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ERROR SPECIFICATION IN TRANSFORMED MODELS
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ABSTRACT

Autocorrelated residuals and a heteroskedastic error variance are both
jointly and separately incorporated into a Box-Cox transformed model. A
quarterly demand equation for pork is used for purposes of illustration.
Results indicate that both functional form and error term specification

play a crucial role in hypothesis testing and estimation of elasticities.
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Error Term Specification in Transformed Models

By

David Smallwood and Jim Blaylock*

An important issue in many applied demand analyses employing single equation
demand models is the choice of the functional form to use in estimating consumer
response parameters. Functional forms have been traditionally._chosen on the basis
of several criteria: 1) ease of estimation; 2) fit to the data; 3) simplicity of
interpretation and; 4) compatibilit§ with classical demand theory. The forms most
often chosen include the linear, the double-log, the semi-log, inverse, and log-
inverse models. These models are linear in the unknown parameters and, hence, may
be conveniently estimated via ordinary least squares procedures. Rapidly declining
computer costs and the availability of advanced econometric software have helped
expand the choice set of functions to include many non-linear specifications which
were previously excluded by criteria (1) and (3). Several recent studies have em-

ployed a monotonic transformation proposed by Box and Cox as a method to improve

model fit and as a statistical tool to select the "appropriate” functional form

(Chang, Hassan and Johnson, and Kulshreshtha). While the Box-Cox transformation
(BCT) is a potentially useful device for discriminating among alternative functional
forms, in most cases it has been applied without careful consideration of the
underlying assumptions embodied in the statistical model.

Potential misuse of thé BCT can be linked to two restrictive assumptions con-
cerning the underlying error distribution. The first is the assumption of non-
autocorrelated residuals. Savin and White have indicated that tests for functional
form and autocorrelation need to be jointly considered. That is, using the BCT to
test for functional specification can yield erroneous conclusions if autocorrelation

is not simultaneously taken into account. The second consideration is the problem

* The authors are economists with USDA/ESS/NED/FE. The views expressed herein
are not necessarily those of ESS or USDA. Paper presented at the annual AAEA
meetings held at Clemson University on July 25-29, 1981.
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of a heteroskedastic error variance. Zarembka has shown in a special case that if
the error variance is heteroskedastic, then the estimator of the BCT parameter
on the dependent variable is biased in the direction which would compensate for
heteroskedasticity. As a result elasticity estimates and other parameters of
interest are also biased. Furthermore, Gaudry and Dagenais have indicated that it
is possible to begin with a nonlinear model with a homoskedasti; error variance
and have heteroskedasticity induced into the Box—-Cox model via the estimation
process.l Consequently, it is necessary to simultaneously test for functional
form and error term specification.

The objective of this paper is to investigate the role that function specifi-
cation, autocorrelation, and heteroskedasticity play in the estimation of a single
equation demand function for pork.2 We examine each of these factors independently
and in combination, using a structured statistical model, to ascertain the impact
of each factor on the estimated demand equation and on subsequent price and income

elasticities.

GENERAL MODEL DEVELOPMENT

The Box-Cox transformation for any positive variable W is defined as

W LV oAy, A * O

= 1n(W) s Ay * O

where A, is a parameter to be estimated. A desirable property of the BCT is that
with the addition of a single parameter ),, one obtains a general class of power
transformations including several that are frequently used in empirical analyses.
For example, if Ay = 1 one obtains the linear transformation, if )y = O one obtains
the logarithmic transformation, and if )y = -1 one obtains the inverse trans-

