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Single equation estimates of production models usually are justified by the assumption
that production inputs are chosen as part of a one-period decision problem. Yet, most
production decisions in agriculture are made sequentially. In this paper the farmer's
optimal input choices are modeled as optimal controls in a stochastic control problem. A
two-period Cobb-Douglas example is used to show that sequential solutions to
production problems may yield models which require either single equation or
simultaneous equation estimators. Functional separability, stochastic specification, and
behavior under uncertainty are discussed in the context of dynamic production models.

Key words: dynamic models, production function estimation, stochastic control.

The literature abounds with agricultural pro-
duction studies based on single-equation esti-
mates of econometric production function
models. The single-equation approach has
been shown to be valid by Hoch (1958, 1962)
and Mundlak and Hoch under the assumption
that input decisions are based on "antici-
pated" output, and by Zellner, Kmenta, and
Dreze under the assumption that input deci-
sions are based on the maximization of the
mathematical expectation of profit. These
models are all based on the strong assumption
that production inputs are chosen as part of a
one-period decision problem. This view is in-
consistent with most actual production deci-
sions. Especially in agriculture, both short-run
and long-run .production decisions are based
on a multiperiod, dynamic optimization prob-
lem because inputs are not all chosen or
utilized simultaneously. Therefore, the farm-
er's optimal input choices may be regarded as
optimal controls in a stochastic control prob-
lem.
The aim of this paper is to formulate a

short-run, single-product production model
within a stochastic control framework and to
explore its implications for specifying and es-
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timating econometric production models. The
analysis demonstrates that sequential solu-
tions generally result in input demand equa-
tions which differ from those of one-period
solutions. In addition, sequential solutions
may produce models which require either
single-equation or simultaneous-equation es-
timation methods, depending on the assump-
tions about information used and data avail-
ability. In particular, it is shown that simulta-
neous equation estimators are not required if
(a) decision makers do not feed back informa-
tion about early stages' production to later
input decisions, or (b) output and input data
are available for each stage. Since neither of
these conditions often occurs in agricultural
production, the findings suggest that even
though farmers choose inputs so as to
maximize expected returns, single-equation
estimates of agricultural production functions
are generally subject to simultaneous equation
bias.
If a production function is estimated without

accounting for the sequential structure of the
farmer's decision problem, the estimated mar-
ginal products are likely to be biased. Hoch
showed that as a result returns to scale are
biased towards 1 with the Cobb-Douglas pro-
duction function. Also, Yotopoulos, Lau, and
Lin found parameter estimates of a Cobb-
Douglas production function to be very differ-
ent when obtained directly from estimates of a .
profit function than from direct estimation of

the production function. They suggest the dif-
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ferences may be due to simultaneity of inputs
and outputs, biasing the direct production func-
tion parameter estimates. The results of this
paper show that simultaneity between inputs
and outputs is due to the farmer's sequential
decisions. As a general principle, parameter
estimates with desirable properties can be ob-
tained only by specifying and estimating em-
pirical production models consistent with the
sequential structure of the production process
and managers' solutions of input choice prob-
lems.
The paper's first section briefly describes

the single-stage, two-input, Cobb-Douglas
production models proposed by Marshak and
Andrews and by Zellner, Kmenta, and Dreze.
The second section extends the Cobb-Douglas
example to two stages, defines various se-
quential solutions to the input choice problem,
and discusses appropriate estimation meth-
ods. The third section shows a close connec-
tion between functional separability across
production stages, production function error
specification, and the implied relationship be-
tween inputs and production uncertainty.

