

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
<http://ageconsearch.umn.edu>
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

Final 1982

ON THE USE OF PRICE RATIO IN SUPPLY RESPONSE

Jean-Paul Chavas

Assistant Professor

Agricultural Economics Department

Texas A&M University

College Station, TX 77843

Presented at AAE meeting, Urbana-Champaign,
July 27-30, 1980.

All programs and information of the Texas Agricultural Experiment Station are available without regard to race, ethnic origin, religion, sex and age.

ON THE USE OF PRICE RATIO IN
SUPPLY RESPONSE

Jean-Paul Chavas

Abstract

Because of a lack of data or multicollinearity problems, it is fairly common to include only a subset of the relevant prices in econometric model of supply response. This paper provides some evidence on the validity of using price ratios in this situation. A model of the U.S. poultry and egg industry where feed cost and output price are the only economic variables considered suggests that the use of price ratios would be inappropriate. If careful attention is given to model specification, it appears that homogeneity restrictions should not be imposed on supply response models unless the excluded prices are known to have little influence on production decisions.

ON THE USE OF PRICE RATIO IN SUPPLY RESPONSE

The modeling of supply response has a long history in agricultural economics. The specification and estimation of input-output relationships or supply-demand relationships has received considerable attention. Economic theory has helped providing a basis for the specification of economic models. One of its contributions has been that prices should be interpreted only in relative terms. This proposition has had a profound influence on agricultural economics. It has led a number of economists to avoid the use of absolute prices in economic analysis. For this reason, numerous models of the agricultural sector use price ratios as explanatory variables. Similarly, data on "feed cost to price" ratios are regularly published for a number of livestock activities. However, in empirical work, it is often difficult to obtain data on all prices involved in a given economic sector, implying that only a subset of the relevant prices are included in econometric models of supply response. For example, feed cost is frequently the only cost of production considered in models of livestock activities. In this situation, it is reasonable to question whether or not the use of price ratios is always appropriate in model building.

The objective of this paper is to provide some evidence on the validity of the use of price ratios in supply response when some of the relevant prices are not included in the model. The issue is approached from a theoretical point of view in section 1. It is shown that the homogeneity of degree zero in prices of supply functions holds in general only in a partial equilibrium framework where all relevant prices are included. In section 2, a model of

the U.S. poultry and egg industry in which feed cost and output price are the only economic variables considered is presented. The model provides some empirical evidence supporting the theoretical results. This suggests that the homogeneity restrictions (the use of price ratios) should not be systematically imposed on supply response models.

1 - Price Homogeneity

Consider an industry constituted of competitive firms. The i^{th} firm produces an output Y_i from two inputs X_{1i} and X_{2i} according to the production function^{1/}

$$Y_i = f_i(X_{1i}, X_{2i}) \quad ; \quad i = 1, \dots, m \quad (1)$$

where m is the number of firms in the industry. In a competitive market, all prices P , r_1 and r_2 are exogenous to the firm, P denoting output price and r_j the price of the j^{th} input ($j = 1, 2$). The i^{th} firm is presumed to maximize the profit function $\pi_i = P Y_i - r_1 X_{1i} - r_2 X_{2i}$. Under appropriate assumptions about the production process, the profit maximizing input and output levels for the i^{th} firm are

$$X_{ij}^D = X_{ij} \left\{ \frac{r_1}{P}, \frac{r_2}{P} \right\} \quad ; \quad j = 1, 2; \quad i = 1, \dots, m \quad (2)$$

and

$$Y_i^S = Y_i \left\{ \frac{r_1}{P}, \frac{r_2}{P} \right\} \quad ; \quad i = 1, \dots, m \quad (3)$$

Equations (2) and (3) represent respectively the firm input demand and output supply functions. They are homogeneous of degree zero in prices, that is a proportionate change in all prices does not affect the optimal factor use or the optimal production level. The short-run industry input demand or output supply function is simply the sum of (2) or (3) over all firms, i.e.

