).
Any firm that has a risk-neutral probability >0.75 in state of nature {1}
produces more output in state of nature {1} than in state of nature {2}. For
example, in Table 1, firm 24 has risk-neutral probability p1 = 0.944 in state of
nature {1}, and it produces z1 = 1.919 amount of output in state of nature
{1} and z2 = 0.341 quantity of output in state of nature {2}. Similarly, firms
that have a risk-neutral probability <0.75 in state of nature {1} produce less
output in state of nature {1} than in state of nature {2}. For example, in
Table 1, firm 12 assigns equal probabilities to both states of nature, that is
p1 = p2 = 0.5, and it produces z1 = 1.189 amount of output in state of nature
{1} and z2 = 3.567 amount of output in state of nature {2}. This implies that,
for firms that have a risk-neutral probability >0.75 in state of nature {1}, state
of nature {1} corresponds to a ‘favourable’ state of nature, and for firms that
have a risk-neutral probability less than 0.75 in state of nature {1}, state of
nature {2} corresponds to a ‘favourable’ state of nature.
While DEA automatically imposes a monotonicity (to make sure that

output is nondecreasing in input) constraint on the efficient frontier, this is
not the case with SFA. Hence, in most efficiency studies (for example, see
Terrell 1996), in order to ensure a monotonic relationship between input and
output on the production frontier, a1 in (23) is constrained to be non-negative
(a1,≥ 0). For example, the dashed line in Figure 1b below shows that when a
group of firms use a technology that exhibits decreasing returns (c = 1.25) to
scale and high degree of output substitutability (b = 1.1) between the two
states of nature, the frontier (without the constraint a1 ≥ 0) is downward
sloping when the monotonicity constraint is not imposed.
Figure 1b shows that for this particular technology, for all the firms

(dashed line) that experience state of nature {1}, there is negative relationship
between the total input used and the observed output. Therefore, SFA-based
efficiency estimates with monotonicity (see Figure 2b) constraint would be
incorrect as all the firms that face state of nature {1} will be classified to be
very inefficient.
Imposing the monotonicity constraint involves fixing one end (left) of

the frontier to be on the ordinate and the other end (right) of the frontier
to be the point which represents the maximum output. This means that,

© 2014 Australian Agricultural and Resource Economics Society Inc.

178 S. Shankar



(a) (b)

Figure 1 Efficient production plan and frontiers: decreasing returns to scale and high
substitutability.

(a) (b)

Figure 2 Efficient production plan and frontiers: decreasing returns to scale and high
substitutability with monotonicity constraint.
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except the firm with highest output, every other firm will have an efficiency
score <1 irrespective of the state of nature experienced by them ex post.
This can be clearly seen in Figure 2b, where the DEA frontier (solid line)
contains many firms, but the SFA frontier (dashed line) passes through
just one firm.
We observe in Table 1 that for the technology given by (1), the DEA

technique ensures that the riskless production plan (firm 21 in this table) is on
the VRS production frontier (with an efficiency score of 1), because a riskless
production plan uses the least amount of input (or is least costly). We also
observe in Table 1 that all the firms which encounter an ‘unfavourable’ state
of nature have an output oriented DEA efficiency score <1.
Figure 3a plots the input–output combination chosen by rational and

efficient firms using the technology given by (a1, a2) = (1.5, 0.5),
b = 2, c = 1.25 and w = 0.5. While the dashed line represents input–output
pairs (x, z1) in state of nature {1}, the solid line represents the input–output
combination (x, z2) in state of nature {2}.
Figure 3b plots both DEA and SFA production frontiers alongside the

input–output combination chosen by efficient and rational firms in two
possible states of nature. Figure 3 and Table 1 show that even when the firms
experience a ‘favourable’ state of nature, the DEA- and SFA- based efficiency
estimates are <1. For example, in Table 1, firms 22, 23 and 24 experience a
favourable state of nature, but they are found not be fully efficient using the
DEA and SFA estimation techniques.

(a) (b)

Figure 3 Efficient production plan and frontiers: decreasing returns to scale and moderate
substitutability.
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Efficiency estimates from SFA are always less (see Table 1) than those from
DEA because unlike the DEA technique, the SFA model makes allowance
for statistical noise. This is the case even when the producer chooses a riskless
production plan (firm 21 in Table 1); while the DEA reports an efficiency
score of one, the SFA estimates indicate that the riskless firm is not fully
efficient.
Figure 4a shows a efficient production plan chosen by rational firms whose

technology exhibits increasing (c = 0.8 ) returns to scale and moderate (b = 2)
degree of substitutability between ex post state-contingent outputs. It is
important to notice that unlike a conventional production frontier, the
output in both the states of nature is not monotonically increasing in input,
hence the production function is multivalued. This means that, for the same
amount of input used, it is possible that the output can actually take two
different values.
We observe in Figure 4a that in both states of nature, the output initially

increases with an increase in input until the risk-neutral probability in state of
nature {1} is <0.75, that is p1 < 0.75, and then, the output in both states of
nature decreases with a decrease in input used in the production process.
Again, Figure 4a shows that, when p1 < 0.75, the efficient production plan
representing output in state {2} contains the efficient production plan
representing state of nature {1}, and when p1 > 0.75, the opposite is true,
that is, the efficient production plan in state of nature {1} contains the
efficient production plan in state of nature {2}.