formation. The BCT is typically employed in econometric models of the form

(Ay) X A
(1) v e e v T ekxétk) tuo o, (t=1,...,N)
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for each observation t where u; is the equation error term, Y is an endogenous
variable, Xy¢+, k=1, 2,..., K, are exogenous variables, By, k=1, 2,..., K
are coefficients on the transformed exogenous variables, Ay and Ax¢, k=1,
2,..., K are BCT parameters, and ¢ is a constant. The BCT model provides a
convenient framework for allowing both increased model flexibility and a
means for discriminating among many of the commonly used classical functions.
Specification of the error structure for u; is required for estimation of
equation (1). With few exceptions, the error term u; in the Box-Cox models is
assumed to be independently, identically, and normally distributed with mean
zero and constant variance for all t. However, imposition of these conditions
is unnecessarily restrictive and may lead to biased parameter estimators if
the underlying error structure violates these assumptions. Furthermore,
Zarembka demonstrates that the Box-Cox transformation parameter on the dependent
variable will be biased in the direction which will tend to stabilize the
error variance, and hence, the predicted errors cannot be used to test for
heteroskedasticity ex post. A solution to this problem is to allow more flexi-
bility in the error structure and estimate it simultaneously with the functional
form.
We make the assumption that if u; is heteroskedastic it can be adequately

decribed by a form suggested by Gaudry and Dagenais:

(2) u_ =fy2exp(s, + GIZt(xz))} l/zvt

where Z is an exogenous variable used to explain the heteroskedasticity,
8o is a constant, ), is a BCT parameter, and vy is a random disturbance term

distributed with mean zero and constance variance. It follows that

(3) » E(ug) = Wep = wz exp[6o + Glzt( Az)]

= ¢2 exp| 6IZ,_.(kz)]
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where ¢2 = ¢2 exp{6y} . Many of the traditional empirical specifications

of heteroskedasticity are special cases of equation (3) and are shown below.

Heteroskedastic Error Specifications
Restriction Functional form Description

¢2exp[6lz(xz)] general

S
¢?z. " (Park,1966)
¢22 univariate

t

¢2 homoskedastic

In order to correct for the presence of autocorrelated residuals in the above
model, we assume that the vi's follow a stationary first-order autocorrelation

process of the form
(4) Ve = pVe-] + Ve, le] <1

where wy is assumed to be a normally, independently, and identically distributed

random error term with mean zero and constant variance.

Pork Model
The regression model we propose for estimating the quarterly demand for

pork can be written as follows:

5 3
(Ay) _ (M) +
5 YV = et Ly BX N L D T

t

where the sample period (t = First quarter 1960 through Fourth quarter 1979)
was chosen for expository purposes only and the following definitions apply:

Y. : per capita consumption of pork (Source: Livestock and Meat Situation)
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: retail price index of pork (Source: Livestock and Meat Situation)
‘ divided by the Consumer Price Index (CPI, 1967=100, Source: Bureau
of Labor Statistics) —

: retail price index of beef and veal divided by CPI (Source: Livestock
and Meat Situation)

¢ retail price index of poultry divided by CPI (Source: Poultry and Egg
Situation) ‘

: retail price index of fish divided by CPI (Source: Bureau of Labor
Statistics)

X5¢ : index of per capita disposable income divided by CPI (Source: Survey
of Current Business)

D;,Dp,D3 : seasonal dummies for the second, third, and fourth quarters
of the calendar year, respectively.

Prices and income were divided by the CPI to impose homogeneity of degree
zero on the demand function. The dummy variables enter linearly for ease

of estimation and simplicity of interpretation. The stochastic error

term uy in equation (5) is specified in equations (2) - (4) and the price of
pork is selected as the Z variable to stabilize the error variance.3 The

model is estimated via a non-linear maximum likelihood procedure (Liem).

EMPIRICAL RESULTS
Each of the "classical"” functional forms, i.e., the linear, double-log, semi-log,
inverse, and log-inverse, were estimated both with and without the assumption of
first-order autocorrelation. Variations of the general model that were estimated

and the relationships among them are reported in Figure 1. Estimated parameters,

asymptotic standard errors, and the maximum values of the alternative log-

likelihood functions are presented in Table 1.

To statistically compare the fit of the alternative models maximum likelihood
ratio tests are used. This test is appropriate since many of the models are
nested. The maximum likelihood ratio test statistic is defined as -2 times the

logarithm of the ratio of the restricted to the unrestricted likelihood function.