$$X_j^D = \sum_{i=1}^m X_{ij} \left\{ \frac{r_1}{P}, \frac{r_2}{P} \right\} = X_j^D \left\{ \frac{r_1}{P}, \frac{r_2}{P} \right\} \quad ; \quad j = 1, 2 \quad (4)$$

and

$$y^s = \sum_{i=1}^m y_i \left\{ \frac{r_1}{p}, \frac{r_2}{p} \right\} = y_p^s \left\{ \frac{r_1}{p}, \frac{r_2}{p} \right\} . \quad (5)$$

Expressions (4) and (5) are the partial equilibrium industry input demand and output supply functions. It is clear that they are homogeneous of degree zero in prices. These results may be alternatively expressed in elasticity form. From (5), production elasticities with respect to output price and input prices are respectively

$$\frac{\partial y_p^s}{\partial p} \frac{p}{y_p^s} = - \frac{1}{p y_p^s} \sum_{j=1}^2 (h_j r_j) \quad (6)$$

and

$$\frac{\partial y_p^s}{\partial r_i} \frac{r_i}{y_p^s} = \frac{1}{p y_p^s} h_i r_i \quad (7)$$

where $h_i = \frac{\partial y_p^s}{\partial (r_i/p)}$. From (6) and (7), it follows that homogeneity of

degree zero in prices implies

$$\frac{\partial y_p^s}{\partial p} \frac{p}{y_p^s} = - \frac{\partial y_p^s}{\partial r_1} \frac{r_1}{y_p^s} - \frac{\partial y_p^s}{\partial r_2} \frac{r_2}{y_p^s} \quad (8)$$

This is a classical result of production theory: in the short run and in a partial equilibrium framework, homogeneity implies that the aggregate production elasticity with respect to output price (or supply elasticity) is entirely determined by the production elasticities with respect to input prices.

Now consider that the industry is facing the input supply curve for x_2

$$x_2^s = x_2^s (r_2) \quad (9)$$

Using (9) and the demand function for X_2 (equation (4)), we can solve for the equilibrium price level $r_2 = r_2(r_1, P)$. Substituting this expression into (5) yields

$$y^s = y_p^s \left\{ \frac{r_1}{P}, \frac{r_2(r_1, P)}{P} \right\} = y_G^s (r_1, P) \quad (10)$$

Equation (10) is a supply function that takes into consideration the adjustments of the input price r_2 as the other prices (r_1 and P) fluctuate. It is not a partial equilibrium function since it takes into account the equilibrium conditions in the market for X_2 . This interaction among related commodity markets is crucial in the investigation of supply response (Gardner, 1979). Note the difference between the partial equilibrium supply function (5) and equation (10). The former includes all prices involved in the production process and is homogeneous of degree zero in these prices. The latter includes all prices except the price r_2 that adjusts to other price fluctuations. It is shown in the appendix that equation (10) is homogeneous of degree zero in prices only if the supply curve for X_2 is perfectly inelastic, i.e. if X_2 is a fixed input. However, if the supply for X_2 has a positive but finite slope, then expression (10) is not homogeneous of degree zero. In this case, it can be shown that (see Appendix)

$$\frac{\partial y_G^s}{\partial P} \frac{P}{y_G^s} > - \frac{\partial y_G^s}{\partial r_1} \frac{r_1}{y_G^s} \quad (11)$$

Thus, partial equilibrium supply (or demand) functions in which all output and input prices are included (equation (5)) are homogeneous of degree zero in prices. The implication for empirical work is that the use of price ratios in econometric modeling is fully justified in this context.

However, it is fairly common in the literature to find models of supply response that do not include all relevant prices. This may be justified because of the unavailability of data or multicollinearity problems. In this case, one or more of the prices are excluded (equation (10)). Of course, equation (10) is a misspecification of a partial equilibrium model (equation (5)). However this is not a very interesting case. Rather, we can consider equation (10) as a correct specification of a model in which the excluded prices are allowed to adjust through the supply-demand relationships. In this context, we have just shown that the homogeneity restrictions may not be satisfied. Thus, economic theory suggests that price ratios should not be systematically used in the specification of supply response models when at least one input price is not included in the model.