(a) (b)

Figure 4 Efficient production plan and frontiers: increasing returns to scale and moderate
substitutability.
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Since in our simulation exercise, all the firms are actually operating on
the frontier, they are in fact technically efficient. Therefore, performance of
the firms is completely dependent on their evaluation of risk-neutral
probabilities. The fact that different firms choose different production plans
and some firms appear to perform ‘better’ than others is because some
firms may have access to better information about future states of nature.
Therefore, the apparent inefficiency is allocative rather than technical in
nature.
Column 10 in Table 1 reports efficiency estimates (DEAS) when the DEA

estimator is applied separately to firms that experience state of nature {1} and
{2}, respectively. We note that from Table 1 that firms that face a
‘favourable’ state of nature are found to be fully efficient when the DEAS
estimator is used. For example, state of nature {2} is the ‘favourable’ state of
nature for firms 14, 15 and 16, and these firms are estimated to be fully
efficient by DEAS. Similarly, state of nature {1} is the ‘favourable’ state of
nature for firms 22, 23 and 24, and the DEAS estimator reports an efficiency
score of 1 for these firms. Irrespective of whether firms face ‘favourable’ or
‘unfavourable’ states of nature, efficiency estimates are always higher with the
DEAS estimator compared to the DEA estimator. This can be verified by
observing Table 1, which shows that the efficiency estimates with the DEAS
(column 10) estimator are always greater than or equal to the DEA (column
8) estimator.
The OC frontier estimator which recognises the state-contingent nature of

the production process does not always estimate efficiency levels to be greater
or equal to conventional stochastic frontier (SFA) estimator. For example,
for firm 5, while the conventional SFA estimator computes the efficiency
score to be 0.992, OC frontier estimator provides a lower efficiency score of
0.8773. On the contrary, for firm 24, estimates from the OC (0.9996) frontier
estimator are higher than the conventional SFA (0.644) estimator. In Table 1,
we observe that except for firm 25, all other firms that face ‘unfavourable’
state of nature have a higher efficiency level estimates using OC frontier
estimator compared to conventional stochastic frontier (SFA) estimator.
However, mean efficiency estimates of the OC frontier estimator (0.5650) and
the conventional stochastic frontier estimator (0.579) are similar in magni-
tude.
While the DEAS estimator classifies the risk-less firm (21) to be fully

efficient, the OC frontier estimator (0.3678) reports efficiency level estimates
to be even less than the conventional stochastic frontier estimator (0.577).
Finally, even though both DEAS and OC frontier estimators recognise the
stochastic nature of the underlying production technology, the DEAS
estimator always provides higher efficiency level estimates than the OC
frontier estimator. Again, this is because unlike the OC frontier estimator, the
DEAS estimator makes no allowance for statistical noise.
In Figure 5a, the curve drawn using a solid line and a dashed line

represents the actual CES frontier in state of nature {1} and {2}, respectively.
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Figure 5 Efficient production plan and frontiers in state of nature {1} and {2}, respectively:
decreasing returns to scale and moderate substitutability.
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Figure 5b,c shows the efficient frontier using DEAS (solid line) and OC
(dashed) frontier estimators in state of nature {1} and {2}, respectively.
Again, in Figure 5b,c, the stars and dots represent production choices in state
of nature {1} and {2}, respectively.
Unlike the DEA and SFA estimators, both the DEAS and OC frontier

estimators recognise the state-contingent nature of production technology.
Therefore, both the DEAS and OC frontier estimator predict two separate
frontiers, one in each state of nature {1} and {2}, respectively. Again,
efficiency estimates from DEAS are higher than those from the OC estimator.
For example, when technology exhibits decreasing (c = 1.25) returns to scale
and moderate (b = 2) substitutability between state-contingent outputs, all
the firms that experience a ‘favourable’ state of nature are classified to be fully
efficient by the DEAS estimator. This can be seen (also from Table 1) in
Figure 5b, where firms 22, 23 and 24 lie on the solid line representing the
DEAS frontier. But only firm 24 is found to lie on the OC frontier when state
of nature {1} is realised.
In Figure 5, the OC frontier lies above the DEAS frontier, indicating that

when technology exhibits decreasing (c = 1.25) returns to scale and moderate
(b = 2) degree of substitutability between state-contingent outputs, the DEAS
estimator provides us with higher efficiency level estimates compared to the
OC frontier estimator. This is not true when technology exhibits increasing
returns to scale. For example, in Figure 6b where state of nature {1} is
realised and technology exhibits increasing (c = 0.8) returns to scale and
moderate (b = 2) substitutability between state-contingent outputs, a portion
of the OC frontier can be observed to be below the DEAS frontier. This
implies that firms that are closer to this region where the OC frontier is below
the DEAS frontier will have higher efficiency level estimates from the OC
frontier estimator compared to the DEAS estimator.

