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Abstract

"Describing and Determining the Complete Set of Target MOTAD Solutions."

Francis McCamley and James B. Kliebenstein

(University of Missouri)

Tauer's Target MOTAD model can be used to compute stochastically efficient

mixtures of risky alternatives. This paper suggests a way of describing the

complete set of Target MOTAD solutions. It also presents an efficient method

for determining the set of solutions. Hazell's example is used to illustrate

these ideas.



DESCRIBING AND DETERMINING THE COMPLETE SET
OF TARGET MOTAD SOLUTIONS

In a recent article, Tauer proposed Target MOTAD as a model for computing

risk efficient mixtures of risky alternatives. In addition to its intuitive

appeal, Target MOTAD possesses the attractive feature that all unique

solutions are members of the SSD (second degree stochastic dominance)

efficient set. Tauer used data from an Anderson, Dillon and Hardaker (pp.

209-10) example to demonstrate that some, but not all, standard MOTAD

solutions are SSD efficient. He presented a few of the many possible Target

MOTAD solutions and suggested that all Target MOTAD (and perhaps all SSD

efficient) solutions could be obtained by computing the solutions associated

with all possible target income (T) levels.

This paper extends Tauer's article in two ways.. First, a way of

describing the complete set of Target MOTAD solutions for any problem is

presented. Second, an alternative method for determining this set is

suggested. For most problems, the method suggested in this paper will involve

less computational effort than the approach suggested by Tauer. The method is

illustrated using data from an example described by Hazell. Although this

example is small enough to be readily solved, its Target MOTAD solution set is

more complex than the solution set for the Anderson, Dillon and Hardaker

example. A similar or greater degree of complexity is likely to be exhibited

by the Target MOTAD solution sets for most problems.

The Target MOTAD Model

The Target MOTAD model has the form:

(1) Max Elx

subject t



-(2) Ax b

(3) -Cx - y -uT

(4) =

(5) x, y a o

where C is an n element column vector of expected returns for the various

activities, x is an n element column vector of activity levels, b is an m

element column vector of resource or technical levels, A is an m by n matrix

of resource or technical requirements, C is an s by n matrix of returns

associated with the activities for various states of nature, y is an s element

column vector of deviations from target income, u is an s element column

vector of ones, T is target income, p is an s element column vector of

probabilities associated with the various states of nature, A is the absolute

value of expected negative deviations from target income, n is the number of

activities, m is the number of resource or technical constraints and s is the

number of observations or states of nature. To apply Target MOTAD to the

Hazel' example it is assumed that each of the six states of nature

(observations) is equally likely)'

Describing the Complete Set of Target MOTAD Solutions 

Tauer notes that the Target MOTAD model is a two attribute model. Any

given solution is associated with one (or more) combination(s) of target

income, T, and the absolute value of expected negative deviations from target

income, A. One way of describing the complete set of Target MOTAD solutions

is as the set of solutions associated with all feasible combinations of T and

A.y Fortunately, there is a more fruitful way of describing this set.

Since the Target MOTAD model is a linear program, the solution for any

given combination of T and A will ordinarily share a set of basis activities

(or variables) with the solutions for a large number of other T and A



combinations. Although the number of Target MOTAD solutions is infinite, the

number of bases associated with these solutions is finite.2/ The number of

extreme points associated with each basis is also finite and often small in

number. Thus, a finite number of extreme points can be used to describe the

complete set of Target MOTAD solutions. The subset of solutions associated

with any basis is convex and consists of the convex combinations of its

extreme points. The complete set of Target MOTAD solutions is the union of

the subsets associated with the various bases.

Determining the Complete Set of Target MOTAD Solutions 

There are several ways of identifying the bases and extreme points

described above. For all methods, computational effort can be reduced by

ignoring many combinations of T and A. Some combinations can be ignored

because the x components of their solutions are the same as those for other T

and A combinations. Other combinations of T and A can be ignored because they

do not permit feasible solutions.

Relevant T Values

To determine the relevant range of T values, first find the x vector, x*,

which maximizes expected income subject only to the resource and

nonnegativity constraints (2) and (5).-ii One way to do this is to solve the

Target MOTAD model using a combination of T and A which does not restrict

expected income. Any combination of very small T and/or a very large A will

satisfy that requirement.