Single-Stage Cobb-Douglas Models

The Cobb-Douglas production function pro-
vides an interesting special case because of its
widespread use in theoretical and empirical
research. It is also useful for illustrating issues
of specification and estimation that arise in
sequential models described later. The simple
crop production model is defined as follows:
the ith farmer chooses the amount of inputs Li,
and L12 to use on a predetermined acreage, Ai.
Output, Q12, is sold after harvest at price pi,
and input prices are w, and wi2.
The Marshak-Andrews (MA) model is

based on profit maximization in a single pe-
riod. The theoretical model consists of the
first-order conditions for profit maximization.
and the deterministic Cobb-Douglas produc-
tion function, both in logarithmic form. The
econometric model is obtained by adding ran-
dom error terms to these equations. For our
crop production example, the structural equa-
tions with parameters ai, j = 1, 2, 3, are

(1) log Q12 = log ao + a, log L,
+ a2 log Li2 + a3 log Ai +

log Li, = log a, — log wit

Pi

+ log Q12 ± = 1, 2.

Here Ei and are independent random vari-
ables with zero means. The Ei are random dis-
turbances in production from weather, pests,
etc. The ui, allow for nonsystematic errors in
maximization by farmers. Adding Ei to the
production function transforms the deter-
ministic theoretical model into a system of
simultaneous equations with endogenous vari-
ables Q12, L„, and Li,. Therefore, with sample
data from i = 1, . . . , N farms, simultaneous
equation estimators are needed to obtain con-
sistent estimates of the parameters. In the MA.
model prices are known, nonstochastic vari-
ables.
The Zellner-Kmenta-Dreze (ZKD) model is

also a one-period model. In contrast to the MA.
model, it assumes that firms recognize produc-
tion to be stochastic. Firms, therefore, choose
inputs to maximize the mathematical expecta-
tion of profit. Prices are viewed as indepen-
dent random variables. Writing the stochastic
production function as

Q12 = aoLi aiLi2a2itia3ei, Ei

and letting a bar over a variable denote its
expectation, the decision problem is

Max E[7r1] =

P a0L11 a'Li2a2Aia3ea212

— — 11)i9Lp .

The structural econometric model, in log
form, consists of the first-order conditions and
the production function:

(2) log Q12 = log a, + a, log Li,
+ a2 log Li2 a3 log Ai +

log Li, = log at — log  wit

+ log -012 + t = 1,2,

where /tit is an independent random error
added to the first-order conditions to represent
nonsystematic maximization errors. For
econometric estimation, the important differ-
ence between models (1) and (2) is that inputs
depend on actual output, Q12, in the former
and expected output, 012, in the latter. Since
012 is nonstochastic, inputs are independent of
output as long as E(uit€i) = 0. The production

function can be estimated with single-equation
methods.
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Two-Stage Cobb-Douglas Models and
Sequential Decision Making

The two-stage Cobb-Douglas production func-
tion is defined as follows: before the first pro-
duction stage, labor input Li, is chosen, and
during stage 1 the crop is planted and grown.
Random events such as weather change occur
during plant growth. The first-stage output, Qi„
is the mature, unharvested crop:

(3) Q11 = PoLi siAi '32e fil

where is a N(0, o-12) random error. In the
second production stage, the crop is har-
vested using labor input L12. Adverse weather
may affect the harvest, so we write the
second-stage production function as

(4) Qi2 = YoQiiY1Li2Y2e Ei2

where E2 is a N(0,0-22) random error term.
Equations (3) and (4) comprise a system of
recursive equations. Combining the two equa-
tions, we have

6,(5) Qi2 = YOPOY1Lil (31Y1Ai 132Y1Li2 Y2 e(Y1 Eii+ i2)

Note that final harvested output is a function
of both E 1 and q2.
In order to estimate this model, we must

carefully specify the production disturbances.
The simplest assumption is that the Ell are in-
dependently distributed across both firms and
time so that

(6) E(E1t2) = 0t2,
E(Eit, Eut,) = 0, i * t * t'.

However, in agricultural production, the Eit
are likely to be correlated across time. There-
fore, we also consider estimation under the
assumptions

(7) Ei2 = Vi , I PI < 1,
E(ViEit) = 0, t = 1, 2,
E(vi = 0, i 0

— N(0, or2).

