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Mixed Estimation: A New Persyective 

Over twenty years ago Theil and Goldberger introduced the classical

"mixed estimator" as a means of combining sample information with intro-

spectively generated stochastic linear constraints on the parameters of

a linear model. A voluminous literature developing mixed estimation

theory beyond the seminal ideas presented by Theil and Goldberger has

evolved during the last two decades (see the survey by Conway and

Mittelhammer). The technique appears destined to be included as core

material in modern textbook treatments of econometrics (e.g. see Judge,

Griffiths, Hill and Lee; Judge, Hill, Griffiths, Lutkepohl and Lee;

Theil (1971, 1978); Johnston; Kmenta; Vinod and Ullah; Madalla; Dhrymes).

A number of econometric applications using mixed estimation have appeared

in the literature in recent years (e.g. Conway and Yanagida; Hammi:g;

Hammig and Mittelhammer (1980, 1982); Holloway; Mittelhammer; Mittelhammer

and Price; Mittelhammer, Young, Tasanasanta and Donnelly; Paulus; Price

and Mittelhammer; Theil).

The theoretical literature that followed the original article by

Theil and Goldberger and on which applications were based characteristically

assumes the existence of prior stochastic constraints, and then goes on to

develop further results concerning mixed estimator properties. There has

been little discussion of the subjective probability underpinnings of

the introspective stochastic constraints that would add to the original

ethereal passage from Theil and Goldberger (p. 73):

Our idea is that such a person carries out a large number of
mixed regression analyses in the course of a lifetime, so that
he produces a similarly large number of errors (the difference
between the a priori estimates and the corresponding true values
of the parameters). Dividing these errors by the corresponding
square roots of their variances, we obtain standardized errors



which are--in the light of this subjectivist probability idea--
random drawings from a parent with zero mean and unit variance.

In all applications of the technique, the stochastic constraints

have been derived by an appeal to a confidence interval approach based

on some nondescript stochastic mechanism, the typical procedure exem-

plified by the discussion of Nagar and Kakwani:

Let us suppose that prior information is available on the first
two elements of (3. We may know, for example, that almost cer-
tainly, say with 95% probability, B

1 
lies between 0 and 1, and

132 lies between 1/4 and 3/4. If we use "two times the a rule",

the range of a, is 1/2 41/16 and that of is 1/2 ±)/1/64
and we can write

E V
1 E V

1
2 

= 1/161 1 

1/2 = fis
2 
+ V

2 
E V

2 E V
2
2
 

= 1/64.

Discussing a related example involving the prior constraint on a only,

Theil and Goldberger state:

Values of f3
1 

outside the range zero and one would then be outside

the "two-sigma" range . . . .; this gives some indication of the
virtual impossibility of such values.

A continuing weakness of mixed estimation theory and practice is

the lack of a definitive conceptualization of the fundamental stochastic

mechanism underlying the generation of the stochastic linear constraints

and a subsequent demonstration of mixed estimator properties derived within

the logic of probability theory and the paradigm of classical statistics.

Recent article's by Swamy and Mehta (1979, 1982) sharply criticize the

mixed estimation technique for its lack of probability axiom underpinnings.

In fact, Swamy and Mehta (1982, p. 6) go so far as to state that "Because

of this problem, the user of Theil's model of introspection cannot as-

cribe any meaning to numerical probabilities."
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It is the purpose of this paper to provide an approach to mixed es-

timation that provides a clear description of how outcomes of the linear

stochastic constraints are generated and thereby present a clear proba-

bility foundation for the estimator. The approach described here will

provide practitioners of mixed estimation a number of decided benefits.

First, the approach removes the seemingly ethereal origins of the prior

constraints. Second, the interpretation of the Theil-Goldberger mixed

estimator (TGME) is clarified, and under the conceptualization adopted

here, the TGME is shown to be inefficient. Third, a new mixed estimator,

called •the prior integrated mixed estimator (PINE), is introduced and is

shown to be more efficient than the TGME.

We begin the exposition by briefly reviewing the TGME technique. We

then present our conceptualization of the process generating Outcomes of

the stochastic constraints, discuss the interpretation of the TGME in that

— context, and then introduce the more efficient PINE and develop a number

. of its important properties. We end with a simple application of the PINE

to illustrate its potential use in application.