After finding x*, compute the vector Cx*. The elements of this vector

are the net returns which would be realized for the various states of nature

if the strategy of maximizing expected income is adopted. When T is less than

or equal to the smallest element of Cx*, the x component of all Target MOTAD



solutions will be x* regardless of the (nonnegative) value of A. When T is

larger than or equal to the largest element of Cx*, the x component of all

feasible solutions will also equal x*. Thus, only T values within the income

interval bounded by the smallest and largest elements (incomes) of Cx* need to

be considered in subsequent computations. For the Hazell example, the bounds

are $37,558.82 and $106,868.63.

An Upper Boundary for A

For any T value within this interval, the A parameter will restrict

expected income only when it is smaller than some value, "(T). This value can

be computed from the following formula.;

(7) ,:(T) = E max (0, pk(T - wk))
k=1

where pk is the probability of state k occurring and wk is the kth element of

Cx* (the income received if state k occurs). si(T), the upper boundary of the

set of relevant T and A combinations, is a piecewise linear function of T.

The T and A values for points I through VI in Table 1 are the coordinates at

which the slope of this function changes. The T values are elements of Cx*

(incomes associated with the various states of nature when x = x*).

Although the upper boundary function was derived by considering the

properties of the Target MOTAD model, it could have also been derived directly

from stochastic dominance considerations. For any T, the slope of the

function is the probability of receiving a return less than or equal to T when

the strategy of maximizing expected income is adopted. Thus, X(T) is the

function F2 associated with the SSD criterion. Since the strategy of

maximizing expected income can be dominated by no other strategy, its F2

function is a logical choice for an upper boundary.



TABLE 1 EXTREME POINTS USED TO DESCRIBE THE SET OF TARGET MOTAD SOLUTIONS

Target Expected
Point Return Deviations  Crop Activity Levels  Expected
Number T x(T) Carrots • Celery Cucumbers Peppers Returns

Dollars    (Acres)  (Dollars)
Upper Boundary Points

I 37558.82 0 0 27.45 100 72.55 77958.12
II 80431.37 7145.43 0 27.45 100 72.55 77958.12

III 80492.16 7165.69 0 27.45 100 72.55 77958.12
IV 80513.73 7176.47 0 27.45 100 72.55 77958.12
V 81884.31 8090.20 0 27.45 100 72.55 77958.12

VI 106868.63 28910.46 0 27.45 100 72.55 77958.12

Lower Boundary Points

1 37558.82 0 0 27.45 100 72.55 77958.12
2 47264.71 0 100 23.53 0 76.47 75145.05
3 51909.96 0 100 49.77 0 50.23 73224.85
4 55872.10 0 114.19 38.41 0 47.40 70324.60
5 60455.90 0 86.32 30.69 55.77 27.21 65277.86
6 80235.68 7012.25 5.69 26.68 94.77 72.85 77729.79
7 80455.11 7108.59 4.64 26.52 95.99 72.84 77734.51
8 80860.65 7355.21 3.90 27.30 96.10 72.70 77848.44
9 81884.31 8090.20 0 27.45 100 72.55 77958.12
10 106868.63 28910.46 0 27.45 100 72.55 77958.12

Interior Points

A 55629.41 1394.12 100 23.53 0 76.47 75145.05
B 79631.90 6873.40 8.58 27.11 91.42 72.89 77716.79
C 80428.25 7134.59 .64 27.43 99.36 72.57 77940.19
D 59718.24 1627.19 100 38.73 0 61.27 74032.92
E 80502.42 7169.75 0 27.43 100.02 72.55 77955.89
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The Lower Boundary for A

For any value of T, feasible solutions to the Target MOTAD model can be

obtained only when A is larger than some value, A(T). x(T), the lower

boundary, is a piecewise linear function of T. For any problem, this function

can be determined by either maximizing Esx — MA or minimizing A subject to

constraints (2), (3), (4) and (5), while parametrically varying T over the

range of income values defined above...' M is a positive number which is large

enough to ensure that A will be as small as possible for all values of T. The

lower boundary is also related to the SSD criterion function F2. However,

rather than being the criterion function for a specific strategy, the lower

boundary is an envelope.