Often only observations of the final product
are possible or available. For example,

only the quantity harvested may be known,
but not the part of output attributed to each
farming operation. With manufacturing or
processing operations, in contrast, it may be
possible to disaggregate production into sepa-
rate stages each of which is observable. Be-
cause of this "observability" problem, we
consider estimators based on the final product,

as well as Q11 and Q12.

Amer. J. Agr. Econ.

To illustrate the essential differences be-
tween the one-period and sequential solutions
we assume that farmers choose inputs to
maximize expected returns and that prices
are independently distributed. The maximum
problem is

(8) max E[iri] subject to (3), (4),
L„,L,,

E[i] = Pi0i2 3/T)121,i2

Sequential solutions to decision problems
such as (8) may be differentiated from one-
period solutions by the information utilized by
the decision maker. The information pertains
to three features of sequential solutions.
(a) Sequential dependence of decisions:

decisions made earlier may affect those made
later, so that the optimal choice of L12 may be a
function L120(L11). If the farmer takes this into
account, then his optimal input choice in pe-
riod 1 may depend on how it affects optimal
inputs in period 2.
(b) Informaton feedback: information that

becomes available during earlier stages may
be utilized in subsequent decisions. The opti-
mal choice of L12 will depend on expected out-
put al if there is no information feedback
about first-period production. If there is feed-
back, L12 depends on Q11. Thus, the farmer
may use knowledge of the actual output, Qi„
rather than original estimates of production,
Q1 , to determine the optimal amount of labor
to hire in the second stage.
(c) Anticipated revision: decisions made

earlier may be revised later as new informa-
tion becomes available. If the decision maker
knows that information about Q11 will become
available in period 2, his choices in period 1
will depend on the conditional distribution
g2 i21 1) rather than the unconditional dis-
tribution g2(q2). Thus, the farmer's planting
decisions may be different if he knows he can
revise harvest plans at harvest time rather
than having to rely on initial expectations.
We consider four alternative sequential so-

lutions to the input choice problem defined in
(8) which utilize different information sets.
We assume that, at the beginning of stage 1
when Li1 is chosen, each farmer knows wage
rate wil and the probability distribution func-
tions of ei„ ei2, pi, and w22. This minimal in-
formation set is defined as P in table 1. In
addition, the farmer may know that the opti-
mal input in stage 2 is a function of the input
chosen in stage 1. Augmenting /° with this
information, we have P in table 1, which in-
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corporates the sequential dependence prop-
erty (a). When choosing Li„ the farmer may
also know that he will be able to acquire in-
formation about Qi, before choosing L22. This
additional information is represented by re-
placing the unconditional distribution g2(q2)
with the conditional distribution g2(E121Q21).
With this change, we obtain Pc in table 1. In
period 2, the farmer's choice of L12 may be
based only on the minimal information set P,
or it may also depend on the additional infor-
mation. When P is updated with information
about Qi, and wi2, we obtain P, table 1. Table 2
summarizes the information sets used in the
four alternative solutions.

The Open Loop (OL) Control Solution

The OL solution uses the sequential depen-
dence property (a) but not the information
feedback property (b) or the anticipated revi-
sion property (c) of sequential solutions. The
choice of Li, is made with the knowledge that
it may affect the optimal La. Thus, it is based
on P, but the information set is not updated in
stage 2 so the choice of L12 is conditioned on
/°. The OL solution implies that the farmer
does not use what he learns during the growing
season to choose the optimal harvest labor
input. To calculate the OL solution, we pro-
ceed recursively from stage 2 to stage 1. The
optimal La, taking Li, as given, is found by
maximizing a1T1110]. Note that

arrilP] = p1y0Li2Y2E(Q 1Y1eci2)

— wilLii —

Since
E(Qi1Y1) = (PoLiiihAi'32)YiE(eYiEji),

= (13o-LiiI31A1i32)Y1eY12(71212

= OilYle(Y12a
12-Y10-12)12, and

E(eYi 6i2) = el-22+1'124712+ Y112)/2,

we obtain

E[TrilP] = i5iY00ii-Y1Li2Y2e0) — w11L11 —

where co = [0.22 ± 0.12(y12 pyi — yi)]/2. Note
that the expectation is taken over Eii, Ei2, pi,
and w12 because the only information assumed
to be used in choosing La is the farmer's
knowledge of their distributions. The solution
is