The Mixed Estimator

We begin by denoting the classical general linear model as

(1) Y=x13+u

where subtildes denote random variables, Y is a (nxl) vector of obser-

vations on the dependent variable, x is a (nxk) matrix of n observations

on the explanatory variables, is a (kxl) vector of parameters, and u is a

(nxl) vector of random disturbances. The traditional assumptions of the

general linear model are maintained, i.e. x is a matrix of fixed elements

with rank k < n, E u =101, and E uuT = a
2 
I.
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Now assume that prior information on linear combinations of the

elements of 13 is specified as

(2) r = R + V

where r is a (jxl) vector of prior estimates of j linear combinations of

the elements of f3, R is a (jxk) matrix of fixed numbers with rank j < k

representin3 the coefficients of the j linear combinations, and V is a

(jxl) vector of random errors in the prior information. Theil and

Goldberger assume that E U V' = [0] E V = [61, and EVV' = T, where T is

known.

Under the above assumptions, a straightforward application of gen-

eralized least squares to (1) and (2) results in the estimator

- - - -1(3) = 0
-2
xix + R' T

1 
R)

1 
( x'17 + R' T r).

Expounding the properties of (3) under various variations on disturbance

assumptions has occupied most of the literature since 1961 (see Conway

and nittelhammer). In particular if E V P1, f3. is a biased estimator

of 3.

Stochastic Constraint Generation

In keeping within the repeated sampling context of classical statis-

tical analysis, how is the outcome r generated from sample to sample?

From what population does the sample come? In the previous example of

Nagar and Kakwani, and of Theil and Goldberger, what stochastic mechanism

generates r = 1/2, and how would the "next" outcome r be generated? We

address these questions, and others, in the following conceptualization.



We begin by emulating, the Bayesians in specifying our prior infor-

mation in a form where probability densities represent uncertainty in

the prior information. We remain decidedly classical, however, in that

we specify not a prior density for the unknown R3 and thereby make RIS

conceptually random, but rather specify a sampling density for r where-

r is interpreted as an introspective estimator, i.e. a prior random guess--

timator, for the value of the fixed unknown R13. The density of the esti-

mator r, say, f(r), has a straightforward interpretation as representing-

the relative frequencies with which the various potential guesses about

Ithe true value of Il3 would be issued via random sampling from f(r), the

relative frequencies being in accordance with how likely we perceive one

potential value of it. to be relative to another. For example if 13
1 
were

representing an income elasticity in a demand equation, and the researcher's

introspection suggested that the value of i was certainly in the inelastic

range 0, 1 , but he or she was totally ignorant of which particular values[

were more likely than others, the density of r could be specified as uni-

form,

4 r 1 
q0 1 

I (r),, 

where I 
{5}

(0 is the indicator function taking the value 1 when reS, and

0 when /IS. The uniform density specification, implying Prob r [0,111 =1,

represents the subjective belief that the income elasticity must be in the

[0,1 range and that the researcher considers the particular potential guess

values for IZ contained in the [0,1] range to be equally likely. Reflecting

this equally likely attitude, random sampling from f(r) would generate-

guesstimates that would assume the particular values in [0,1 with equal

frequency. We assume that r is independent of y, i.e. the prior information- -

is generated independently from the sample information.
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Having specified the density of the guesstimator r, the density of

the random errors v = Re. is, of course, derivable from the density

of r. In our uniform density example above V 1 I 
11 

(V). It is-

recognized that the guesstimator r is an unbiased estimator of R iff

E V = [o].

Given the development above, the outcome r used in the TGME would

then be viewed as a random drawing from the conceptual sampling distri-

bution of potential guesses for R13, i.e. a drawing from f(r). In practice,

the researcher could utilize the computer in generating an outcome from

ithe specified f(r). The outcome, r, would be used together with the out-

come, y, generated by (1) to calculate the TGME (3) (in the usual case where
2 2
a is unknown, S = (y xb)1 (y xb)/( -k), where b is the least square

estimator, will be used in place of a
2
, resulting in an apnroximation to

(3) that improves as the sample size increases) the value of T in (3) rep-

resenting the covariance matrix of the vector r implied by f(r). In re-

peated sampling, a newly observed y and a newly generated (drawn from

f(r)) r are used to calculate a new outcome of the mixed estimator.

