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We applied state-contingent theory to climate uncertainty at a farm level to assess the
value of seasonal climate forecasts in the Central West region of NSW. We find that
modelling uncertainty in a state-contingent manner results in a lower estimate of
forecast value than the typical expected value approach. We attribute this finding to a
more conservative long-term farm plan in the discrete stochastic programming (DSP)
model, which is better balanced for climate uncertainty. Hence, a climate forecast, even
though it still revises probabilities held by farmers, does not call forth such large changes
in farm plans and associated farm incomes. We then use the DSP model to assess how
attributes of a hypothetical forecasting system, particularly its skill and timeliness, as
well as attributes of the decision environment, influence its value. Lastly, we assess the
value of current operational forecast systems and show that the value derived from
seasonal climate forecasts is relatively limited in the case study region largely because of
low skill embodied in forecasts at the time when major farm decisions are being made.

Key words: value of information, climate forecasting, R&D evaluation, risk,
uncertainty, simulation.

1. Introduction

Improved seasonal climate forecasts are seen as a key technology to help
farmers make better decisions in a risky climate. As an information-based
technology, the valuation of climate forecasts faces similar challenges to
valuing information more generally. These challenges extend beyond meth-
odologies for pricing information to the difficulties in demonstrating that use
of seasonal climate forecasts can lead to more-profitable farming strategies.
Adoption has been patchy. No doubt concerns about the skill embodied in
seasonal climate forecasts have not helped.

Here, our intent is to shed further light on the value of seasonal climate
forecasts to mixed farming in the Central West of NSW. We employed the
model developed by Crean er al. (2013), which uses discrete stochastic
programming (DSP) to analyse production uncertainty in a manner
consistent with state-contingent theory (Chambers and Quiggin 2000). They
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62 J. Crean et al.

compared this approach with a traditional stochastic production function
approach and found that farm plans generated by the DSP model were more
profitable than those from an expected value model and more closely
resembled actual land use.

Three key issues are addressed here. First, we assess whether the way in
which uncertainty is modelled has an impact on the estimated value of
seasonal climate forecasting. Our expectation was that modelling uncertainty
in a state-contingent manner would result in a lower estimate of the value
than the expected value approach because DSP farm plans are better
balanced for uncertainty. Hence, a climate forecast ,even though it still revises
probabilities held by farmers, may not call forth such large changes in farm
plans and in farm incomes.

Second, we use the DSP model to assess how attributes of a hypothetical
forecasting system, particularly its skill and timeliness, as well as attributes of
the decision environment, influence its value. Information about the value of
skill and timeliness can be used to direct investment in research to improve
these qualities.

Third, we assess the value to mixed farming in the Central West of NSW
of statistical based seasonal forecast systems provided by the Bureau of
Meteorology (BoM) and the Queensland government based around the El
Nino Southern Oscillation (ENSO) phenomenon.

2. A state-contingent approach

Chambers and Quiggin (2000) proposed that state-contingent production
theory was the best way to think about all problems of uncertainty. “The crucial
insight of Arrow and Debreu was that, if uncertainty is represented by a set of
possible states of nature, and uncertain outputs by vectors of state-contingent
commodities, production under uncertainty can be represented as a multi-
output technology, formally identical to a non-stochastic technology’ (Quiggin
and Chambers 2006, p.153).

We applied state-contingent theory to climate uncertainty to assess the
value of seasonal climate forecasts in Central West NSW, a typical mixed
farming area in south-eastern Australia exposed to climate variability. The
representative farm of 1,500 ha is engaged in annual winter cropping in
rotation with pasture and fallow activities, first-cross lamb production, and
merino wool production (Crean et al. 2012). Variations in the production
environment were represented by nine sets of planting conditions, reflecting
different combinations of winter crop planting dates (PD) (early — 20 April;
mid — 10 May; and late — 5 June) and starting soil moisture levels (low —
30 mm; average — 60 mm; and high — 100 mm). Rainfall was the uncertain
parameter within the model. Three discrete rainfall states were defined based
on growing season rainfall (May—October) at Condobolin (s = dry, average
or wet) over the period 1902-2006 (105 years). The dry state contained the
lowest third of years (growing season rainfall of 0—177 mm); the average
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state, the middle third (178-249 mm); and the wet state, the upper third
(>249 mm). Rotational effects reflecting weeds, crop diseases and soil
moisture status were represented on average rather than dynamically.