(9) log La° — 1
[co + log y0y2]

1 - Y2

1 
log  1-4-'i2 +  Y1 log Q.- Y2 Pi 1-Y2
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The OL solution for Li, depends on the as-
sumption that the decision maker knows L12° is
a function of Li, through Qii. The optimal Li, is
obtained by maximizing E[IrilP]. Because

= /3iY0 OilY1E(Li2°)Y2e
— wain

the solution is a complicated nonlinear func-
tion given generally as

(10) L11° = W2, Crl Cr.29

009 /319 029 Yo' Y19 Y2) •

Because L21° and Li2° are independent of the
production function disturbances, and ea,
the OL solution implies that a single-equation
estimator of the production function's param-
eters is efficient and free of simultaneous
equation bias. This result, also obtained with
ZKD model, depends on the assumption that
input choices are based only on information
available before production begins. However,
the functional form of the input equations de-
rived from the OL solution differs from that of
the ZKD model.

The Sequential Updating (SU) Solution

The SU solution exhibits only the information
feedback property (b) of the sequential solu-
tion (Zenner). In each production stage, the
information set is updated, but the effect of the
current decision on future stages is ignored.
Therefore, in period two, the labor input is
chosen to maximize

(11) = 13iY0Qi1Y1-L12Y2e
T2212

wi2Li2.

Note that the expectation in (11) is taken only
with respect to E2 since, in stage two, Q11 and
wi2 are known. This information is used to
choose the optimal Li2

(12) log L12° —  
1  [ cr22

1 — y2 2
+ log y0y2]

1 Wlog i2 _ Y1 log Q11.
pi 1 — y2

To find the optimal Li„ we take expectations
of both and Ei2 and maximize E[71-1l10], ignor-
ing that Li2° is a function of Li,. Solving the
maximum problem gives

(13) log L11° = 80 + 8, log Ai

+ 52 log + 83 log E[Li °
pi
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Table 1. Information Sets Used in Sequential Solutions in the Cobb-Douglas Production Model

Information
Set

Input and Price Information Production Information

wi 1 gw(Wi2) Wi2 L20(L1) (E.) a, g2(€.) g2(Ei2iQi1)
Jo X
ja X
Pc X
Jb X X

X

Note: Definitions are gp(pi) is probability distribution of product price; wi„ period 1 wage rate; giv(wi2), probability distribution of period
2 wage rate; wi„ period 2 wage rate; Li?(Lii), optimal labor input in period 2; gi(€11), probability distribution of period 1 production
disturbance; Qi„ actual production in period 1; g2(q2), probability distribution of period 2 production disturbance; and ( F, in
probability distribution of period 2 production disturbance conditional on al.

where 8 6, 62, 0, -1, -29 and 83 are functions of the
production function parameters, cr, and Gr.,.
When information acquired in stage 1 about
Qi, is used to update the information for
choosing Li2 Li2° becomes a function of Ei,
through Q„ and is correlated with Qi2. How-
ever, La° is based on information set P and is
not a function of Eii or E 2. Therefore, when
decisions are sequentially updated, we obtain
a simultaneous model consisting of equations
(3), (4), (12), and (13) with properties similar
to the MA model.

The Open Loop with Feedback (OLF) Solution

The OLF solution combines the sequential
dependence and information feedback proper-
ties (a) and (b) of the OL and SU solutions.
Therefore, it is generally superior to either. In
stage 2, Li, is chosen to maximize E[73-illb] as in
the SU solution. Then, in stage 1, Li, is chosen
to maximize E[Tril/a] as in the OL solution.
Therefore, the OLF solution, like the SU solu-
tion, has Li, as an endogenous variable. The
full model consists of the production functions
(3) and (4) and the input equations (10) and
(12).