3.2. Simulation experiments

To further evaluate the performance of conventional DEA and SFA
estimators, we perform a simulation experiment. In the simulation experi-
ment, we fix the risk-neutral probabilities shown in the second column in
Table 2 in each of the N = 1000 replications, but we allow each of the 25 firms
to experience any of the two possible states of nature ex post with probability
0.5.
Table 2 reports the descriptive statistics of the estimated efficiency scores

obtained by the DEA and SFA estimators, respectively, for a technology that
exhibits decreasing returns to scale and moderate degree of substitutability
between state-contingent outputs. In Table 2, we observe that except for firm
21 (using DEA), all the firms have mean efficiency scores <1, which indicates
that both the DEA and SFA estimators are biased. When the technology
exhibits decreasing returns to scale, even firm 21 which chooses riskless
output combinations is found to be less than fully efficient by the SFA
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Figure 6 Efficient production plan and frontiers in state of nature {1} and {2}, respectively:
increasing returns to scale and moderate substitutability.
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estimator. Some firms in our simulated experiment have a SFA-based
efficiency estimate that is very low. When firms experience an ‘unfavourable’
state of nature, the monotonicity constraint imposed by the SFA estimator
shifts the estimated frontier to the level of the maximum output that is
feasible using the technology as shown in Figure 2b, which results in low
efficiency scores for firms that are far away from the estimated frontier.
Table 3 reports the descriptive statistics of the estimated efficiency scores

obtained by DEAS and OC frontier estimators, respectively, for a technology
that exhibits decreasing returns to scale and moderate degree of substitut-
ability between state-contingent outputs. Again, in Table 3, we observe that
except for firm 21 (using DEA), all the firms have a mean efficiency score <1,
which indicates that both the DEAS and OC frontier estimators are biased.
Comparing Table 3 with Table 2, we find that, while the mean DEAS
efficiency estimates of every firm are higher than the corresponding DEA
efficiency estimates, the OC frontier estimator does not always provide us
with higher mean efficiency level estimates compared to the conventional
stochastic frontier (SFA) estimator. Again, when technology exhibits,
decreasing returns to scale firm 21 is always classified to be fully efficient

Table 2 Sample statistics for decreasing returns to scale and moderate output
substitutability: (a1, a2) = (1.5, 0.5), b = 2, c = 1.25, w = 0.5

Firm p1 DEA SFA

Mean St. Dev Min Max Mean St. Dev Min Max

1 0.030 0.520 0.492 0.011 1.000 0.518 0.494 0.011 1.000
2 0.042 0.506 0.481 0.014 1.000 0.506 0.486 0.014 1.000
3 0.147 0.430 0.386 0.043 1.000 0.457 0.412 0.047 1.000
4 0.244 0.383 0.317 0.063 1.000 0.443 0.355 0.077 1.000
5 0.246 0.394 0.312 0.064 1.000 0.457 0.351 0.078 1.000
6 0.306 0.323 0.268 0.076 1.000 0.399 0.317 0.099 1.000
7 0.320 0.328 0.257 0.079 1.000 0.413 0.309 0.105 1.000
8 0.369 0.328 0.227 0.091 1.000 0.438 0.287 0.128 1.000
9 0.380 0.296 0.223 0.094 1.000 0.398 0.284 0.134 0.999
10 0.418 0.318 0.210 0.106 0.927 0.446 0.275 0.158 0.942
11 0.479 0.317 0.186 0.134 0.892 0.474 0.259 0.213 0.927
12 0.500 0.336 0.181 0.148 0.884 0.509 0.256 0.239 0.946
13 0.504 0.336 0.183 0.151 0.868 0.510 0.256 0.244 0.939
14 0.546 0.369 0.171 0.192 0.890 0.569 0.246 0.312 0.983
15 0.548 0.381 0.175 0.194 0.890 0.586 0.247 0.316 0.978
16 0.549 0.381 0.178 0.195 0.891 0.585 0.249 0.318 0.993
17 0.566 0.398 0.173 0.219 0.901 0.609 0.242 0.354 1.000
18 0.595 0.450 0.166 0.273 0.927 0.671 0.231 0.421 1.000
19 0.657 0.654 0.153 0.486 1.000 0.827 0.166 0.592 1.000
20 0.704 0.884 0.098 0.775 1.000 0.916 0.085 0.426 1.000
21 0.750 1.000 0.000 1.000 1.000 0.924 0.047 0.463 1.000
22 0.791 0.827 0.095 0.716 0.984 0.842 0.105 0.481 1.000
23 0.864 0.422 0.159 0.253 0.774 0.575 0.207 0.322 0.882
24 0.944 0.234 0.168 0.062 0.623 0.358 0.245 0.087 0.710
25 0.979 0.187 0.168 0.020 0.602 0.287 0.250 0.033 0.656