In order to illustrate this point, the next section presents the specification and estimation of supply functions for the poultry and egg industry.

2 - Supply Response for the U.S. Poultry Industry

The production process for broilers, turkeys and eggs involves a sequence of different stages at which key functions are performed. Coming from the primary breeder flock, chicks (poults) are introduced into the hatchery supply flock. For broilers and turkeys, the hatchery supply flock in turn produces the chicks (poults) that are fed and sold for human consumption. For egg-type chickens, the hatchery supply flock is used to produce chicks that are then introduced in the laying flock. It is the laying flock that produces the eggs for human consumption.

In an econometric model, the production decisions in the U.S. poultry industry are investigated at four levels. First, placement refers to the placement of just hatched chicks or poult in the hatchery supply flock. Second, testing refers to testing for the detection of Pullorum-Typhoid disease, done by official State agencies. Testing is performed on young females before they start producing eggs that will be hatched. This test is made because young chicks (poults) hatched from the eggs laid by pullorum infected breeder hens are likely to die within a few days. Testing occurs at about five months of age for chickens and six months for turkeys. Finally, hatching of eggs from the hatchery supply flock precedes the production stage.

The functions "placement", "testing", "hatching" and "production" are performed in sequence. Thus, the decisions made about each function depend on the current economic situation and on the decisions made at an earlier stage. The influence of previous stages involves technical or biological input-output relationships as well as production lags.

Knowledge of the technology characterizing the production process is therefore crucial in the specification of the sequential decisions. For example, egg production follows a cycle characterized by a low laying rate, then a production peak after a few weeks followed by a slow decline in productivity. The length of the cycle is about ten months for broiler-type chickens and six to seven months for turkeys. For egg-type chickens, the cycle lasts from six to ten months in the hatchery supply flock and usually twelve to fourteen months in the laying flock. Such relationships are taken into consideration in the specification of the model of supply response for broilers, turkeys and eggs.

The influence of economic variables on supply response involves output price as well as input cost. Cost of production studies show that feed cost is the single most important cost of production for poultry and eggs (USDA, 1978). Given possible multicollinearity problems and the difficulty of finding information on other costs of production such as wages, cost of capital, . . . , feed cost is the only cost introduced in the model. Thus the supply response is specified according to equation (10) where some input prices are excluded. Also, given the extent of vertical integration in the poultry industry, wholesale price is used since farm prices are often formula prices that tend to lag behind the wholesale price (Chavas, 1978). Finally, a choice had to be made between using nominal prices or real prices (deflated by some price index). It is clear that, in a partial equilibrium framework (equation (5)), nominal and deflated prices have the same effect because of the homogeneity restriction.^{2/} However, this may not be the case for the supply functions (9) and (10). Indeed, in general (10) is not homogeneous of degree zero in price and the choice between nominal and deflated prices does matter.^{3/}

Since it seems more reasonable to assume that the supply of input (9) responds to real prices rather than nominal prices, deflated prices may give a better specification in both equations (9) and (10). For this reason, all prices used in the poultry model are deflated prices.^{4/}

Since the supply for poultry and eggs takes several months to adjust to changing conditions, a quarterly observation period has been chosen. The period covered and data used to estimate the model is from 1965 to 1975. Table 1 identifies the variables.

Broiler Model

The supply response for broiler is investigated at three levels: placement, hatching and production. The placement equation is specified as

$$B1 = f(PBL2, PBL3, Z1L2, Z1L3, B1L4)$$

where B1 is placement in hatchery supply flock, Z1L2 and Z1L3 the feed cost lagged two and three quarters, PBL2 and PBL3 the wholesale price of broiler lagged two and three quarters, and B1L4 placement lagged four quarters.