Applying state-contingent theory in our context recognises that farmers
are able to choose from a set of technologies that canvas a number of future
seasonal outcomes, not just a single expected season. It allows a broader set
of responses to climate risk than traditional expected value approaches,
which are only optimal when the ‘actual season’ coincides with the
‘expected season’.

A two-stage DSP model was developed where time was divided into the
‘present’ and the ‘future’. Here, x; is a vector of stage 1 decisions, s is the state
of nature, and x, (s, x;) is a vector of stage 2 decisions, contingent upon
earlier stage 1 decisions and the state of nature. The DSP problem maximises
state-contingent income over all states and is written as:

S
Max £[Y] = ~C(w,r,p) + 3 s (1)
s=1

Here, =, is the probability of state s occurring, r is the revenue received in
state s, and w and p are input and output prices, respectively.

The objective function (risk neutral) reflects a two-stage decision process
that maximises the expected net farm income from crop, pasture and
livestock production decisions across three climate states subject to
constraints on availability of land, labour and capital, which must be
satisfied in each state.

C(w, r, p) is the cost of inputs committed prior to the state of nature being
known (eg variable costs of growing wheat) based on the selection of stage 1
activities (x;;), while the Zle ngrs term is the probability-weighted sum of
state-contingent revenues derived from stage 2 activities (eg harvest and sale of
wheat) made possible by that commitment of inputs. Once the optimal stage 1
decisions are determined, inputs committed in stage 1 are the same in every state
of nature, whereas the inputs selected in stage 2 are specific to each state.

In stage 1 of the DSP approach, the farmer makes decisions about the areas
of crop, pastures and fallow, taking into account the probabilities of future
dry, average and wet states. With only the probabilities known, stage 1
decisions must trade off returns across all states in order to be optimal under
uncertainty. In stage 2, recourse decisions are taken about the end use of crops
(eg sell grain, store grain, graze crops, cut crops for hay) and pastures (eg
graze, cut for hay), which are contingent upon both the state of nature and the
decisions taken in stage 1. In other words, when making stage 1 decisions, the
model looks forward and weighs up the possible consequences in stage 2 of
such decisions. This approach attempts to capture the flexibility that farmers
have over the choice of production technologies when faced with climate
uncertainty.
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3. A conceptual model of the value of information

By focussing on states of nature, we can follow Hirshleifer and Riley (1992)
in illustrating how information reducing uncertainty has value to decision
makers. In a two-state world (s = 1 (dry), 2 (wet)) with three possible acts
(x = 1, 2, 3), the expected utilities of the acts, assumed here to be alternative
crops, are shown by their respective pay-off lines marked x;, x, and x3
(Figure 1). The horizontal axis shows the probability of a dry state (m)
increasing from left to right. The utility of x; (eg an irrigated crop) is
unaffected by rainfall and is therefore represented by a horizontal line. In
contrast, x, and x3 are crops reliant on rainfall. Act x, could be a fodder
crop that provides high returns due to higher prices in a dry state but lower
returns in a wet state, while x5 is a grain-only crop that performs well in a
wet state, but fails in a dry state. The probability of the wet state (7,) is
1—m;. Prior to a forecast, the decision about which crops to grow is made
on the basis of the prior probability, 7. The act with the highest utility, G,
is Xq.

Suppose a seasonal climate forecast system F can generate two possible
forecasts /= f1, f>. The farmer processes the forecast and forms a revised or
posterior probability distribution over the occurrence of states. Applying
Bayes’ theorem, the posterior probability distribution 7y, is:

Utility in Utility in
state 2 state 1
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M
“alue of forecast
K - system F
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Figure 1 The economic value of climate forecasts in a two-state world. (Source: adapted from
Hirshleifer and Riley 1992, p. 182).
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CI)‘]X
T = My = 2
4 Znsqﬂs ( )

where 7 cis the posterior probability of state s given forecast f; , is the prior
probability of s, as before; and ¢y, is the conditional probability (or
likelihood) of £, given s.