Table 2. Information Sets Used in Sequential
Solutions

Information
Set Used
in Period

Solution 1 2

Open loop (OL)
• Sequential updating (SU)
Open loop wifeedback (OLF)
Closed loop (CL)

P-
P

I"

Note: See table 1 for definitions of the information sets.

The Closed Loop (CL) Solution

The CL solution utilizes properties (a), (b),
and (c). It is similar to the OLF solution, ex-
cept that the expectation in each stage is com-
puted with the probability density conditioned
on information available at that time as well as
the knowledge that more information will be-
come available in the future. This -closing" of
the information loop distinguishes the OLF
and CL solutions. Hence, the CL solution also
possesses the simultaneity properties of the
OLF and SU solutions and is based on
maximization of E[71-1lP] with respect to Li2
and maximization of E[wiliac with respect
to La.

Sequential decision making, thus, has two
distinct effects on the production model's
form. First, optimal input choices are 

sequentially dependent. Sequential dependence gen-
erally leads to nonlinear input choice 

equations which are functions of production func-
tion parameters, prices, and previous inputs
and outputs. Even for a simple, two-stage
Cobb-Douglas model, the optimal first-stage
input is obtained by solving a complicated
polynomial equation. This result occurs for all
but the simplest models with linear production
functions and quadratic objective functions
(Aoki 1967). Second, the information feedback
causes inputs chosen in later stages to depend
on previous stages' outputs. This may lead to
simultaneity between inputs and outputs.
The OL model, with data for both Q„ and

Qi2 consists of the two production functions
(3) and (4) and the two input equations (8) and
(9). The Lit° are nonstochastic, and the pro-
duction functions may be estimated using
single-equation methods. Since Cobb-Douglas
functions are linear in logarithms, ordinary
least squares estimates will be unbiased and
efficient with error structure (6) because Qi, in

-4
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equation (4) is a predetermined endogenous
variable. With error structure (7), the combi-
nation of a lagged dependent variable in equa-
tion (4) and autocorrelated errors causes least
squares estimates to be biased and inconsis-
tent. It is possible to utilize the instrumental
variables technique with (6). A more efficient
method is maximum likelihood estimation
under appropriate distributional assumptions,
(Theil, chap. 8). Another recursive estimation
procedure is possible. Equation (5) shows that
the final output can be expressed as a function
of the exogenous variables alone. Therefore,
the reduced-form parameters could be esti-
mated efficiently using a single-equation es-
timator under either error structure, (6) or (7).
However, it may not be possible to identify
the parameters in each stage's function with
this approach. For example, equation (5)
shows that it is not possible to identify 7,, po,
yi, gi, or 02.
The SU, OLF, and CL solutions differ from

the OL solution because there is information
feedback from previous stages' outputs to
later stages' inputs and some inputs may be
endogenous in the structural econometric
model. To illustrate, consider the model from
the OLF solution. With both Q1 and Qi2 ob-
served, it consists of the two production func-
tions (3) and (4) and the two input equations
(10) and (12). L11° is nonstochastic as in the
OL solution but Li2° depends on Qi, and is
stochastic. However, when Qi, is observed
equation (12) has no error term. Conse-
quently, only the production functions need be
estimated with problems identical to those en-
countered with the OL solution. With error
structure (6), Q11 and L12 are predetermined in
equation (4). Ordinary least squares may be
applied to both production functions in log
form. With error structure (7), autocorrelation
causes bias in least squares estimates and
must be accounted for.
When data for Qii is not available, equation

(3) may be substituted into equations (4) and
(12). The resulting "semi-reduced form"
equations are

(14) log Qi2 = log y0130Y1 + Ply log Li1°

+ 0271 log Ai + 72 log L12° + 71E 1 + q2 and

(15) log L12° —  1
1 — 72

( (T22 yilog + log 7072)
2

1 - 72

Wi 2og /31-1/1- log L11°
Pt 1 — 72

16271 log Ai + 71
ea.