The cost and price variables were introduced to measure the impact of profitability for broilers on placement. The lags were chosen mostly on the basis of preliminary tests in the absence of a priori information on the adjustment process. Placement lagged four quarters accounts for dynamic adjustments in the broiler industry.

Hatching measures the number of chicks produced by commercial hatcheries. The hatching equation is

$$B3 = f(B2L1, B2L2, B2L3, Z1L1, PBL1)$$

where B3 is broiler hatching, B2 broiler testing,^{5/} Z1 feed cost, and PB broiler wholesale price. The lags for testing, B2L1, B2L2 and B2L3, are consistent with the technology governing the production process. Hatching

begins about two months after the testing of a hen in the hatchery supply flock and lasts for about nine months. The specifications for feed cost and wholesale price assume a one quarter lagged response to a changing broiler profitability.

Chicks hatched are fed and produce marketable broilers after about eight weeks. The equation describing production is

$$B4 = f(B3L1, Z1L1, PBL1)$$

where $B4$ is broiler production (pound, ready-to-cook), $B3$ hatching, $Z1$ feed cost, and PB broiler wholesale price. Hatching is lagged one period because of the two month production period after hatching for maturing the birds. Feed cost and broiler wholesale price are lagged one quarter assuming a one quarter lagged response to a changing broiler profitability.

Turkey Model

In the production component of the turkey model, there are three equations: testing, hatching and production. The testing variable is used due to the absence of data on placement of turkeys in the hatchery supply flock. Thus the testing equation is the first equation in the sequence describing the production process, i.e.,

$$T1 = f(PTL2, Z1L2, T1L4)$$

where $T1$ is testing of turkeys, PT the wholesale price of turkeys, and $Z1$ feed cost. As with the broiler model the symbol (Lj) indicates that a variable is lagged j quarters. Cost and price variables are introduced to measure the impact of turkey profitability on testing. The lag structure was chosen on the basis of preliminary tests.

Hatching measures the number of poult hatched in commercial hatcheries.

The hatching equation is

$$T2 = f(T1L1, T2L2, Z1L1, PTL1)$$

where T_2 is turkey hatching, T_1 turkey testing, Z_1 the feed cost, and PT the turkey wholesale price. The lags for testing are consistent with the production technology. Hatching begins about two months after testing and lasts for about six months. Feed cost and wholesale price are lagged one quarter, assuming a one quarter lagged response to a changing turkey profitability.

The poult hatched are fed to produce marketable turkeys after 17 to 21 weeks. The turkey production equation is

$$T_3 = f(T_2L_2, Z_1L_1, PTL_1)$$

where T_3 is turkey production (pounds, ready-to-cook), T_2 turkey hatching, Z_1 the feed cost, and PT the wholesale price of turkeys. Again, feed cost and turkey wholesale price are lagged one quarter.

Egg Model

The supply response for eggs is investigated at three levels: testing, hatching and production. The testing equation is specified as

$$E_1 = f(PEL_3, PEL_4, Z2L_3, Z2L_4, E1L_4)$$

where E_1 is Pullorum-Typhoid testing on egg-type chickens, PE the wholesale price of shell eggs and Z_2 the feed cost. As with turkeys, the feed cost and wholesale price are introduced to measure the impact of egg profitability on testing. The lag structure was chosen on the basis of preliminary tests. The use of the testing variable ($E1L_4$) lagged four quarters accounts for dynamic adjustments in the egg industry. The hatching equation is

$$E_2 = f(E1L_1, E1L_2, Z2L_1, PEL_1, LP)$$

where E_2 is the number of egg-type chicks hatched, E_1 testing of egg-type chickens, Z_2 the feed cost, PE the wholesale price of shell eggs, and LP

is average layer yield (eggs produced per month by 100 layers). The lags for the testing variable are consistent with the current production technology. Hatching starts about two months after testing and lasts for about seven months. The feed cost and the wholesale price are lagged one quarter to reflect the delay in response to changes in egg profitability. The layer yield variable accounts for technological change.

