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ABSTRACT

Autocorrelated residuals and a heteroskedastic error variance are both

jointly and separately incorporated into a Box-Cox transformed model. A

quarterly demand equation for pork is used for purposes of illustration.

Results indicate that both functional form and error term specification

play a crucial role in hypothesis testing and estimation of elasticities.
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Error Term Specification in Transformed Models

By

David Smallwood and Jim Blaylock*

An important issue in many applied demand analyses employing single equation

demand models is the choice of the functional form to use in estimating consumer

response parameters. Functional forms have been traditionally...chosen on the basis

of several criteria: 1) ease of estimation; 2) fit to the data; 3) simplicity of

interpretation and; 4) compatibility with classical demand theory. The forms most

often chosen include the linear, the double-log, the semi-log, inverse, and log-

inverse models. These models are linear in the unknown parameters and, hence, may

be conveniently estimated via ordinary least squares procedures. Rapidly declining

computer costs and the availability of advanced econometric software have helped

expand the choice set of functions to include many non-linear specifications which

were previously excluded by criteria (1) and (3). Several recent studies have em-

ployed a monotonic transformation proposed by Box and Cox as a method to improve

model fit and as a statistical tool to select the "appropriate" functional form

(Chang, Hassan and Johnson, and Kulshreshtha). While the Box-Cox transformation

(BCT) is a potentially useful device for discriminating among alternative functional

forms, in most cases it has been applied without careful consideration of the

underlying assumptions embodied in the statistical model.

Potential misuse of the BCT can be linked to two restrictive assumptions con-

cerning the underlying error distribution. The first is the assumption of non-

autocorrelated residuals. Savin and White have indicated that tests for functional

form and autocorrelation need to be jointly considered. That is, using the BCT to

test for functional specification can yield erroneous conclusions if autocorrelation

is not simultaneously taken into account. The second consideration is the problem
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of a heteroskedastic error variance. Zarembka has shown in a special case that if

the error variance is heteroskedastic, then the estimator of the BCT parameter

on the dependent variable is biased in the direction which would compensate for

heteroskedasticity. As a result elasticity estimates and other parameters of

interest are also biased. Furthermore, Gaudry and Dagenais have indicated that it

is possible to begin with a nonlinear model with a homoskedastic error variance

and have heteroskedasticity induced into the Box-Cox model via the estimation

process.' Consequently, it is necessary to simultaneously test for functional

form and error term specification.

The objective of this paper is to investigate the role that function specifi-

cation, autocorrelation, and heteroskedasticity play in the estimation of a single

equation demand function for pork.2 We examine each of these factors independently

and in combination, using a structured statistical model, to ascertain the impact

of each factor on the estimated demand equation and on subsequent price and income

elasticities.

GENERAL MODEL DEVELOPMENT

The Box-Cox transformation for any positive variable W is defined as

w(xw) cisrxw — Aw # 0

= ln(W) X
w 

0

where Xis a parameter to be estimated. A desirable property of the BCT is that

with the addition of a single parameter kw one obtains a general class of power

transformations including several that are frequently used in empirical analyses.

For example, if Aw = 1 one obtains the linear transformation, if xw = 0 one obtains

the logarithmic transformation, and if Xw = -1 one obtains the inverse trans-

formation. The BCT is typically employed in econometric models of the form

(1) y(AY) a + Kz x(Ak) + u (t nk=1 k-kt t '
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for each observation t where ut is the equation error term, Yt is an endogenous

variable, Xkt, k=1, K, are exogenous variables, Bk, k=1, K

are coefficients on the transformed exogenous variables, Ay and Akt, k=1,

K are BCT parameters, and a is a constant. The BCT model provides a

convenient framework for allowing both increased model flexibility and a

means for discriminating among many of the commonly used classical functions.

Specification of the error structure for ut is required for estimation of

equation (1). With few exceptions, the error term ut in the Box-Cox models is

assumed to be independently, identically, and normally distributed with mean

zero and constant variance for all t. However, imposition of these conditions

is unnecessarily restrictive and may lead to biased parameter estimators if

the underlying error structure violates these assumptions. Furthermore,

sZarembka demonstrates that the Box-Cox transformation parameter on the dependent

variable will be biased in the direction which will tend to stabilize the

error variance, and hence, the predicted errors cannot be used to test for

heteroskedasticity ex post. A solution to this problem is to allow more flexi-

bility in the error structure and estimate it simultaneously with the functional

form.