1y 17—

Because qi occurs in both equations, a simul-
taneous estimator must be utilized to obtain
consistent estimates of the "semi-reduced
form" parameters. Least squares estimates of
equation (14) clearly would be biased in this
case.
Thus, sequential solutions to the production

problem can yield either single- or simulta-
neous-equation models. If the decision maker
is assumed to update his knowledge with out-
put information as production takes place,
simultaneity between inputs and output is in-
troduced. If input choices are sequentially de-
pendent, the solution form differs from the
nonsequential problem. Carefully specifying
the sequential structure of the production
problem leads to a better understanding of
conventional production models. When con-
sidered in a sequential decision-making con-
text, the MA model is logically inconsistent.
In a one-period choice problem, inputs must
be chosen before production begins. Yet, the
MA model shows inputs to be functions of
actual output which is not known until after
inputs are chosen.' The SU solution produces
a model which is similar in form to the MA
model. However, its simultaneity stems from
an explicit, sequential decision process. The
ZKD model can be derived from a sequential
solution of the input choice problem if the
decision maker neither updates his informa-
tion set nor takes into account effects of first-
stage decisions on second-stage decisions.
These qualitative results with the Cobb-

Douglas model can be generalized to models
based on any production function and any
number of production stages. Divide the pro-
duction period into T stages, and let output
of firm i in stage t be Qit. With input vec-
tor xit, coefficient vector 11,, and production
disturbance Ell, the stage production functions
can be written

(16) Q21 = €1]
Qat = ft[Qi,t—i, xit, Pt, Et],

1 This criticism of the MA model is also valid for those of Hoch
(1958, 1962) and Mundlak and Hoch. Their models, with endoge-
nous input demand equations, specify input demands as functions

of actual rather than expected output.
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Assuming the final product Q„ is sold in period T
at price pa and input prices are wit, profit is

(17) IriT = PiTQiT

t=1

witxu•

If firms maximize expected returns, the ith
firm's objective is

max E[1riT] subject to (16), (17).

This control problem is a terminal period prob-
lem and is a special case of a more general,
multiperiod model in which output is sold in
each period rather than just the final period.
Solutions to this problem are generally non-
linear in the parameters, and probably dis-
tributions for at are difficult to ascertain. When
farmers make decisions sequentially and when
each stage's output is not observed by the
econometrician, then the structural production
model is a system of nonlinear simultaneous
equations. Estimation procedures for these
models are available (Amemiya, Fair) but are
very costly to use.

Error Specification, Functional Separability,
and Uncertainty

Production economists have studied the rela-
tionship between production inputs and the
stochastic characteristics of production pro-
cesses (Day, Anderson, Roumasset, Just and
Pope, and Antle). The error specification of the
production function determines how inputs af-
fect the probability distribution of output and
the implied behavior of farmers toward produc-
tion uncertainty. Dynamic production func-
tions also may cause the probability distribution
of each stage's output to be intractable. In
general, when the stage functions ft in (16) are
nonlinear, nonseparable functions of Q1,
and eit, the probability distribution of Q„ cannot
be derived analytically. Maximum likelihood
estimation cannot be used nor small sample
inferences drawn. However, if the production
function is either additively or strongly (nonad-
ditive) separable, it is sometimes possible to
obtain models with tractable distributions.
A production function which is additively

separable in Qi, t_i and Eit can be written

= + mt[xit, pt] + qt,
where at is a parameter, and int is a concave
function of Xit. Substitution for a, t_„
etc., shows that the distribution of at is a lin-

ear combination of the errors qt, . . . , ea.
Therefore, if linear combinations of the Eit

have a known distribution, at has a known
distribution.
Additive separability of inputs across pro-

duction stages is not usually a plausible hy-
pothesis in agricultural production. Strong,
nonadditive separability is a more reasonable
assumpton. For example, additive separability
in the crop production model implies that the
marginal product of harvest labor is indepen-
dent of the amount harvested. The strongly
separable Cobb-Douglas function used in
equation (4) shows that the marginal product
of harvest labor Li, depends on the amount
harvested, Qll. A production function strongly
separable in Qi,t_„ mt and Eit can be written