The production equation is

$$E3 = f(E2L2, E2L3, E2L4, E2L5, Z2L1, PEL1, LP)$$

where $E3$ is egg production, $E2$ hatching of egg-type chicks, $Z2$ the feed cost, PE the wholesale price of shell eggs, and LP is layer yield. The lag structure for hatching is consistent with the physical production process. Laying starts at about five months of age and lasts for about twelve months. Feed cost and the wholesale price are lagged one quarter due to the adjustment process. Layer yield accounts for technological progress.

Estimated Structure:

The structure for the model is linear. This simple specification is rationalized on the basis that there is in general little a priori information available concerning alternative functional forms. As feed cost (defined here as a weighted average of corn price and soybean meal price) constitutes only about 50 percent of the total cost of production (USDA, 1978) it appears unrealistic to assume that other input costs (labor cost, fuel cost, etc.) have no impact on the production decisions. Similarly, labor or fuel are typically variable inputs in poultry and egg production, implying that their industry supply functions are not perfectly inelastic. Based on the theoretical arguments of section 1, it follows that the

output supply functions are not homogeneous of degree zero in prices. Thus, the price and feed cost variables are specified in a linear form rather than a ratio form in the model. The structural equations are recursive and estimated by least-squares methods. The first equation of each sub-sector (broiler placement, turkey testing and egg testing) is specified as a partial adjustment model and estimated by non-linear regression (NLS) using the Marquardt Algorithm.^{6/} Broiler, turkey and egg hatching are each separated from the previous stage (testing) by a laying cycle. Similarly, there is a laying cycle between egg hatching and egg production. Thus we would expect the lag structure for testing in the hatching equations and for hatching in the egg production equation to follow the shape of a typical laying cycle. For this reason, the shape of an average laying cycle has been imposed as exact restrictions on the lag structure of the broiler hatching, turkey hatching, egg hatching and production equations which are estimated by restricted least-squares (RLS).^{7/} Finally, broiler testing, broiler production and turkey production are estimated by ordinary least-squares (OLS). Dummy variables are introduced in the model to allow for seasonal effects. A time trend variable is used as a proxy for structural change. The estimated structural model is presented in Table 2. All the structural estimates have the expected sign and appear to give a reasonable representation of the production process. This suggests that the model has a good structural integrity.^{8/}

3 - Empirical Implications

Since the estimated structural model does not include contemporaneous endogenous variables on the right hand side of any equation, it is also the reduced form of the model. It provides a basis for investigating economic adjustments in the poultry and egg industry. Estimates of the output elasticities with respect to output price lagged one quarter and feed cost lagged one quarter at different stages of the production process are presented in Table 3. These elasticities are higher at early stages, decrease during the production period and approach zero at the last stage of the production process. This pattern corresponds to the theory of "putty-clay" investment: it suggests that any production decision at a particular stage reduces the possibilities of economic adjustment at later stages. All output elasticities with respect to price and cost have the expected sign. Also, in all cases but one, output elasticity with respect to price is larger than output elasticity with respect to feed cost. This provides some evidence in favor of the theoretical results presented in section 1 (equation (11)). The only exception is for egg production (E3) where both elasticities are close to zero. On the average, the supply elasticity with respect to output price is about twice as large (in absolute value) as the output elasticity with respect to feed cost (Table 3). If price ratio had been used in the supply equations, it would impose the restriction that these two elasticities are equal. Thus, results in Table 3 suggest that the use of price ratios would involve a misspecification of the model. The use of price ratios under the homogeneity assumption might be justified either if excluded production costs

have no impact on industry output or if the supply curves of these excluded inputs are perfectly inelastic. In the former case, the supply function (10) becomes the correct specification of a partial equilibrium model. In the latter case, it was shown in section 1 that excluding the price of fixed inputs in the output supply function preserves the homogeneity condition of equation (10). It appears that neither case is supported by a priori knowledge about the production process for poultry and eggs. Note that multicollinearity problems may also lead the model builder to use price ratios, thus reducing the number of explanatory variables. In this situation using price ratios could be justified if the reduction in variance obtained from imposing (theoretically incorrect) homogeneity restrictions more than compensates for the increase in bias of the estimators. As the specification of supply response in our model shows no serious multicollinearity problem, the use of price ratios would be inappropriate since it would impose unjustified restrictions on the model.