The posterior probabilities are essential to the valuation of forecasts. After
a particular forecast f, the decision maker determines the optimal action
again using the model represented by (1), but now employing the posterior
probabilities 7, ; rather than the prior probabilities 7.

If forecast f; is received, the posterior probability of a dry season
becomes m;; and the posterior optimal decision (or Bayes strategy) shifts
from x; to x,. The expected utility of this decision is D. The expected utility
gain over x; (V) is equal to DL, reflecting the probability-weighted
average of the gain SR in state 1 and the loss NA in state 2. Conversely,
if forecast f5 is received, the posterior probability of a wet season becomes
Ty, and the optimal decision shifts from x; to x;. Expected utility is
indicated by C. The expected utility gain over x; (Vp) is equal to CK,
reflecting the probability-weighted average of the gain MN in state 2 and
the loss RT in state 1.

The value of a specific forecast f within an overall forecast system is

3 3
Vi= Znsvy:f_znsyjo (3)
s=1 s=1

where ;- denotes farm income in state s from optimal farm plan x] o based
on forecast fand y%, denotes farm income in s from optimal farm plan x*,
based on the prior probabilities (assumed to be historical climatology).

So Vyis the expected income from the posterior optimal act less the income
from the prior optimal act. Forecast f could have zero value in the event that
the posterior probabilities led to no change in the optimal act. The valuation
of forecasts in this way correctly attributes value only to improved knowledge
about future states and not erroneously to a change in the underlying
occurrence of states.

The value of a single forecast (V) is important, but as Hirshleifer and Riley
(1992) noted, ‘one cannot purchase a given message, but only a message
service’ (p. 180). The true measure of economic value is the value derived
from the use of the entire forecast system. A single forecast with high skill
might be particularly valuable, but add little to the overall value of a forecast
system if issued infrequently.

The value of a forecast system is the value of each forecast within the
system weighted by the frequency with which it occurs. If F denotes a forecast
system and q]‘(zq’ - ) is the frequency with which each forecast occurs, then
the value of a forecast system with three possible forecasts is
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3
Ve=> gy (4)
7=

The value of the whole forecast system F (V) is the gain in expected utility,
represented by EG in Figure 1, lying above the point 7 on the horizontal axis.

4. Comparing state-contingent and expected value estimates of the value of
seasonal climate forecasts

Crean et al. (2013) reported the differences between the optimal farm plans
from DSP and expected value models for the Central West of NSW. The
DSP plan had a lower stocking rate of 2.66 dse/ha relative to the expected
value farm plan of 4.61 dse/ha. The DSP plan also had a smaller crop
area (598 ha versus 674 ha), and a smaller proportion of that crop area
was based on continuous cropping. In the analysis reported here, these are
the long-term farm plans prior to the introduction of a climate forecast
system.

To realistically capture forecast value within an annual timeframe,
responses to a forecast were bound by the overall levels of crop and livestock
reflected in these long-term farm plans. The extent of cropping, for example,
could not be expanded beyond the total crop area of the long-term farm plan.
With-forecast decisions around livestock were restricted to satisfying feed
demands, with no flexibility afforded to changing numbers from one season
to the next. Stocking rate decisions in the case study area are taken later in the
year, well beyond the forecast issued at the time of crop planting, and are also
likely to have long-term consequences, which cannot easily be captured in an
annual modelling approach adopted here.

In the DSP model, the climate forecast influences probabilistic perceptions
about the likelihood of each state. If the forecast provides new and timely
information, the DSP model chooses activities that have higher returns in the
more probable state. In the expected value model, a climate forecast influences
the expected yields of crops and pastures, which induces some change in the
farm plan. A dry forecast lowers yield expectations, while a wet forecast raises
them. The critical feature of the expected value model, both with and without
a climate forecast, is that activities are chosen in response to a single expected
state rather than a separate representation of each state as in the DSP model.