Figure 1. Nesting Relationships Among Models?.
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- (BC) : Box-Cox model with a homoskedastic-nonautoregressive error term,

(BCA) : Box-Cox model with a homoskedastic-first-order autoregressive error
term,

(BCH) : Box-Cox model with a heteroskedastic-nonautoregressive error term
and,

(BCAH) Box-Cox model with a heteroskedastic—-first-order autoregressive
error term.

" Restrictions on the parameters are denoted below the model designation.
Restrictions are cummulative in the direction of the diagram arrows.

" These models are not estimated.




Table 1. Parameter Estimates

Auto-

Correlation Heteroskedasti{
Independent Variables Transformation Parameters Parameter Paramn:terst ¢

A -
Model 53 s“ Bs A8 v, v, . P cl . L

Linear 1.542 -1.382  0.655  0.159  -0.187 -0.043  -0.097  -0.087  0.112 . . . . 1.0 . 0.0 0.0 223.74
(0.148) (0.107) (0.103) (0.141)  (0.081) (1.413) (0.018)  (0.019) (0.019)

Linear A 1.484 -1.347 0.763 0.130 -0.144 -1.107 -0.095 -0.088 0.114 1.0 . . . 1.0 . .448 0.0 230.90
(0.274) (0.171) (0.145) (0.219) (0.134) (2.220) (0.019) (0.016) (0.016)

Double-Tog 0.626 -0.874  0.406  °0:087  -0.138 0.024 -0.056  -0.051  0.060 - 0.0 O. . . 0.0 . . 0.0 233.77
(0.172) (0.066) (0.061) (0.082)  (0.050) (0.074) (0.010)  (0.010) (0.010)

Double-log A 0.477 -0.841 0.470 0.039 -0.235 -0.039  -0.055 -0.051 0.060 0.0 . . . 0.0 . 0.486 0.0 243.07
(0.285) (0.104) (0.079) (0.117) (0.0%0) (0.122) (0.010) (0.009) (0.008)

Semi-log 0.847 -1.480 0.663 0.171 -0.208  0.031 -0.097 -0.087 0.111 1.0 0. . . 0.0 . . 0.0 234.01
(0.296) (0.113) (0.104) (0.141) (0.085) (0.128) (0.018) (0.018) (0.018)

Semi-log A 0.695 -1.448 0.762 0.135 -0.193 -0.032  -0.096 -0.088 0.112 1.0 . . . . . 0.0
(0.446) (0.170) (0.137) (0.197) (0.142) (0.192) (0.018) (0.016) (0.016)

Inverse 0.792 -1.532 0.675 0.151 -0.228  0.002 -0.096) -0.086 0.109 1.0 . . . . . 0.0
-(0.108) (0.123) (0.110)  (0.144) (0.101) (0.012) (0.018) (0.018) (0.019)

Inverse A 0.743 -1.501 0.772 0.123 -0.220 -0.002 -0.095 -0.086 0.111 1.0 . . . 0.420 0.0
(0.170) (0.186) (0.145) (0.181) (0.170) (o0.018) (0.018) (0.017) (0.016)

Log-inverse 0.580 -0.893 0.415 0.064 -0.157  0.001  -0.055 -0.051 0.059 0.0 . . . . . 0.0 229.14
(0.065) (0.074) (0.066) (0.086) (0.060) (0.007) (0.011) (0.011) - (0.011)

Log-inverse A 0.528 -0.859 0.480 0.020 -0.151 -0.004  -0.054 -0.051 0.059 0.0 . . . . . . 0.0 239.26
(0.116) (0.121) (0.087) (0.112) (0.112) (0.012) (0.010) (0.010) (0.009)

B 0.569 -0.750 0.374  -0.039 0.003 -0.163  -0.053 -0.052 0.059  -0.063 1.208 5,909 2.890 18.638 13.015- . 0.0 246.00
(0.104) (0.274) (0.193) (0.107) (0.008) (0.125) (0.021) (0.020) (0.024) (0,639) (1.057) (2.593) (2.315) (7. 810) (3.506)

BCA 0.558 -0.709  0.409 -0.014 0.002 -0.137  -0.052  -0.051  0.058 -0.126 1.456 4.400 3.560 19.892 13.418 . 0.0 251.26
(0.087) (0.244) (0.208) (0.123)  (0.008) (0.133) (0.018)  (0.017) (0.020) (0.546) (0.930)(2.827) (4.279)(12.075) (5.574) .