However, the use of feed cost to price ratio has been fairly widespread in econometric models. For example, in the modeling of the poultry and egg industry, Gerra (1959), Rahn (1973) and Chen (1976) have used feed cost to price ratios in their specification of supply response, excluding other production costs. Also, Hein (1976) used price ratios but included both feed cost and wage rate in the specification of poultry production equations. Finally, feed cost to price ratios are regularly published in statistical bulletins (USDA, 1976). Given our results, it appears that the use of price ratios in economic analysis may be misleading since they do not necessarily reflect a particular economic situation when some of the relevant prices are excluded.

4 - Concluding Remarks

The objective of a model builder is to obtain a good approximation of the economic system he intends to analyze by including as much information as possible in the model specification (Johnson and Rausser, 1977). In the case of the investigation of aggregate supply response, this information may come from the knowledge of the technology and market structure underlying the production process and from economic theory. In partial equilibrium, economic theory suggests that supply functions are homogeneous of degree zero in prices. However, this assumes that all input and output prices are included in the response function. If, either because of a lack of data or because of multicollinearity problems, the model builder decides to exclude some relevant prices from the model, then the homogeneity restriction may not hold. In this context the results of this paper suggest that homogeneity restrictions should not be systematically imposed on supply response models.

Table 1. Description And Source Of The Data Set

Variable	Description	Unit	Source
Exogenous Variables			
DV ₂	Dummy variable for the second quarter		
DV ₃	Dummy variable for the third quarter		
DV ₄	Dummy variable for the fourth quarter		
$z_1 = (.70 \text{ PCD}) + (.30 \text{ PSD})$ = feed cost for broilers and turkeys ^{b/}		1976 \$/100 lb.	
$z_2 = (.85 \text{ PCD}) + (.15 \text{ PSD})$ = feed cost for eggs ^{b/}		1976 \$/100 lb.	
TT	Time trend (1=first quarter 1965)		
PS	Price of Soybean meal, 44 percent, Decatur	\$/ton	PES
PC	Price of Corn, Chicago No. 2 yellow	\$/bu.	PES
CPI	Consumer Price Index	(1967=100)	NBER
PSD	PS/CPI = deflated soybean meal price	1967 \$/20 lb.	
PCD	PC/CPI = deflated corn price	1967 \$/(.01) bu.	
Endogenous Variables			
-turkey-			
T1	Turkeys in flocks tested for pullorum-typoid	million	PES
T2	Poults hatched	million	PES
T3	Turkey production	thousand lbs.	PES
TP	Wholesale price of turkeys, New York frozen, ready-to-cook, hens	cts./lb.	PES
PT	TP/CPI = deflated turkey wholesale price	1967 \$/lb.	

Table 1. Continued

Variable	Description	Unit	Source ^{a/}
-broiler-			
B1	Broiler-type placements in hatchery supply flock	million	PES
B2	Broiler-type chickens in flocks tested for pullorum-typhoid	thousand	PES
B3	Hatching of broiler-type chicks in commercial hatcheries	thousand	PES
B4	Broiler production	thousand lbs.	PES
BP	Wholesale price of broilers-nine city average	cts/lb	PES
PB	BP/CPI = deflated wholesale price of broilers	1967 \$/lb	
-eggs-			
E1	Egg-type chickens in flocks tested for pullorum-typhoid	thousands	PES
E2	Hatching of egg-type chicks in commercial hatcheries	millions	PES
E3	Egg production	million dozs.	PES
EP	Wholesale price of shell eggs, New York, grade A, large white	cts./doz.	PES
PE	EP/CPI = deflated wholesale price for shell eggs	1967 \$/doz.	
LP	Layer productivity	eggs/layer	PES

a/ PES and NBER stand for Poultry and Egg Situation published regularly by ERS-USDA, and National Bureau of Economic Research, respectively.

b/ Feed cost is defined as the cost of a ration composed of 70 percent corn/30 percent soybean meal for broiler and turkey, and 85 percent corn/15 percent soybean meal for eggs. Although perhaps overestimating feed costs, the use of fixed weights in the computation helps avoid multicollinearity problems, and saves degrees of freedom.