Forecast values from the two approaches are provided for a range of skill
levels for both dry (Figure 2a) and wet forecasts (Figure 2b). Here, skill is
defined as
_ s T T
1= n

(5)

o

where ¢ represents skill, 7y is the conditional probability of forecast f given
state s and 7 is the prior probability of s based on climatology.
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Figure 2 Influence of modelling approach on the estimation of forecast value — 10 May,
60 mm soil moisture. (a) Dry forecast. (b) Wet forecast.

The long-term, without-forecast baseline farm plan from the expected
value approach is inherently more exposed to climatic variations than the
DSP farm plan. There is a greater possibility for negative outcomes in a dry
state and for positive outcomes in a wet state relative to the baseline farm
plan from the DSP approach. The costs of uncertainty are minimised in the
DSP approach because the possibility of more than one state occurring is
explicitly recognised and valued in its without-forecast baseline plan. A
reduction in uncertainty, made possible through a skilful climate forecast, is
consequently found to be less valuable because farm responses determined by
the DSP model are more moderate.

The decisions taken in response to a wet forecast within each model
involved the use of higher rates of nitrogen on wheat crops and an expansion
in the area of canola at higher forecast skill levels. The value of a wet forecast
using the DSP approach was always lower than for the expected value
approach. The long-term farm plan from the expected value model had a
larger potential crop area and a greater reliance on continuous cropping
(which has a greater dependence on in-season rainfall and inputs of nitrogen
fertiliser) relative to the long-term farm plan from the DSP model. These
differences provide more scope within the expected value model for a wet
forecast to influence decisions about crop mix and the use of nitrogen
fertiliser.

Decisions taken in response to a dry forecast in both models involved a
small reduction in crop area, a shift in the types of crops grown and a
reduction in the use of nitrogen fertiliser. In the case of a dry forecast, the
value of climate forecasts between the DSP and expected value models did
not diverge until skill levels exceeded 50 per cent. When there was greater
certainty about the occurrence of a dry state, changes made in the expected
value model were more substantial than those made within the DSP model.
Again, the larger potential long-term crop area and a greater reliance on
continuous cropping provide the basis for greater forecast value.

© 2014 Australian Agricultural and Resource Economics Society Inc.
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These findings were generally replicated across other planting conditions
involving different combinations of soil moisture and PDs (nine in total).

Our findings can be related to the theory of information value illustrated
earlier in Figure 1. A major bearing on the value of information concerns the
slope of the pay-off lines associated with different acts under alternative
states. Steep pay-off lines provide the necessary conditions for a forecast of
those states to have significant value. Because expected value models produce
a farm plan (ie acts) for a single expected state, they are unlikely to be optimal
across states. In general terms, the solutions of expected value models are
likely to produce pay-off lines that are steeper than those of DSP models
because the latter explicitly account for a range of states and hence are better
placed to deal with climate uncertainty.

Previous studies have shown that the treatment of uncertainty has
important implications for the evaluation of technologies (Jones et al.
2006). Cost-benefit analyses of technologies can overstate the value of the
technology if the ‘without technology’ scenario underestimates the opportu-
nities facing decision makers. In a similar manner, the expected value
approaches may not adequately represent how farmers deal with climate
uncertainty and hence overstate the value of seasonal climate forecasts.

5. Determinants of the value of seasonal climate forecasts

The development and extension of climate forecasts are influenced by how
attributes of forecasts and attributes of the decision maker’s environment
affect their value. Hilton (1981) found that only the attributes of the
information system itself (such as skill and timeliness) have a consistent effect
on the value of information. While attributes of the decision environment
(technologies, prices, environmental conditions) can have a large influence on
value, their effect is not consistent.

5.1. Value of skill

A skilful climate forecast offers an improvement in predictability over using
the climatological record. The economic case for further investment in
climate forecasting technologies rests on the extent of benefits flowing to users
of forecasts relative to costs associated with improving forecasts. The benefits
from improving skill can be illustrated by extending our earlier representation
of forecast value to include a new forecast system.