Given the above conceptualization of stochastic constraint gener-

atien and of repeated sampling, all of the results in the literature con-

cerning properties of the TGME hold a fortiori. In addition under this

conceptualization, contrary to Swamy and Mehta's claim, the users of the
A.

TGME could ascribe meanings to numerical probabilities in analyzing f34 in

the same way as for any classical estimator. However, the TGME uses the

prior information inefficiently, and is dominated in terms of mean square

error (MSE) by the PINE estimator, to be examined next.

The PINE Estimator and MSE Comparisons

The fact that the researcher knows the mean and variance of r (since

he or she specified the density of the guesstimator) makes an application



• of the well-known Rao-Blackwell theorem (e.g. see Hogg and Craig, p. 349)

possible. Specifically, the PINE is defined as the expectation of 13 with

respect to the density of r, i.e.

-1 -1 -
' T

-1
(5) 13* = E

r 
f3 = (cf--- IV 2x‘x + R -

2
x
,
y + R

, 
E_ - _

the term "prior integrated mixed estimator" referring to the integration

with respect to the density of the prior estimator inherent in the ex-

pectation operation.

The PINE estimator is preferred to the TG'1E on the basis of mean

square error. To see this, first note that

A A
(6) E f3* = E 13: =13 + (a

-2
x'x R'

where 6 = EV, so that both the PINE and TGME exhibit identical bias, if

any, in estimating 13. However, the covariance matrix of Vc is
A

- - - - -(7) COV 13* = (a
-2

x'x + R'
1

Y 
R)1 2

x x (a-2xf x + R'
1

T R)
1

while the covariance matrix of P. is

(3) COV 13 = (a 2xix + R'T
-1
R)
-1

and thus

A 
- 

R)-1(9) COV COV 13.* = (a- 'x + R'T-1R)-1 (R"Y- R) 
2 
x'x + R'T-1

-which must be positive semidefinite (psd) since R'T
1 
R is clearly psd. Thus

Vc dominates 13 with respect to the strong mean square error (SMSE) criterion

(see Wallace).

An important question in applications is whether the PINE is superior

to the ordinary least square estimator, b, with respect to mean square

error. The superiority of 13* relative to b depends on the expected

errors in the prior stochastic constraints. The mean square error (MSE)

matrix of 13* equals •



-1
(10) MSE = COV 13* + A 'T 66'T RA

where A = a x'x + R'T
-1

R. Under the assumptions of the linear model

(11) MSE b =

and thus the difference in nsE matrices equals

(12) MSE b MSE = A 
[ 

A
2
a (x'x) A - )(I x -

-1  -1 ]it' -166'T-1R A-1

which is psd, and hence 13* is strong mean square error superior to b, iff

the matrix in brackets is psd. After some considerable algebraic manip-

ulation, the matrix in brackets in (12) can be rewritten as

(13) [-] = R' 
T-1 2 T a2 R(x,x)-1 R, 66,

which will in turn be psd iff the matrix in brackets in (13) is psd. Using

results in Rao (p. 60) it can be shown that positive semidefiniteness will

be attained iff

_
(14) 6' 

[ 

a2R(x'x) R' + 2 T - 6 < 1

which is a definition of the set of bias vectors„ for which the PINE

will be SMSE superior to the OLS estimator.

In applications, since the bias, 6, is unknown, the researcher may

desire to test the hypothesis that 13* is SMSE superior to b (such tests

have been developed for the TGME; see Conway _and :Mittelhammer). The

following approach based on confidence intervals is suggested in the case

where u, and hence y, is assumed multivariate normally distributed. Begin

by establishing a (1- )7. lower bounded confidence interval estimate for

2 
in the usual way using the pivotal quantity (n-k) .

2
/ 
2o , giving the

estimate a
2 

> a
2 
= 
(n-k)s2 

/2xa' 
where x

2 
is an a level upper tailo a

2
critical point of the central x- density with n-k degrees of freedom.
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Next, use the random variable E = Er - Rb, which has a normal density with

mean 6 and covariance matrix a
2 
R(x'x) R', in the usual way to form a

(1-a)% Confidence set for the bias vector as

(15) Q=
- -

{6 : (S
2 

R(xt 11Z') 
1
(E-6) < j F

a
}

where j is the row rank of R and F
a 
is the a-level critical level of the

central F density with j and n-k degrees of freedom. Then using Bonferroni's

inequality, we can establish a hypothesis test of SMSE of f3* (i.e. a test

of the condition (14)) having level of significance <

1. Solve the maximization problem

- -
max T(6) = max 6' 

2 1 
a R(xfx) R' + 2T 

1 
6 s.t.