DEA, data envelopment analysis; SFA, stochastic frontier analysis.
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by the DEAS estimator. The OC frontier estimator, like conventional frontier
estimator, does not always classify the risk-less firm (21) to be fully efficient.

4. Conclusion

In conventional efficiency analysis, the functional specification involves
extreme a priori restrictions that render the interaction between random
factors and controllable inputs to be empirically invalid. Econometrically
convenient stochastic errors are introduced to capture the effect of random
inputs on an otherwise deterministic production process. We perform a
simulation experiment where the data are generated using our state-
contingent specification of the stochastic technology. The simulation exper-
iment clearly indicates that conventional efficiency estimators such as DEA,
DEAS, SFA and OC are systematically biased. It is important to note that
the problem is not with the DEA, DEAS, SFA and OC frontier estimators
themselves, but it is due to mis-specification of the stochastic technology. In
our simulation data, when we applied a maximum likelihood estimator on

Table 3 Sample statistics for decreasing returns to scale and moderate output
substitutability: (a1, a2) = (1.5, 0.5), b = 2, c = 1.25, w = 0.5

Firm p1 DEAS OC

Mean St. Dev Min Max Mean St. Dev Min Max

1 0.030 0.550 0.408 0.155 1.000 0.521 0.471 0.015 0.999
2 0.042 0.599 0.379 0.209 1.000 0.528 0.465 0.021 0.999
3 0.147 0.797 0.211 0.523 1.000 0.584 0.414 0.084 0.999
4 0.244 0.863 0.168 0.626 1.000 0.611 0.362 0.154 1.000
5 0.246 0.866 0.166 0.627 1.000 0.598 0.363 0.154 1.000
6 0.306 0.869 0.162 0.634 1.000 0.621 0.316 0.214 1.000
7 0.320 0.863 0.166 0.632 1.000 0.616 0.308 0.227 1.000
8 0.369 0.856 0.173 0.615 1.000 0.615 0.269 0.281 0.998
9 0.380 0.855 0.174 0.610 1.000 0.612 0.258 0.296 1.000
10 0.418 0.841 0.185 0.590 1.000 0.636 0.230 0.351 0.999
11 0.479 0.829 0.200 0.555 1.000 0.635 0.182 0.343 0.998
12 0.500 0.822 0.205 0.543 1.000 0.645 0.171 0.254 0.999
13 0.504 0.822 0.207 0.541 1.000 0.640 0.168 0.274 0.998
14 0.546 0.824 0.197 0.573 1.000 0.650 0.144 0.211 1.000
15 0.548 0.817 0.197 0.576 1.000 0.643 0.140 0.221 0.997
16 0.549 0.827 0.194 0.578 1.000 0.644 0.140 0.208 0.997
17 0.566 0.842 0.181 0.608 1.000 0.652 0.134 0.230 0.997
18 0.595 0.854 0.155 0.662 1.000 0.650 0.134 0.173 1.000
19 0.657 0.924 0.094 0.786 1.000 0.648 0.149 0.133 0.997
20 0.704 0.964 0.050 0.887 1.000 0.643 0.183 0.137 0.997
21 0.750 1.000 0.000 1.000 1.000 0.635 0.227 0.131 0.999
22 0.791 0.939 0.106 0.729 1.000 0.624 0.279 0.096 0.999
23 0.864 0.716 0.305 0.377 1.000 0.564 0.359 0.080 1.000
24 0.944 0.573 0.437 0.126 1.000 0.566 0.446 0.031 1.000
25 0.979 0.533 0.478 0.044 1.000 0.487 0.481 0.014 1.000

DEAS, state-dependent data envelopment analysis; OC, output-cubical.
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our CES specification of technology, all the firms were estimated to be fully
efficient.
Almost all conventional frontier models are OC. If this restrictive

representation of technology is incorrect, then the results of the simulation
experiment in this paper have important policy implications. Discovering that
a substantial number of firms lie inside the ‘efficiency frontier’, one may
mistakenly conclude that there are potential opportunities for beneficial policy
interventions to improve efficiency, when in fact devoting resources in a
manner that allows producers to expand production and manage risk would
lead to a better outcome. Analysis in the state-contingent framework therefore
suggests that utmost care must be taken when drawing policy conclusions.
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