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Pseudo Data: A Tool for Teaching Production Economics

by Thomas W. Hertel and Lance McKinzie

Abstract

It is argued that a "laboratory" data set wo
uld greatly facilitate the

teaching of graduate-level production economics. 
Development of a process

model and an optimal experimental design for generating pseudo data are

outlined. A translog, multiproduct profit function is esti
mated and the

resulting net and gross elasticities are discussed.



I. INTRODUCTION

Recent developments in duality theory and the concept of flexible

functional forms has led to a resurgence 
of interest in production econom-

ics. Whether the topic is factor substitution,
 income distribution, tech-

nical change, economies of scale, or an
y of the other traditional problems

in production theory, the current literature
 draws heavily on these new

methods. While they have been available for over
 a dozen years (e.g.,

Diewert, 1969), widespread application 
and incorporation of these methods

into graduate production economics curric
ula is much more recent.

As is generally the case, more sophist
icated methods have left greater

room for misapplication. Thus, the challenge in teaching this newer mate
r-

ial to students in production economics lies not only in conveying the

theoretical concepts, but also in teach
ing their responsible application.

When is it appropriate to apply these 
more sophisticated methods, and what

can go wrong when they are applied? The traditional approach to this type

of teaching challenge has been to give students an empirical problem to

work with. In the case at hand, this would involve
 giving them a data set

with which to estimate (e.g.) a profit function, wh
ich could in turn be

interpreted and perhaps criticized. A second-best alternative might be to

assign -a set of empirical articles to be r
ead and evaluated.

Unfortunately, many of the data sets in us
e are not "well-behaved",

i.e., estimation of a dual function using these observations does not

result in a set of parameters which satisfy the required neoclassical

restrictions. This problem is particularly severe in the multiproduct

setting (e.g., Shumway, 1983). Strictly speaking the duality results do

not apply to these ill-behaved functions, 
and we are left with something

which cannot be readily interpreted. This problem may, or may not, be
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acknowledged by the authors of journal articles.. In 
most cases the amount

of information provided is insufficient for r
eaders to check for themselves

whether or not the function is well-behaved.

When a profit function is found to be ill-behaved
, explanations gener-

ally turn to problems with the data set. Poor quality data and excessive

aggregation (over commodities and/or firms) are c
ommonly cited sources of

difficulty. Another potential pitfall is that the underlying behavioral

axioms (e.g., profit maximization or cost minimi
zation) may not be satis-

fied. In some cases the latter are posed as testable- hypotheses

(Appelbaum, 1978), although they are generally 
maintained. Studies which

attribute poor results to one of these causes can 
serve a valuable purpose

in graduate courses, illustrating the point that 
not all research succeeds.

However, they do not provide students with an ade
quate feeling for what the

methods are good for.

Consistently attributing bad results to poor data encourages 
a certain

cynicism and sometimes sloppiness on the part of student
s who resign them-

selves to the fact that "this never works out in pract
ice anyway" What is

needed is a "laboratory" data set which permits teacher
s to abstract from

data deficiencies, thus enabling students to focus att
ention on the method

-- how it is used, and what its strengths and weaknes
ses are. Of course

such a data.set could also be selectively "disru
pted" (e.g., via inappro-

priate aggregation) to illustrate the potential dama
ge which can result.

There are several properties which a laboratory 
data set should sat-

isfy. These include.

(i) The underlying technology is sufficiently 
well-understood to per-

mit formulation of preliminary hypotheses. These should in turn

facilitate interpretation and discussion of the esti
mated model.
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(ii) The behavioral axioms guiding producers are known, and conform

with neoclassical postulates.

(iii) The observed data is accurate and not
 aggregated.

(iv) Price variability is sufficient to per
mit measurement of all dis-

tinct substitution effects.

This paper reports on the development of a "pseudo" data set which

meets (i)-(iv), and illustrates its use in
 the estimation of a flexible,

multiproduct profit function. While some of our results are informative in

their own right, their greatest value has been in the teaching of a

graduate-level production economics course. Section II discusses the

linear programming model from which the pse
udo data are generated, based on

the experimental design outlined in Section II
I. The next section details

the estimation and interpretation of a tra
nslog, multiproduct profit func-

tion, while Section V provides a summary and
 conclusions.

II. THE VEHICLE: A PROCESS MODEL

The process model used to generate the 
pseudo data is a modified ver-

sion of the Purdue Crop Budget Model (B-9).
 It is among the most exten-

sively validated of all process models, h
aving been used daily by extension

and research staff, graduate and undergraduate students, as well as by

thousands of midwest farmers over the cours
e of its 15-year evolution. It

is a linear programming formulation of a p
rofit maximizing farm firm. The

formulation utilizes highly detailed information including the farm's

machinery working rates, available time for working in the field during

different periods of the production year, and
 cultivation practices.