We make the assumption that if ut is heteroskedastic it can be adequately

decribed by a form suggested by Gaudry and Dagenais:

(2) ut =t1p2exp( + (SiZt( Az)) 1/2vt

where Z is an exogenous variable used to explain the heteroskedasticity,

60 is a constant, Az is a BCT parameter, and vt is a random disturbance term

distributed with mean zero and constance variance. It follows that

(3) E(4)' = wtt = q)2 exP[60 + 1zt( Az)]

= (P2 exp[ 61:Zt(z)]
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where e = 2 exp{60} . Many of the traditional empirical specifications

of heteroskedasticity are special cases of equation (3) and are shown below.

Restriction

Heteroskedastic Error Specifications

Functional form Description

none

0, 61 = 1

= 061

tot t = (P2exP [ z ( )

_ A2 61
wtt cIt

w = cf.2Ztt

general

(Park, 1966)

univariate

w
tt 

homoskedastic

In order to correct for the presence of autocorrelated residuals in the above

model, we assume that the vt's follow a stationary first-order autocorrelation

process of the form

(4) vt = Pvt-1 + wt, I P I < 1

where wt is assumed to be a normally, independently, and identically distributed

random error term with mean zero and constant variance.

Pork Model

The regression model we propose for estimating the quarterly demand for

pork can be written as follows:
•

5 3
(5) yT=a+Z X2,k) +E1D+ u(A)

k=1 k Kt r=1 r r t

where the sample period (t = First quarter 1960 through Fourth quarter 1979)

was chosen for expository purposes only and the following definitions apply:

Yt : per capita consumption of pork (Source: Livestock and Meat Situation)



Xit : retail price index of pork (Source: Livestock and Meat Situation)

divided by the Consumer Price Index (CPI, 1967=100, Source: Bureau

of Labor Statistics)

X2t : retail price index of beef and veal divided by CPI (Source: Livestock
and Meat Situation)

X3t : retail price index of poultry divided by CPI (Source: Poultry and Egg
Situation)

X4t : retail price index of fish divided by CPI (Source: Bureau of Labor
Statistics)

X5t : index of per capita disposable income divided by CPI (Source: Survey
of Current Business)

D1,D2,D3 : seasonal dummies for the second, third, and fourth quarters
of the calendar year, respectively.

Prices and income were divided by the CPI to impose homogeneity of degree

zero on the demand function. The dummy variables enter linearly for ease

of estimation and simplicity of interpretation. The stochastic error

term ut in equation (5) is specified in equations (2) - (4) and the price of

pork is selected as the Z variable to stabilize the error variance.3 The

model is estimated via a non-linear maximum likelihood procedure (Liem).

EMPIRICAL RESULTS

Each of the "classical" functional forms, i.e., the linear, double-log, semi-log,

inverse, and log-inverse, were estimated both with and without the assumption of

first-order autocorrelation. Variations of the general model that were estimated

and the relationships among them are reported in Figure 1. Estimated parameters,

asymptotic standard errors, and the maximum values of the alternative log-

likelihood functions are presented in Table 1.

To statistically compare the fit of the alternative models maximum likelihood

ratio tests are used. This test is appropriate since many of the models are

nested. The maximum likelihood ratio test statistic is defined as -2 times the

logarithm of the ratio of the restricted to the unrestricted likelihood function.



Figure 1. Nesting Relationships Among Models'.
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(BC) : Box-Cox model with a homoskedastic-nonautoregressive error term,

(BCA) : Box-Cox model with a homoskedastic-first-order autoregressive error

term,

(BCH) : Box-Cox model with a heteroskedastic-nonautoregressive error term

and,

(BCAH) : Box-Cox model with a heteroskedastic-first-order autoregressive

error term.

b. 
Restrictions on the parameters are denoted below the model designation.

Restrictions are cummulative in the direction of the diagram arrows.

c' These models are not estimated.