In Figure 3, there are two forecast systems F and F each producing two
forecasts of the climatic state. F results in posterior probabilities of 7, and 7
s (small dash lines). An alternative forecast system F results in posterior
probabilities of 7 and 7, (larger dash lines). F is more skilful because both
of its forecasts lie closer to the respective y-axes (where probabilities are one).
When the posterior probabilities associated with one forecast system bracket
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Figure 3 The economic value of a more skilful climate forecast in a two-state world (source:
adapted from Hirshleifer and Riley 1992, p. 189).

those of another, such a system can be defined as being ‘more conclusive’
(Hirshleifer and Riley 1992).

In comparison with the utility derived from the initial forecast system,
points C and D, the use of 7,y leads to the higher utility of D’ from a forecast
of state 1 and a higher utility of C’ from a forecast of state 2. The more skilful
climate forecast of F results in expected utility of E’, which exceeds the
expected utility of forecast system F by EE’. This is the expected marginal
gain of improved forecast skill.

An important consequence of the bracketing condition is that a more
skilful forecast like F leads to a higher expected utility because there is lower
risk associated with its use (Hirshleifer and Riley 1992). There are fewer times
when F is different from the real state. Hence, there is a smaller risk of
posterior error (choosing the wrong action) associated with using the more
skilful climate forecast. In the event that a more skilful climate forecast also
leads to a further change in a decision, relative to the less skilful climate
forecast, then the gain in utility will be even greater.

Estimates of the value of a hypothetical forecast system from the DSP
model are aggregated over three forecast types (dry, average and wet) and
three levels of starting soil moisture (low, average and high) (Table 1). A full
set of results are contained in the Appendix. The value of the forecast is
expressed on a per-hectare basis using the farm’s long-term crop area as the
denominator.
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Table 1 Economic value of a hypothetical seasonal climate forecast system ($/ha)

Skill (%) Planting date Overall
20 April 10 May 5 June
10 $0.38 $0.20 $0.00 $0.20
20 $1.62 $1.08 $0.06 $0.96
30 $4.77 $2.59 $0.51 $2.62
40 $8.80 $4.57 $1.26 $4.80
50 $13.26 $6.58 $2.10 $7.13
60 $17.96 $8.94 $3.00 $9.71
70 $22.68 $11.81 $4.03 $12.58
80 $27.43 $15.16 $5.35 $15.78
90 $32.48 $19.02 $6.87 $19.35
100 $37.83 $23.23 $8.45 $23.18

The first three columns in Table 1 summarising forecast value according to
PD were derived by weighting the forecast values under each level of soil
moisture by the soil moisture probabilities. The probabilities of low, average
and high levels of starting soil moisture (on April 30) were assessed using
APSIM (Keating et al. 2003) to be 0.25, 0.50 and 0.25, respectively. The last
column is the economic value of a forecast system across all PDs, derived by
weighting the forecast values achieved under each PD by the PD probabilities.

The annual value of the forecast system, taking into account the
probabilities of all planting conditions ranged from $0.20 to $23.18/ha,
depending on forecast skill. The relationship between forecast skill and value
was positive as expected but not linear. Improvements in skill at lower
absolute levels are valued less than improvements in skill at higher absolute
levels. An increasingly skilful forecast allows the DSP model to divert more
resources towards production in the forecasted state. Farm income in the
forecasted state is given greater weighing in the objective function as forecast
skill improves. As a consequence, income in the non-forecasted states is
increasingly traded off for income in the forecasted state as skill improves.
Model restrictions ensure that the overall probability of the occurrence of
each climatic state is the same as its historical probability of occurrence (ie the
prior probability, ).