The coordinates of the ends of the line segments defining A(T) are the T

and A values for points 1 through 10 in Table 1. Note that lower boundary

points 1, 9 and 10 are the same as upper boundary points I, V and VI,

respectively. Point 5 is a "minimax" solution; $60,455.90 is the largest

target income which can be obtained with certainty.

Determining the Subsets

Only combinations of T and A which are below 5:(T) and above A(T) need be

considered. Figures 1 and 2 show the relevant set of T and A combinations.

They also show the subsets associated with the twelve bases needed to define

the complete set of Target MOTAD solutions. A two variable resource mapping

procedure was used to identify the subsets. This procedure is analogous to

the two variable price mapping procedure described by Heady and Candler (pp.

295-298). The specific procedure used involved computing one solution for

each basis and then using a special type of post optimal analysis. By

permitting simultaneous (rather than independent) variation of T and A it

simplified the task of determining the boundaries of the subsets.
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There are at least two other ways of determining these boundaries.

Standard post optimal analysis (sometimes called range or range x) could be

used but would require computing more than one solution for most bases.

Tauer's parametric programming procedure could also be used. It involves

examining vertical "slices" of the relevant set of T and A values.

Most of the extreme points for the twelve subsets are on either the upper

or lower boundary of the relevant set of T and A combinations. Five extreme

points, A through E, are not on either boundary. These interior points are

presented in the bottom section of Table 1.

Table 2 defines each of the the twelve basis subsets in terms of their

extreme points. For extreme points associated with both the upper and lower

boundaries, the appropriate Roman numeral (upper boundary identifier) enclosed

in parentheses following the Arabic number (lower boundary identifier).

While defining the subsets and identifying the extreme points associated

with each subset, only their T and A coordinates were considered. It is now

appropriate to shift attention to the crop mix components of the extreme

points. The values of the y variables can be ignored since their principal

function is to link the crop mix to T and A.

Examination of the crop mixes makes it obvious that a smaller set of

extreme points can be used to describe the set of Target MOTAD solutions.

Points I through VI as well as points 9 and 10 have the same crop mix as

solution 1. Solution A has the same crop mix as solution 2. This means that

at most twelve of the points in Table 1 are needed to describe the Target

MOTAD solutions. It also simplifies the lists of extreme points for subsets

1, 2, 8, 10, 11 and 12. The crop mixes of some of the remaining extreme

points for subsets 1 and 2 are convex combinations of the crop mixes of other

extreme points for these same subsets. This permits additional
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TABLE 2 SUBSETS OF TARGET MOTAD SOLUTIONS

Basis
Subset aAll Extreme Points /- Essential Extreme Points

1 1(I), 2, A, 13, C, II 1, 2

2 2, 3, D, A 2,3

3 3, 4, D 3, 4, D

4 4, 5, 6, 6, D 4, 5, 6, 13, D

5 A, D, B 2,D,B

6 13, 6, C 6, 6, C

7 6, 7, E, III, C 6, 7, E, 1, C

b/a- IV, 8, 900 8, 1

9 7, 8, IV, E 7, 8, 1, E

c10 /- III, E, IV E, 1

11st/ C, III, 11 c, 1

122/ 9(V), 10(VI) 1

a/ The numbers and letters in this column refer to solutions presented in
Table 1.

b/ The crop mixes in this subset also belong to subset 9.

Cl The crop mixes in this subset also belong to subsets 7 and 9.

d/ The crop mixes in this subset also belong to subsets 1 and 7.

e/ The crop mixes in this subset also belong to subsets 1, 7 and 9.
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simplification. Finally, all of the crop mixes in subsets 11 and 12 belong to

subset 1 and all crop mixes in subsets 8 and 10 belong to subset 9. This

means that the complete set of Target MOTAD solutions is the union of seven

subsets.

Concluding Remarks

This paper has suggested ways of describing and determining the complete

set of Target MOTAD solutions. An example from Hazell was used to illustrate

the ideas presented.