Table 1. Parameter Estimates

Independent Variables Transformation Parameters 

Auto-
Correlation
Parameter

Neteroskedastic
Parameters

Model a 0
1 

0
2 

0 0
4 

0 Y
2 

7
3 

A A 
4 5 1 2 

.0 a A -LL
3 5 1 1 2 3 

Linear 1.542 -1.382 0.655 0.159 -0.187 -0.043 -0.097 -0.087 0.112 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 - 223.74
(0.148) (0.107) (0.103) (0.141) (0.081) (1.413) (0.018) (0.019) (0.019)

Linear A 1.484 -1.347 0.763 0.130 -0.144 -1.107 -0.095 -0.088 0.114 1.0 1.0 1.0 1.0 1.0 1.0 0.448
(0.152) 

0.0 230.90
(0.274) (0.171) (0.145) (0.219) (0.134) (2.220) (0.019) (0.016) (0.016)

Double-log 0.626 -0.874 0.406 '0087 -0.138 0.024 -0.056 -0.051 0.060 0.0 0.0 0.0 0.0 0.0 0,0 0.0 0.0 - 233.77

Double-log A 

(0.172) (0.066) (0.061) (0.082) (0.050) (0.074) (0.010) (0.010) (0.010) 

410.477 -0.841 0.470 0.039 -0.235 -0.039 -0.055 .051 0.060 0.0 0.0 0.0 0.0 0.0 0.0
:121

0.0 - 243.07
(0.285) (0.104) (0.079) (0.117) (0.090) (0.122) (0.010) (0.009) (0.008) (0)

Semi-log 0.847 -1.480 0.663 0.171 -0.208 0.031 -0.097 -0.087 0.111 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 - 234.01
(0.296) (0.113) (0.104) (0.141) (0.085) (0.128) (0.018) (0.018) (0.018)

Semi-log A 0.695 -1.448 0.762 0.135 -0.193 -0.032 -0.096 -0.088 0.112 1.0 0.0 0.0 0.0 0.0 0.0 0.416 0.0 - 240.58
(0.446) (0.170) (0.137) (0.197) (0.142) (0.192) (0.018) (0.016) (0.016) (0.148)

231.52
(0.108) (0.113) (0.110) (0.144) (0.101) (0.012) (0.018) (0.018) (0.019)

Inverse 0.792 -1.532 0.675 0.151 -0.228 0.002 -0.096) -0.086 0.109 1.0 -1.0 -1.0 -1.0 -1.0 -1.0 0.0 0.0 -

Inverse A 0.743 -1.501 0.772 0.123 -0.220 -0.002 -0.095 -0.086 0.111 1.0 -1.0 -1.0 -1.0 -1.0 -1.0 0.420 0.0 - 238.28
(0.170) (0.186) (0.145) (0.181) (0.170) (0.018) (0.018) (0.017) (0.016) (0.152)

Log-inverse 0.580 -0.893 0.415 0.064 -0.157 0.001 -0.055 -0.051 0.059 0.0 -1.0 -1.0 -1.0 -1.0 -1.0 0.0 0.0 - 229.14
(0.065) (0.074) (0.066) (0.086) (0.060) (0.007) (0.011) (0.011) (0.011)

Log-inverse A 0.528 -0.859 0.480 0.020 -0.151 -0:004 4.054 4.051 0.059 0.0 -1.0 -1.0 -1.0 -1.0 -1.0 0.501 0.0 - 239.26
(0.116) (0.121) (0.087) (0.112) (0.112) (0.012) (0.010) (0.010) (0.009) (0.148)

0.569 -0.750 0.374 -0.039 0.003 -0.163 -0.053 -0.052 0.059 -0.063 1.208 5.909 2.890 18.638 13.015. 0.0 0.0 - 246.00
(0.104) (0.274) (0.193) (0.107) (0.008) (0.125) (0.021) (0.020) (0.024) (0,639)(1.057) (2.593) (2.315) (7.810) (3.506)

0.558 -0.709 0.409 -0.014 0.002 -0.137 -0.052 -0.051 0.058 -0.126 1.456 4.400 3.560 19.892 13.418
(0:317578) 

0.0 - 251.26
(0.087) (0.2441 (0.208) (0.123) (0.008) (0.133) (0.018) (0.017) (0.020) (0.546) (0.930)(2.827) (4.279)(12.075) (5.574)

bC

BCH 0.0 1.382 6.451 248.660.513 -0.678 0.387 0.005 0.005 -0.103 -0.045 -0.042 0.053 -0.387 0.993 3.883 -19.303 17.117 14.796
(0.120) (0.324) (0.235) (0.047) (0.013) (0.102) (0.023) (0.022) (0.028) (0.852) (1.088)(3.091)(56:90) (8.391) (4.343) (2.812)(13.046)

0.473 -0.570 0.383 0.004 0.005 -0.900 -0.038 -0.036 0.045 -0.675 0.902 2.346 -19.682 16.701 14.410 
0.411
(0.162) (2.143) (11.05) 

0.994 10.293 255.04
(0.105) (0.293) (0.238) (0.062) (0.020) (0.118) (0.019) (0.018) (0.023) (0.842) (1.291)(3.101) (109.4) (14.95) (6.649)

Mote: Values in parenthesis are asymptotic standard errors. IL is the maximum value of the log-likelihood function.