0.513 -0.678  0.387  0.005 0.005 -0.103  -0.045  -0.042  0.053  -0.387 0.993 3.883 -19.303 17.117_ 14.79% 1.382  6.451 248.66
(0.120) (0.324) (0.235) (0.047)  (0.013) (0.102) (0.023)  (0.022) (0.028) (0.852) (1.088)(3.091) (56.30) (8.391) (4.343) , (2.812)(13.046)

BCAY 0.473  -0.570 0.383 0.004 0.005 -0.900 -0.038 o 2 TS 2804
. . . 900 -0 -0.036  0.045  -0.675 0.902 2.6 - X X : ’
(0.105) (0.293) (0.238) (0.062)  (0.020) (0:118) (0.019) (0.018) (0.023) (0.842) (1.291)(3.101) (106 4y (14 98) te.engy (0-162) (2.143) (11.05)

Note: Values in parenthesis are asymptotic standard errors, LL {s the maximum value of the log-11kelihood function.
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This test statistic is asymptotically distributed under the null hypothesis as

a chi-square random variable with the degrees of freedom corresponding to the
number of independent parametric restrictions placed on the unrestricted model.
Comparison of the alternative nested models involves comparing the calculated
test statistics with the tabulated values of the chi-square variable at the 0.05
significance level with the appropriate degrees of freedom. The calculated
values of the chi-square variable for the alternative models are not presented
but can be easily derived from Table 1.

Results indicate that the autocorrelated versions of the "classical” functions
are a statistical improvement over the nonautocorrelated forms in all cases. The
BC, BCH, and BCAH models are a statistically significant improvement over the non-
autocorrelated "classical" forms in all cases as are the BCA and BCAH over the
autocorrelated versions of the "classical” forms. Test statistics indicate that
the BCA, BCH, and BCAH models are a statistical improvement over the BC model.

Both the BCA and BCH models are rejected in favor of the more general BCAH model.

The change in the magnitude of the transformation parameters was substantial in
some cases. For example, the BCT on the dependent variable changed from -0.063 in
the BC model to -0.675 in the BCAH specification. The autocorrelation coefficient
(p) was significant in all the autoregressive models but the parameters associated
with the analytic form of the heteroskedasticity (i.e. 81 and A,) were not signifi-
cant as indicated by individual t-tests. The joint interaction of the two
parameters did, however, produce a significant statistical improvement as was noted
above. This would appear to indicate that likelihood ratio tests are a more
appropriate vehicle than t-statistics for testing homoskedasticity of the error
variance (at least with the heteroskedastic form postulated in this paper) for

these types of nonlinear models.
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In summary, the general BCAH Model is a significant statistical improvement
as indicated by chi-square tests over all the simpler model specifications. This
lends supporting evidence to the contention that the traditional specification of
the error term in the simple BC model is incorrect. Further evidence is provided
by analyzing the elasticities generated from the alternative models.

The dummy variables for seasons are found to be statistically significant and
display the same general pattern in each of the estimated models. Examination of

the coefficients reveals that, other variables being the same, pork demand is

lower in the second and third quarters and higher in the fourth than in the base

period (first quarter). Partial differentiation of equation (5) reveals that the
magnitude of the seasonality variables on consumption depends on the coefficients
of both the dummy variables as well as the BCT parameter on the dependent variable.
For example, if Ay= 1 the seasonal effect on demand relative to the base period is
equal to the coefficient on the dummy variable. Similarly for Xy= 0, the seasonal
effect is proportional to the level of consumption, with the coefficient of the
dummy variable being the constant of proportionality. For Ay< 0, as was found in
the unconstrained models, the seasonal effect on demand increases more than propor-
tionately to the level of consumption.