5.2. The influence of planting time on value

An attribute of the decision environment which did have consistent effect on
forecast value was the time of planting. The annual value of seasonal climate
forecasts ranged from $0.38 to $37.83/ha for the 20 April PD, from $0.20 to
$23.23/ha for the 10 May PD and from $0.00 to $8.45/ha for 5 June PD.
Earlier planting opportunities provided the greatest scope for changes in land
use and the use of inputs like nitrogen in response to seasonal climate
forecasts.
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6. The value of operational seasonal climate forecasting systems

6.1. Bureau of meteorology

This BoM ‘Seasonal Climate Outlook’ is based on sea surface temperatures in
the Pacific and Indian Oceans (Drosdowsky and Chambers 2001)." Climate
outlooks provide information on the state of ENSO and map the probability
of exceeding median rainfall in the following 3 months. Crean (2009)
estimated that the skill of BoM forecasts at the start of the winter cropping
season across six locations in the Central West had an upper bound of around
20 per cent (Eqn 5).2

A forecast system with a skill score of 20 per cent was found to have an
overall annual economic value of $0.96/ha in the case study region. This is
lower than the $3.60/ha found by Marshall ez al. (1996) for the SOI
(Southern Oscillation Index) phase system in respect to wheat production in
southern Queensland. However, it is similar to the annual benefits estimated
by Petersen and Fraser (2001) of $1.23/ha for a hypothetical forecast in the
Merredin agricultural region of Western Australia. Applying an annual
$0.96/ha to total crop area in Central West region of 1.776 million ha in
2010-2011 (Australian Bureau of Statistics 2012) gave an annual forecast
value of approximately $1.71 million.

The BoM’s forecast system captured only 4.1 per cent of the value of a
perfect forecast system (ie a forecast that perfectly predicted the occurrence of
dry, average and wet states) which was $23.18/ha annually (Table 1, 100 per
cent skill). The low value associated with the BoM’s forecast system is directly
related to skill. Low forecast skill means that the posterior probabilities of
each state do not differ greatly from prior probabilities. With only a small
shift in probabilities, relatively minor changes occurred in optimal farm
plans, limiting the economic gains from forecast use.

Advances in climate forecasting are expected to arise from the further
development of dynamic climate models (Australian Academy of Science
2006). If this were to lead to a doubling of skill levels (40 per cent), the annual
value of a forecast system would increase fivefold to $4.80/ha, a net
improvement in forecast value of $3.84/ha annually, or $6.82 million
annually for the Central West. Developments in forecasting technologies
are likely to benefit a much larger area than Central West NSW.

" The Bureau of Meteorology’s official seasonal outlook for Australia changed from a
statistical based system to a dynamical (physics based) forecast system in May 2013. The new
system is known as the Predictive Climate Ocean Atmosphere Model for Australia (POAMA).
This evaluation is based on the former system.

2 The BoM provides per cent consistent values for their official forecasts using a cross-
validated forecast assessment. ‘Per cent consistent’ refers to the percentage of forecasts that
were consistent with either an ‘above median’ or ‘below median’ rainfall category later
observed. The values reported by the BoM have been calculated using 600 historical forecasts
issued from 1950 to 1999.
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6.2. Queensland Climate Change Centre of Excellence (QCCCE)

Queensland Climate Change Centre of Excellence forecasts are based on the
SOI phase system. The identification of ‘phases’ in the SOI (Stone and
Auliciems 1992) was an important advance in climate forecasting and led to
improvements in forecast quality in a number of regions around the world
affected by ENSO. The skill of the SOI phase system was assessed using
rainfall and SOI data over the 1890-2006 period.

The SOI system obtains its maximum skill level for many areas of eastern
Australia in late June and July and has relatively low levels of skill in April
and May. Statistical tests of forecast skill confirmed that this was also the
case for Central West NSW (Crean 2009). The posterior probabilities of
receiving above and below median rainfall were extracted for each phase
through hindcasting (Johnson and Holt 1997). The resulting posterior
probabilities were then substituted into Equation (5) to determine forecast
skill.

To provide an assessment of the value of the SOI phase system, only the
SOI-negative and SOI-positive phases were considered, given that they were
the only forecasts found to be statistically significant in the case study region.
Only forecast information (phase months) available at planting time was
valued. Hence, only the phase months ‘March—April’ and ‘April-May’ were
considered. The SOI-negative forecast lacked skill in these phase months and
was disregarded. The SOI-positive phase had a skill score of 11 and 25 per
cent for the ‘March—April’ and ‘April-May’ phase months, respectively. This
provided a conservative assessment of forecast value® and avoided ascribing
an economic value to forecasts that had artificial skill.