The complete set of Target MOTAD solutions has several characteristics.

Some of these are summarized here since they were not all explicitly discussed

in the body of the paper.

1. The set of Target MOTAD solutions is generally not convex. For the

Hazell example, conider the crop mix consisting of 50 acres of

carrots, 38.61 acres of celery, 50 acres of cucumbers, and 61.39

acres of peppers. Even though this crop mix is the average of the

crop mixes for points 1 and 3, it does not belong to the set of

Target MOTAD solutions. This is consistent with, but not equivalent

to, Dybvig and Ross's finding that the set of efficient portfolios

need not be convex.

2. The set of solutions can include rather diverse mixtures. For

Hazell's data, the ranges in acreages for two crops (carrots and

cucumbers) are 100 acres. One of the objectives of stochastic

dominance analyses is to reduce the set of choices. Even if the set

of SSD efficient crop mixtures were identical to the set of Target

MOTAD solutions, it would be clear that the efficient set for the

Hazell example includes rather diverse crop mixtures.
_§./
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3. Unfortunately, the complete set of SSD efficient solutions is not

always identified by Target MOTAD. Another analysis has identified

SSD efficient mixtures for the Hazel' example which are not Target

MOTAD solutions (McCamley and Kliebenstein).

4. The relation between a decision-maker's attitude toward risk and the

Target MOTAD crop mix which he would choose is not yet very clear.

Presumably, an extremely risk averse decision-maker would choose the

"minimax" solution and a risk neutral decision-maker would choose

the solution which maximizes expected income but it is not clear

what choice would be made by a person having some other specific

risk preference. For a given T value, the level of expected

deviations, X, which is acceptable may be inversely related to the

degree of risk aversion, but it is not clear how the appropriate

combination of T and x (and the associated crop mix) would be

chosen. Perhaps some other technique can be applied to the set of

Target MOTAD solutions to order the solutions by degree of risk

aversion.

5. Some standard MOTAD solutions are also Target MOTAD solutions. For

the Hazell example, these standard solutions belong to subsets 1, 4

and 5.

Tauer's Target MOTAD article represents a valuable contribution to our

professional literature. It is hoped that the ideas presented in this paper

will be of benefit to those who use Target MOTAD.
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Footnotes

1/ The Target MOTAD formulation of Hazell's example is:

Maximize

253x
1+443x2+284x3+516x4,

subject to

gX1 +X
2 +X3 +X

4 200

25x
1 +36x2 +27x3 +87x4 6 10,000

x/ x2 x3 x4 g 0

-292x
1+128x2-420x3-579x4-y1 < -T

-179x1-560x2-187x3-639x4 -y2

-114x1-648x2-366x3-379x4

-247x1-544x2-249x3-924x4

-426x1-182x2-322x3- 5x
4

-259x1-850x2-159x3-569x4

y1/6+Y2/6+Y3/

• -T

• -T

g -T

• -T

6+y /6+y5/6+y6/6 = A

xl, x2, x3, x4, yl, y2, y3, y4, y5, y6 1. 0

2/ As is the case with standard MOTAD, any of several alternative

formulations of the Target MOTAD model can be used. One alternative

would involve minimizing A subject to a (parametric) restriction on

expected income. The ideas presented in the paper are applicable, with

appropriate modifications, to this and other alternative formulations.

3/ The term basis as used in this paper refers to a set of activities or

variables. It should not be confused with the concept of a basic

solution which refers to a set of particular values for the basis

variables. It is important that this distinction be kept in mind because

we will be describing subsets for which the solution changes as T and A

change but the basis remains the same.
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4/ It is assumed that x* is unique. Nonuniqueness complicates the problem

of computing the complete set of Target MOTAD solutions and clouds the

SSD efficiency status of the solutions. Discussion of these important

issues is beyond the scope of this paper.

5/ The only advantage of maximizing C'x - Mx rather than simply minimizing A

is that the x components of the solution vectors will be needed later.

However, it is possible to compute these after the lower boundary has

been identified.

6/ It appears that all of the Target MOTAD solutions are unique and,

therefore, SSD efficient.
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