Timing of production activities is given 
particular attention in the

B-9 model. Expected crop yields are generally acknowledged
 to decline as

planting (and harvesting) of the crop are delayed. However, it is• not
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economical to maintain the necessary machinery
 set to plant (harvest) all

of the crop at one time. The B-9 model captures tradeoffs between the cost

of larger, more expensive machinery sets a
nd the benefits associated with

improved yields due to timeliness of planting 
and harvesting. The latter

also serves to promote diversification among 
crop outputs. While corn is

often the most profitable crop to be planted
 during late April and early

May, soybeans may be the preferred alternati
ve in late May. This occurs

since soybean yields decline at a slower percentage rate than do corn

yields as planting is delayed.

As currently formulated, B-9 takes a farm's machinery complement,

available full-time labor, and drying and storage capacities as fixed.

Decision variables to be optimized determine the 
crop output mix. In order

to accommodate the long-run situation, where
 capital, labor, drying, and

storage are continuously variable inputs, modifications have been made.

(In abstracting from the discrete nature in which machinery must be

employed we assume the existence of an active rent
al market.) Land is held

fixed since constant returns to scale would otherwise imp
ly an unbounded

solution.

The continuously variable machinery inputs deserv
e additional comment.

There are eight different machinery choice variab
les -- four sizes of com-

bines and four sizes of machinery complements which include all other

•
machinery. The four sizes correspond roughly to 200, 600, 800

, and 1200

acre operations. The different working rates for each machinery complemen
t

and combine are taken from Edelman (1981). A typical solution for

machinery might be .3 units of machinery com
plement #2 plus .5 units of

machinery complement #3. These solution values are weighted by the respec-

tive annualized costs for each machinery set 
(Leatham and Baker, 1982), to

arrive at a dollar value for machinery.
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Both input requirements and expected yields depend upon which crop was

grown on the land in the previous year. There are significant economies

from rotting corn and soybeans. Costs rise for corn grown continuously on

the same land. Yields decline for both continuous corn and continuous

soybean crops. These phenomena are not modeled in B-9. Hence, optimal

cropping patterns prescribed by solutions to that model do not accurately

reflect the true costs over time from extreme shifts between these two

crops. The effect of including the complementarities arising from crop

rotation is to give the product transformation curve for corn and soybeans

more curvature in the region of equal acreages. Other things equal, a

greater change in relative prices is required to achieve a given amount of

substitution between these crops. Rotation corn—soybeans was added to the

model as an additional crop alternative with greater yields and lower fer—

tilizer and chemical inputs, compared to continuous cropping (Farm Planning 

and Financial Management, 1980).

III. GENERATING PSEUDO DATA

The *concept of pseudodata was introduced into the economics literature

by Griffin (1977a, 1977b, 1978) as a means of summarizing the information

embodied in industry process models. The resulting cost or profit func—

tions may, in turn, be employed to summarize an individual sector's price

responsiveness in large econometric models. Critics of this method (e.g.,

Madala and Roberts, 1980) point out that the estimated coefficients may be

quite sensitive to sample design and the number of basis changes which

result from the price configurations chosen. Griffin himself (1982) has

noted the sensitivity of his results to the -frequency and range over which

sample points are selected. It is somewhat surprising then, that none of
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these authors make reference to the extensive literature 
on experimental

design.

The literature on experimental design draws an explici
t link between

choice of design and the form of the regression model. Thus, if the objec-

tive is to estimate a second-order Taylor series approximati
on, such as the

trans log, is important to choose a compatible experimental design. For

ease of reference, consider the following response surface, where three

factors (xl, x2, x3) determine the level of the dependent variable (y):

(1) y = ao + al 1 + a2x 2 + ci.3x 3 + al lx 1
2 a22-22 4. a 33x32

-4-fq X
-12

-X 1-2 + al 3x 1x3 a23X2X.3•

This can be viewed as a second order Taylor's expansion. 
Furthermore, by

redefining y = 1n11 and xi = lnpi, it becomes a translog profit

function.