The SOI-positive phase had a probability of occurrence of 23 per cent (29/
126 years) for the ‘March—April’ phase month and 21 per cent (26/126 years)
for the ‘April-May’ phase month (Table 2). Weighting the forecast values
reported in Appendix by the probability of each PD and the probability of
having a SOI-positive phase placed an annual value on the SOI phase system
of just $0.10/ha.*

This low value can be attributed to two factors. First, only two out of the
five phases had statistically significant skill and only these phases were
assumed to influence decisions. Second, while there was skill in SOI-
negative and SOI-positive phases, it was not available at planting time.
Hence, it was the timeliness of skill rather than a general lack of skill that
was crucial. Moreover, the strong influence of PD on the value of climate
forecasts presents a particular challenge. The largest gains from the use of
climate forecasts in the case study region occurred under earlier PDs, times

 Many studies assess forecast value irrespective of whether the systems have any statistical
skill. Only placing a value on forecasts that meet a significance test is conservative because the
information contained in the other forecast categories (SOI phases in this case) is disregarded.

420 April = 0.23 x $0.59 = $0.14; 10 May = 0.23 x $0.46 = $0.11; 5 June = 0.21 x
$0.22 = $0.05.
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Table 2 Value of SOI-positive phase forecast

Phase month Skill (%) Planting date (PD)

20 April 10 May 5 June
March-April 11 $0.59% $0.46F N/A
April-May 25 i b $0.22

tForecast value is determined by rounding the skill score to the closest skill level in Appendix. Reported
values are calculated by weighting tabled values by the probability of each soil moisture state. fAn April-
May phase month (ie forecast) becomes known at the end of May and so cannot inform decisions at these
PDs.

at which operational statistical forecast systems have particularly low skill
levels.

The value of improving the timeliness, taken here to mean the availability
of the forecast relative to the timing of decisions, of SOI-negative and positive
phase forecasts was assessed by taking the maximum skill scores obtained in
July and assuming that this same level of skill was available at each PD. In
effect, the skill available later in the season was brought forward to when
decisions about crops and input use actually are made.

Improving the timeliness of the SOI-negative phase was valued annually at
$12.95, $4.74 and $3.23/ha for the 20 April, 10 May and 5 June PDs
(Table 3). Taking into account the probabilities of each PD, the weighted
value of improving timeliness was $6.42/ha annually. Improving the
timeliness of the SOI-positive phase forecast was valued at $17.96, $12.05
and $0.79/ha for the 20 April, 10 May and 5 June PDs, respectively. Taking
into account the probabilities of each PD, the weighted value of improving
timeliness was $10.71/ha.

Because the SOI-negative and SOI-positive phases are just two of the five
phases possible, the economic value derived from their use was weighted by
their probability of occurrence. The SOI-negative phase occurred in 22 of
126 years (17 per cent), while the SOI-positive phase occurred in 28 of
126 years (22 per cent). Accordingly, if improved timeliness of both phases
could be achieved, and assuming that none of the other phases provide useful
information, the annual value of the SOI system was found to increase by a
total of $3.45/ha.’

These findings support other empirical work on the importance of forecast
timeliness and reinforce evidence from surveys of users in Australia that have
highlighted timeliness as a key impediment to forecast use (URS Australia
2001). For mixed farms in Central West NSW, an improvement in the
timeliness of operational seasonal climate forecasts provides more value than
improving the skill of forecasts provided later in the winter cropping season.