The own price, cross—price, and income elasticities for the alternative models
are presented in Table 2. The BCH and BCAH specifications were the only models for
which all elasticities were of the expected sign. That is, the income elasticity is
negative (researchers have generally found pork to have a negative income elasticity,
e.g. Kulshreshtha), the own price elasticity is negative, and all crossprice elas-
asticities are positive. The nonautoregressive and autoregressive "classical”
forms indicate that fish is a complement of pork (i.e., the cross elasticity is
negatiﬁe). The BC and BCA models indicate that the cross-price elasticity between

poultry and pork is negative. In addition, ali the "classical™ forms generate very




Table 2, Estimated Elasticities

Cross Price Elasticities

Model 1/
Pork Beef Poultry Fish

Linear -0.817 0.393 0.091
(0.182)
Linear A -0.797
(0.291)
Double-log -0.874
(0.066)
Double-log A -0.841
(0.104)
Semi-log -0.852
(0.065)
Semi-log A -0.833
(0.097)
Inverse ' -0.863
(0.069)
Inverse A -0.846
(0.104)
Log-inverse -0.874
: (0.072)
Log-inverse A -0.841
(0.118)
BC -0.797
(0.066)
BCA -0.784
(0.090)
BCH -0.857
- (0.062)
BCAH -0.843
(0.093) .

Note: Elasticities are evaluated at the sample means. Estimates of the standard errors are in
parentheses.

1/ The models designated with an A (e.g. Linear A) indicates that the functional form was estimated
with first-order autocorrelation.
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small negative income elasticities. On the other hand, the Box-Cox specifications

have income elasticities ranging from -0.227 (BCH) to -0.279 (BC). A negative

4

income elasticity would indicate that pork is regarded as an inferior good.

The own price elasticity for pork was relatively stable around a value of
-.85 regardless of the model specification. The cross-price elasticity between
beef and pork varied from 0.393 (linear) to 0.607 for the BCAH Model. An exam-
ination of Table 2 reveals that substantial differences exist in both sign and
magnitude among the elasticities generated from the alternative models. Thus, a
priori choice of functional and error term specification can influence both
statistical fit and elasticity estimates.

Given that most empirical analyses have used the Box-Cox model with a
homoskedastiq—nonautoregressive error structure, (e.g., Chang, Kulshreshtha,
and Hassan and Johnson) it appears useful to compare this model with the BCAH
specification. The cross-price elasticity between poultry and pork was of a
different sign for the two models and the beef cross-elasticity showed a 20
percent difference. The own price and income elasticities showed a 5 and 22
percentage difference, respectively, between the two models. This not only
supports the desirablity of adjusting for autocorrelation as shown by Savin
and White but also suggests that the analytic form of heteroskedasticity should

be simultaneously estimated with the remainder of the model.

Conclusions

This paper has demonstrated, via a quarterly demand model for pork, several key

points concerning the Box-Cox functional form and its error term specification.

We emphasize the fact that the Box-Cox transformation parameter on the dependent
variable can change the implied distribution of the error term which may then

bias parameter estimators. Consequently, the error specification is at least as
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important as the functional form. Many facets of this paper can be generalized
to other applications of Box-Cox models. The following conclusions appear

applicable for researchers employing Box—-Cox flexible functional forms:

1. Autocorrelated residuals, which are likely to occur when time-series

data are used, should be corrected for in the Box-Cox models; ard

2. The analytic form of heteroskedasticity should be simultaneously
estimated with the nonstochastic (i.e., fixed) part of the model.

This paper also shows that the "classical” type functions, including those
estimated under autocorrelation, can yield elasticities which are substan-
tially different from those estimated from more general model specifications.
The same is true for the simpler versions of the BCAH model. We would suggest
that researchers using the Box-Cox transformation should consider estimating
the error structure along with the nonstochastic part of the model.

Footnotes

Zarembka ( p.92) also indirectly implies this result. He found that the
transformation parameter on the dependent variable was not robust to

error specification in the demand for money (p. 96).

The supply of pork is assumed to be independent of the current period price.
Preliminary analysis found that the price of pork was the most appropriate
variable for stabilizing the error variance as determined by increases in
the estimated likelihood function.

The estimated standard errors reported in this paper are only approximate.
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