An important question in designing the experiment is: Over how many

levels must each factor (x) be varied (at a minimum)? Two levels for each

price is sufficient to estimate ao, the linear terms and the interaction

effects (a12, a13, a23) (Ander
son and McLean, p. 353). A two-level factor-

ial for three factors (prices) generates 23 = 8 observations. In order to

capture the quadratic effects (all, a22, a33) we need to go
 to three levels

for each price (Anderson and McLean, p. 353). A full three level factorial

generates 33 = 27 observations. The problem with a full three level fac-

torial is that, as the number of factors increases, the numbe
r of observa-

tions required becomes rapidly unmanageable. Thus, for the eleven price

profit function considered here, 
311 = 177,147 data points result.

Fortunately, it is not necessary to carry out a full three level fac-

. torial in order to estimate all of the coefficients in the regre
ssion model

(1.). A composite design will permit measurement of both in
teraction and

quadratic effects. This design consists of three groups of observations.
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(i) A two-level factorial.

(ii) .Points at the extreme of each factor, while at the center of the

others.

(iii) The centerpoint itself.

In the three price case (i)-(iii) total 8 + 6 + 1 = 15 observations.

The required number of sample points for a composite design rises muc
h

more slowly, as the number of factors increases, than is the case with
 the

three level factorial. Thus, for the eleven price case "only"

211 4. (2x11) + 1 = 2,071 sample points are required. This number may be

further reduced by utilizing a fractional two-level factorial in pa
rt (i)

of the composite design. In this paper a 1/16th fractional factorial is

employed. This results in 211/16 = 128 points for (i). Adding the 22

factor extrema (ii) and the center point (iii) yields a sample of 151

observations.

IV. ESTIMATION OF A TRANSLOG MULTIPRODUCT PROFIT FUNCTION

Based on the pseudo data set "generated by confronting our process

model with prices from the composite experimental design, we were able to

estimate a multi-product translog profit function. The results, based on

single equation estimation of this profit function, were compared to those

from estimation of a system of supply and demand equations. The extra

information (in the form of Hotelling's lemma) embodied in the system

approach, resulted in a better approximation of the underlying model.

Sakai (1974) has shown how to decompose the gross price effects,

resulting from differentiation of the profit function, into
 an expansion

effect and a pure substitution (compensated) effect. Lopez (1981) has

provided a practical means for extracting compensated (net) and gro
ss price

elasticities from an estimated profit function. Using these results, and



the system estimates of the translog profit function, we have co
mputed the

elasticities in Tables 1 and 2.

Compensated Elasticities: Table 1 summarizes our estimates of net

elasticities evaluated at the base case (1983 prices). The input-compen-

sated, output supply elasticities are generally less than one,
 with posi-

tive own-price effects and very large cross-price effects. Corn and wheat

are found to be net complements in production. That is, an increase in the

price of wheat leads to an increase in the optimal supply 
of corn, and

vice-versa. (Remember that land is being held constant throughout this

analysis.) This can be explained by focusing the major reason for crop

diversification -- namely the timing of production activities. 
Consider

what happens when wheat production increases, in response to impr
oved wheat

prices, while input availability is held constant. The shift of land into

wheat lessens demande on labor and machinery during the spring
 and fall.

With these resources less constrained, it is profitable to shift lan
d from

soybeans to the more input-intensive corn production. Hence the wheat-corn

complementarity. On the other hand, corn and soybeans are strong net sub-

stitutes. They compete keenly for fixed inputs during the planting and

harvesting periods.

Output-constant, input demand elasticities are quite small, indicatin
g

that most of the "action" in this model comes from changes in output m
ix.

While there are many different activities with which to produce (e.g.)

corn, they involve very similar input mixes. Thus the own-price effects

are quite inelastic. The only cross-price elasticity exceeding 0.10 (in

absolute value) is the compensated demand elasticity for combines with

respect to the price of labor (0.22). This .arises due to the fact that, as

labor becomes more costly, a larger combine can be purchas
ed to cover the

same amount of land in fewer hours.
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Table 1. Net Elasticities

PRICE
Other

Corn Soybeans Wheat Labor Machinery Combine Drying Storage Fertilizer Chemicals Inputs