This test statistic is asymptotically distributed under the null hypothesis as

a chi-square random variable with the degrees of freedom corresponding to the

number of independent parametric restrictions placed on the unrestricted model.

Comparison of the alternative nested models involves comparing the calculated

t.
test statistics with the tabulated values of the chi-square variable at the 0.05

significance level with the appropriate degrees of freedom. The calculated

values of the chi-square variable for the alternative models are not presented

but can be easily derived from Table 1.

Results indicate that the autocorrelated versions of the "classical" functions

are a statistical improvement over the nonautocorrelated forms in all cases. The

BC, BCH, and BCAH models are a statistically significant improvement over the non-

autocorrelated "classical" forms in all cases as are the BCA and BCAH over the

autocorrelated versions of the "classical" forms. Test statistics indicate that

the BCA, BCH, and BCAH models are a statistical improvement over the BC model.

Both the BCA and BCH models are rejected in favor of the more general BCAH model.

The change in the magnitude of the transformation parameters was substantial in

some cases. For example, the BCT on the dependent variable changed from -0.063 in

the BC model to -0.675 in the BCAH specification. The autocorrelation coefficient

(p) was significant in all the autoregressive models but the parameters associated

with the analytic form of the heteroskedasticity (i.e. 61 and xz) were not signifi-

cant as indicated by individual t-tests. The joint interaction of the two

parameters did, however, produce a significant statistical improvement as was noted

above. This would appear to indicate that likelihood ratio tests are a more

appropriate vehicle than t-statistics for testing homoskedasticity of the error

variance (at least with the heteroskedastic form postulated in this paper) for

these types of nonlinear models.
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In summary, the general BCAH Model is a significant statistical improvement

as indicated by chi-square tests over all the simpler model specifications. This

lends supporting evidence to the contention that the traditional specification of

the error term in the simple BC model is incorrect. Further evidence is provided

by analyzing the elasticities generated from the alternative models.

The dummy variables for seasons are found to be statistically significant and

display the same general pattern in each of the estimated models. Examination of

the coefficients reveals that, other variables being the same, pork demand is

lower in the second and third quarters and higher in the fourth than in the base

period (first quarter). Partial differentiation of equation (5) reveals that the

magnitude of the seasonality variables on consumption depends on the coefficients

of both the dummy variables as well as the BCT parameter on the dependent variable.

For example, if Xy= I the seasonal effect on demand relative to the base period is

equal to the coefficient on the dummy variable. Similarly for ky= 0, the seasonal

effect is proportional to the level of consumption, with the coefficient of the

dummy variable being the constant of proportionality. For Ay< 0, as was found in

the unconstrained models, the seasonal effect on demand increases more than propor-

tionately to the level of consumption.

The own price, cross-price, and income elasticities for the alternative models

are presented in Table 2. The BCH and BCAH specifications were the only models for

which all elasticities were of the expected sign. That is, the income elasticity is

negative (researchers have generally found pork to have a negative income elasticity,

e.g. Kulshreshtha), the own price elasticity is negative, and all crossprice elas-

asticities are positive. The nonautoregressive and autoregressive "classical"

forms indicate that fish is a complement of pork (i.e., the cross elasticity is

negative). The BC and BCA models indicate that the cross-price elasticity between

poultry and pork is negative. In addition, all the "classical" forms generate very