at = ca,t_ipmtkit, fitxt.
Note that the logarithm of at is a linear func-
tion of the logarithms of a, t_i and eit with this
specification. If the Eit has a log-normal dis-
tribution it can be shown that the output of
each stage follows the lognormal distribution.
From these examples the following conclu-

sion emerges concerning error specification
and functional separability of inputs: tractable
output distributions can be obtained if the
production functions are additively separable
and errors are additive, or if the production
functions are strongly separable and errors are
multiplicative. Otherwise, each stage's output
is a nonlinear function of earlier stages' error
terms and the probability distribution of out-
put usually cannot be obtained analytically
(Aoki 1967, chap. 2).
The relationship between error specification

and functional separability also is relevant to
the analysis of behavior under uncertainty.
This is because additive and multiplicative er-
rors have different implications for the prob-
ability distributions of output. Just and Pope
showed that a multiplicative error specifica-
tion restricts the relationship between input
choice and output variance. More generally,
not only the mean and variance but also higher
moments of output may be functions of inputs
(Day, Anderson, Roumasset). Antle shows
that a model which does not impose restric-
tions on the relation between the inputs and
the form of the output probability distribution
can be specified and estimated with an addi-
tive error term. The above discussion shows
that a tractable dynamic model with an addi-
tive error structure would have to be addi-
tively separable across production stages.
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However, a model with desirable properties
which is strongly separable across production
stages also can be specified. First, define the
production function as

Qit = Pt]eit
= mi[xii, P1]m2[xi2, 1.32] • • • mt[xit, fitieuit,

where E(u) = 0, uit = Eii. Second, assume
j=1

the probability distribution of uit is g(uitlxii, . .
. xit), a function of inputs. Then the moments
of uit depend on inputs

(uidig(uitlxi„ . . . xit)duit.

Finally, note that euit =
uiti

and, therefore,
j=0 J.

00

E(euit) = 1 + it.

Using this latter expression, it can be shown
that the moments of output are functions of
the inputs through the mt and the Nu. Hence,
this strongly separable production function
yields a tractable output distribution. More-
over, it does not restrict the effects that inputs
may have on the output distribution moments.

Conclusions

When a short-run input choice problem is
solved sequentially, the resulting econometric
production model generally differs in its func-
tional form and stochastic structure from
single-stage models. Because farm managers
can be expected to utilize all available infor-
mation in decision making, they will feed back
information from earlier production stages to
later input choices. In addition, only the final
agricultural product usually is measured. This
means that agricultural production models typ-

ically are systems of simultaneous equations.
Single-equation estimates of production pa-
rameters will be subject to simultaneous-
equation bias. Estimates with desirable prop-
erties can be obtained by formulating and es-
timating models that reflect the sequential
structure of farm managers' input choice prob-

lems. However, in order to analyze multi-

stage, sequential production problems, re-
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searchers must devise models which have de-
sirable properties and are empirically tracta-
ble.
In assessing the practical importance of

these findings, two points are relevant. First,
the size of the simultaneous-equation bias due
to input endogeneity remains to be ascer-
tained. Second, as any applied production
economist knows, a critical limiting factor is
data availability. Most available production
data do not contain information on inputs by
production stage or operation. An important
contribution to our understanding of both the
simultaneity problem and the sequential struc-
ture of farm managers' decision making with
stage-level production functions could be
made by collection of production data by
stages.

[Received October 1981; revision accepted
October 1982.]
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The editors apologize for a typographical error
that appears in equation (3) of Michael Wy-
zan's February 1983 (p. 179) "Empirical
Analysis of Soviet Agricultural Production
and Policy: Reply." The equation should read
as follows:

a2Q
(3) air B

a21nQ B — Q.  .  aQ 
a(lnB)2 QB aB •