Corn

Soybeans

Wheat

'Labor

Machinery

Combine

Drying

Storage

Fertilizer

Chemicals

Other Inputs

.5808 -.6929 .1116 0 0 0 0

-.7988 1.0104 -.2111 0 0 0 0

.7302 -1.1983 .4678 0 0 0 0 0

O 0 0 -.1326 -.0116. .0507 .0030 .0034

0 0 0 -.0862 , ;-.1182 -.0083 .0181 .0156

O 0 0 .2213 -.0049 -.3201 -.0006 -.0096

O 0 0 .0218 .0177 -.0010 -.1039 .0164

0 0 0 .0113 .0070 -.0073 .0075 -.0295

0 0 0 .0207 .0070 .0039 .0020 -.0030

0 0 0 .0198 .0060 .0115 .0065 .0084

0 0 0 .0332 .0076 .0102 .0000 .0019

.0310 .0120

.0772 .0271

.0253 .0304 .0592

.0220 .0284 .0004

-.0149 .0170 .0086

-.0333 .0090 -.0061

.0222 -.0425 -.0319

-.0069 -.0145 -.0316

.0442

.0753
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Corn

Soybeans

Wheat

Labor

Machinery

Combine

Drying

Storage

Fertilizer

Chemicals

Other Inputs

Table 2. Gross Elasticities

PRICE
Other

Corn Soybeans Wheat , Labor Machinery Combine Drying Storage Fertilizer Chemicals Inputs

1.5055 -1.0772 -.1196

-1.2418 .7895 -.0562

-.7823 -.3189 1.8754

.1970

.3425 -.3768 .1761

.3379 -.0716 -.2252

2.0268 -1.4279 -.1540

.6186 -.6263 -.1252

.5806 -.6952 .1624

.0837 -.3064 -.0113

-.0426 -.2909 .2686

-.2896 .1246

-.0369 -.0087 -.0145 -.0525 -.0349 -.1625 -.0095 .0106

.0625 .0110 .0035 .0426 .0407 .2243 .0400 .0837

-.1526 -.0291 .0631 .0261 .0462 -.2975 .0084 -.4387

-.1427 -.0149 .0514 -.0043 .0077 .0070 .0261 .0379

-.1105 7.1237 -.0061 .0059 .0136 .0084 .0315 .0398 11--.
CD
1

.2244 -.0036 -.3279 -.0119 -.0265 .0060 .0140 .0853 
.

-.0311 .0058 -.0198 -.1745 -.0326 -.2068 .0108 .0049

.0255 .0061 -.0202 -.0150 -.0268 .0075 .0541 - .1015

.0047 .0008 .0009 -.0191 .0015 -.0806 .0391 .0052

.0431 .0070 .0053 .0025 .0269 .0966 .0035 .0491

.0284 .0040 .0146 .0005 .0229 .0058 .0223 -.0338
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Gross Elasticities! As expected, when all choice variables are per-

mitted to adjust optimality, the firm's price responses are more elastic.

In other words, the gross elasticities shown in Table 2 include an expan-

sion effect, in addition to the previous pure substitution effect. Turning

first to the supply elasticities, we find that all of the outputs are gross

substitutes. The cross-price effects between corn and soybeans dominate

the soybean own-price elasticity, indicating strong substitution possibili-

ties. The gross supply elasticity for wheat is very large,

its relatively small share

eastern corn belt.)

Gross input demand elasticities are generally quite close to their

output-compensated counterparts in Table 1. However, a few changes merit

comment. The own-price elasticity of demand for chemicals is now positive,

in part due to

in the base case. (Wheat is a minor crop in the

although not distinguishable from zero. Another notable point is the gross

complementarity between fertilizer and drying inputs. This arises from the

fact that they are both important inputs in the production of corn. An

increase in the price of fertilizer causes a drop in the optimal supply of

corn. This in turn dampens the demand for the complementary drying input

which is also intensively employed in corn production.

Note that all of the inputs are regressive against soybeans. That is

an increase in the price of any input results in an increase in the optimal

supply of soybeans. Symmetrically, an increase in the price of soybeans

results in a drop in the demand for any of the inputs. The opposite is

true for corn and input demands. These results follow from two facts:

(i) total land area is fixed, and (ii) soybeans are relatively less input-

intensive than corn.
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V. SUMMARY AND CONCLUSIONS

In this paper we have outlined the development and use of a pseudo

data set for purposes of exploring the use of a translog, multiproduct

profit function. The vehicle used to generate pseudo data is a modified

version of the B-9 linear programming model for a representative In
diana

farm producing corn, soybeans and wheat. A fractional factorial, composite

experimental design was employed in creating the data set. It provides an

efficient design for estimation of the parameters in any of th
e flexible

functional forms corresponding to second-order Taylor approximations.

Knowledge of the underlying process model permits an extensiv
e discussion

of the resulting compensated and uncompensated elasticities.

In sum, there are numerous advantages to using pseudo data as a t
each-

ing tool in production economics. In particular, we feel that it enables

students to focus on the particular method being taught, learning its

strengths and its drawbacks. In abstracting from the inevitable problems

of data quality and aggregation it is also hoped that some of the cyni
cism,

which frequently develops with regard to the use of potentially valuable

methods, can be avoided.
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