L ° 
66Q

6

in two steps:

2. if max T(6) > 1, reject SMSE superiority of (3.* over b, otherwise
•

accept SMSE superiority of f3.* over b with confidence > 1-2a.

Note that in step 1. T(6) is maximized for any (S by making a
2
 as small

2as possible, and thus the lower bound a
2 
is used for the a value. The

problem in 1. is a nonlinear programming problem that, when 6 has few

entries, might be solvable by graphical techniques, and in any case can be /

solved by commercial algorithms such as MINOS available from Stanford

University.

An Illustrative Application 

As a simple illustration of the PINE, we use an example utilized by

Zellner, in which he estimates the short run consumption function

g = '0 '1 ' u
where C = quarterly deflated U. S. personal consumption expenditures and

Y = quarterly deflated U. S. personal disposable income. Using quarterly

data from 1947 through the first quarter of 1955, except for two quarters

deleted by Zellner as outliers, Zellner obtained the least square estimate
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= 38.09 + .747 Y
(6.64) (.033)

where the estimated standard errors of the parameter estimates are in

parentheses.

Suppose now that the researcher feels certain that the marginal 

{

pro-

pensity to consume is in the range .6, 1]. Suppose further that all

points within the interval are considered to be equally likely, and thus

all of the guesses for dC/dY contained in [.6, I should be generated

with equal frequency via random sampling from f(r). Then the sampling

density for the guesstimator would be specified as r 2.5 I
6, 1 (r),

1a uniform density with mean Er = .8 and variance r = T-7. The PINE esti-

mate would then be calculated as
^

(10 = (S
-2

x'x + R'
1
)
-1
R)
-1 

(S
-2

x'y + R' e-
1
)
-1 

(.8)),
75 75

where R = 10. 11 in this case, and using Zellners data for X, Y, and S
2

yields 137k' = [37.29 .751 giving the estimate for the consumption function

(17) C= 37.29 + .751Y.
(6.14) (.031)

Incorporation of prior information in this case raised slightly the esti-

mate of the marginal propensity to consume, and lowered the standard devi-

ation of the estimate.

In order to test whether 37'c offers a MSE improvement over b, we first

establish a 95% lower bound confidence interval for a2 as

(18) r
- 2

X.05

(n-Lk)S
2
= 6.605

2where in Zellner's problem (n-k) = 29, S
2 
= 9.703, and x.05 = 42.6

Since = Er - Rb = .053, the 95% confidence set for the bias vector

is defined as



6) 4.19}(19) = {6 : (.053 - 6)' (.0011)- .053 -

= {6 : -.0148 < 6 < .1208}

where F 
05 

= 4.19.
. 

Then in step 1 of the testing procedure we solve

(20) max T(6) = max 6' [.0274]
-1 

6 s.t.[- .0148 < 6 < .1208]
6 6

which yields max T(6) = .53

Step 2 of the testing procedure results in the conclusion that SMSE

superiority of 13.* over b can . be accepted at level of significance

< .10 since max T(6) = .53 < 1.
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THE CLASSICAL REAL WORLD
AND INTROSPECTION

Classical "Real World" Processes

Y = xf3 p

r* = R3+ V

where f3, is a symbol standing for

a fixed, constant kxl vector of

numbers unknown to the researcher

Y -N (x(3,
2
1.)

r* f (r*)

MODEL SPACE: Y = Xw w“2, Y N (Xw,0
2

MAINTAINED HYPOTHESIS: 3w* E Q s. t. observed Y N (Xw*,0
2 
I)

PRIOR KNOWLEDGE SPACE: A = {r: r = Rw, w E

DEDUCTION: 3 r* E A s.t. Rw* = r*
ASSERTIONS: r*E. Ai with degree of belief

measureable A .€ A ÷ r*- f (r*)

IMPLICATIONS: Rw * E A . with degree of belief

P(1-* E Ai)
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