As is the case in Australia, seasonal climate forecasting is increasingly
drawing on the use dynamic climate models rather than statistical based

30.17 x $6.42 (SOI-negative) + 0.22 x $10.71 (SOI-positive) = $3.45/ha
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Table 3 Value of improved timeliness of SOI-negative and SOI-positive phases

Planting date (PD) Weighted
economic
20 April 10 May 5 June value
SOI-negative (dry forecast)
Skill at PD 0% 0% 0%
Skill at July 44% 44% 44%
Value of skill at PD} $0.00 $0.00 $0.00 $0.00
Value of July skill at PD} $12.95 $4.74 $3.23 $6.42
Net value of timeliness $12.95 $4.74 $3.23 $6.42
SOI-positive (wet forecast)
Skill at PD 11% 11% 25%
Skill at July 48% 48% 48%
Value of skill at PD $0.59 $0.46 $0.22 $0.43
Value of July skill at PD $18.55 $12.51 $1.00 $11.14
Net value of timeliness $17.96 $12.05 $0.79 $10.71

TA negative skill score existed for March/April phase month. This was set to zero on the basis that it would
be irrational for any farmer to knowingly use a forecast with negative skill. {Forecast value is determined
by rounding the skill score to the closest skill level in Appendix. Single values calculated by weighting
tabled values by the probability of each soil moisture state.

Bold text signifies the key result for each forecast.

systems. Dynamic climate models have the potential to provide longer lead-
time (ic the time between when the forecast is issued and the response in
relevant climatic variables) and provide a better understanding of climate
systems and the limits to predictability (Australian Academy of Science
2000).

7. Conclusions

We have examined the implications for valuing an information-based
technology, seasonal climate forecasting, from representing uncertainty in a
state-contingent manner. We found that the state-contingent approach
generally valued climate forecasts less than did expected value approaches.
This result arose because the long-term farm plan from the DSP model is
better balanced for uncertainty, and hence, a climate forecast does not call
forth such large changes in farm plans.

We explored how the attributes of a forecast system and attributes of the
decision environment affect forecast value. As expected, forecast skill is
strongly related to value, but the relationship is not linear. The overall value
of the forecast system, taking into account the probabilities of all planting
conditions (PD and soil moisture levels), ranged from an annual value of
$0.20 to $23.18/ha, depending on forecast skill. One aspect of the decision
environment that had an important influence on forecast value was the
available PD. The annual value of the forecast at different PDs ranged from
$0.38 to $37.83/ha for the 20 April PD, from $0.20 to $23.23/ha for the 10
May PD and from $0.00 to $8.45/ha for 5 June PD. Earlier planting
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opportunities provided the greatest scope for land use change and to
profitably change the use of inputs like nitrogen.

The BoM’s statistical based forecast system has a skill score of 20 per cent
in the Central West of NSW, which the DSP model valued at $0.96/ha or
approximately $1.71 million annually for the total crop area in the Central
West. The BoM’s forecast system captured approximately 4.1 per cent of the
value of a perfect forecast system. The low value associated with the BoM’s
statistical based forecast system is directly related to skill. Doubling of
current skill levels (ie to 40 per cent) would increase the value of a forecast
system by fivefold to $4.80/ha. This offers a net improvement in forecast
value of $3.84/ha annually. The economic value of an improvement in skill of
this magnitude in the Central West alone would be $6.82 million annually.

Turning to the SOI phase forecasting system, only two SOI phases were
found to have statistically significant skill in predicting growing season
rainfall for Condobolin — the ‘SOI-negative’ phase, associated with below
median rainfall, and the ‘SOI-positive’ phase, associated with above median
rainfall. Only forecast information (phase months) that becomes available at
the time decisions are made was valued, which meant that in the case study
region, we only valued the SOI-positive phase that had a skill score of 11 and
25 per cent for the ‘March—April’ and ‘April-May’ phase months, respec-
tively. We estimated an annual value on the SOI phase system of just $0.10/ha
for the case study region.

Poor timeliness is a major contributor to the low value of the SOI phase
system. While there is some skill in SOI-negative and SOI-positive phases,
most skill is apparent in forecasts released later in the season after major farm
decisions have been made. If the same level of skill could be realised much
earlier, the SOI phase system would be more valuable to farmers. The value
of the SOI phase system was found to increase by $3.45/ha if improved
timeliness of both phases could be achieved.
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