-.•••••• •. •



Table 2. Estimated Elasticities

Model Al
Cross Price Elasticities

Pork Beef Poultry Fish Income

Linear -0.817 0.393 0.091 -0.121 -0.003
(0.182) (0.174) (0.246) (0.126) (23.753)Linear A -0.797 0.458 0.075 -0.093 -0.067
(0.291) (0.243) (0.380) (0.210) (37.383)Double-log -0.874 0.406 0.087 -0.138 0.024
(0.066) (0.061) (0.082) (0.050) (0.074)Double-log A -0.841 0.470 0.039 -0.125 -0.039
(0.104) (0.079) (0.117) (0.090) (0.112)Semi-log -0.852 0.382 0.099 -0.120 0.018
(0.065) (0.060) (0.081) (0.049) (0.073)Semi-log A -0.833 .0.438 0.078 -0.111 -0.019
(0.097) (0.079) (0.113) (0.081) (0.110)Inverse -0.863 0.374 0.086 -0.118 0.014
(0.069) (0.061) (0.082) (0.052) (0.065)Inverse A -0.846 0.428 0.070 -0.114 -0.013
(0.104) (0.080) (0.104) (0.087) (0.101)Log-inverse -0.874 0.400 0.064 -0.141 0.013
(0.072) (0.063) (0.086) (0.054) (0.067)Log-inverse A -0.841 0.462 0.020 -0.135 -0.038
(0.118) (0.084) (0.119) (0.101) (0.119)BC -0.797 0.485 -0.040 0.025 -0.279
(0.066) (0.105) (0.109) (0.044) (0.156)BCA -0.784 0.518 -0.015 0.019 -0.248
(0.090) (0.126) (0.131) (0.048) (0.192)BCH -0.857 0.556 0.006 0.040 -0.227
(0.062) (0.116) (0.057) (0.067) (0.151)KAN -0.843 0.607 0.006 0.041 -0.228
(0.093) (0.135) (0.089) (0.104) (0.202) 

Note: Elasticities are evaluated at the sample means. Estimates of the standard errors are inparentheses.

1/ The models designated with an A (e.g. Linear A) indicates that the functional form was estimatedWM first-order autocorrelation.
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small negative income elasticities. On the other hand, the Box-Cox specifications

have income elasticities ranging from -0.227 (BCH) to -0.279 (BC). A negative

income elasticity would indicate that pork is regarded as an inferior good.

The own price elasticity for pork was relatively stable around a value of

-.85 regardless of the model specification. The cross-price elasticity between

beef and pork varied from 0.393 (linear) to 0.607 for the BCAH Model. An exam-

ination of Table 2 reveals that substantial differences exist in both sign and

magnitude among the elasticities generated from the alternative models. Thus, a

priori choice of functional and error term specification can influence both

statistical fit and elasticity estimates.

Given that most empirical analyses have used the Box-Cox model with a

homoskedastic-nonautoregressive error structure, (e.g., Chang, Kulshreshtha,

and Hassan and Johnson) it appears useful to compare this model with the BCAH

specification. The cross-price elasticity between poultry and pork was of a

different sign for the two models and the beef cross-elasticity showed a 20

percent difference. The own price and income elasticities showed a 5 and 22

percentage difference, respectively, between the two models. This not only

supports the desirablity of adjusting for autocorrelation as shown by Savin

and White but also suggests that the analytic form of heteroskedasticity should

be simultaneously estimated with the remainder of the model.

Conclusions

This paper has demonstrated, via a quarterly demand model for pork, several key

points concerning the Box-Cox functional form and its error term specification.

We emphasize the fact that the Box-Cox transformation parameter on the dependent

variable can change the implied distribution of the error term which may then

bias parameter estimators. Consequently, the error specification is at least as
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important as the functional form. Many facets of this paper can be generalized

to other applications of Box-Cox models. The following conclusions appear

applicable for researchers employing Box-Cox flexible functional forms:

1. Autocorrelated residuals, which are likely to occur when time-series

data are used, should be corrected for in the Box-Cox models; mid

2. The analytic form of heteroskedasticity should be simultaneously

estimated with the nonstochastic (i.e., fixed) part of the model.

This paper also shows that the "classical" type functions, including those

estimated under autocorrelation, can yield elasticities which are substan-

tially different from those estimated from more general model specifications.

The same is true for the simpler versions of the BCAH model. We would suggest

that researchers using the Box-Cox transformation should consider estimating

the error structure along with the nonstochastic part of the model.

Footnotes

1/ Zarembka ( p.92) also indirectly implies this result. He found that the

transformation parameter on the dependent variable was not robust to

error specification in the demand for money (p. 96).

2/ The supply of pork is assumed to be independent of the current period price.

3/ Preliminary analysis found that the price of pork was the most appropriate

variable for stabilizing the error variance as determined by increases in

the estimated likelihood function.

4/ The estimated standard errors reported in this paper are only approximate.
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