Table 2. Estimates of the Structural Model^{a/}

Broiler Placement (NLS)

$$\begin{aligned} B1 = & \lambda [.9446 + 2.1064 DV2 + .3067 DV3 - .0643 DV4 \\ & (1.6086) (.3811) (.3330) (.3117) \\ & + 36.512 PBL2 - 13.551 PBL3 - 84.20 Z1L2 \\ & (8.318) (6.429) (.325) \\ & [1.101] [.4092] [-.3077] \\ & - 1.023 Z1L3] + (1 - \lambda) B1L4 \\ & (.329) \\ & [-.3739] \end{aligned}$$

with $\lambda = .6475$, $R^2 = .8905$,
(.0947)

Broiler Hatching (RLS)

$$\begin{aligned} B3 = & 269118 + 14.978 B2L1 + 12.060 B2L2 + 9.142 B2L3 \\ & (80230) (3.791) (2.247) (1.704) \\ & [.125] [.100] [.076] \\ & - 31729 Z1L1 + 849379 PBL1 + 31000 DV2 - 52629 DV3 \\ & (8561) (215019) (12227) (11791) \\ & [-.132] [.291] \\ & - 77137 DV4 + 6770 TT \\ & (12616) (642) \end{aligned}$$

Broiler Production (OLS)

$$\begin{aligned} B4 = & 112781 + 1.9603 B3L1 - 20728 Z1L1 + 629835 PBL1 \\ & (106250) (.1441) (10210) (236130) \\ & [.796] [-.035] [.087] \\ & + 52458 DV2 - 51575 DV3 - 27129 DV4 + 7290 TT \\ & (16215) (21897) (15213) (788) \end{aligned}$$

with $R^2 = .9811$

Turkey Testing (NLS)

$$\begin{aligned} T1 = & \lambda (-527.055 - 344.095 DV2 + 226.386 DV3 \\ & (419.536) (140.547) (137.279) \\ & + 1081.521 DV4 + 4411.930 PTL2 - 167.755 Z1L2) \\ & (138.376) (1455.421) (77.179) \\ & [1.910] [-.6254] \\ & + (1 - \lambda) T1L4 \end{aligned}$$

with $R^2 = .9543$, and $\lambda = .4339$.
(.1039)

Table 2. Continued

Turkey Hatching (RLS)

$$\begin{aligned} T2 = & -4.407 + .0127 T1L1 + .01027 T1L2 - 1.0950 Z1L1 \\ & (4.293) (.00146) (.00118) (.6164) \\ & [.330] [.2667] [-.106] \\ & + 22.2669 PTLL + 26.8073 DV2 + 2.6018 DV3 \\ & (8.6355) (1.075) (2.561) \\ & [.250] \\ & - 8.966 DV4 + .3257 TT \\ & (2.205) (.0433) \end{aligned}$$

Turkey Production (OLS)

$$\begin{aligned} T3 = & -197707 + 14617 T2L2 - 21518 Z1L1 + 265611 PTLL \\ & (40551) (1225) (8157) (110068) \\ & [1.069] [-.1524] [.2185] \\ & + 221772 DV2 + 254305 DV3 + 1313 DV4 + 906 TT \\ & (15760) (26294) (51146) (475) \end{aligned}$$

with $R^2 = .9928$

Egg Testing (NLS)

$$\begin{aligned} E1 = & \lambda [-426.252 - 760.76 DV2 - 1222.30 DV3 \\ & (846.581) (355.98) (345.48) \\ & - 916.124 DV4 + 7197.55 PEL3 + 4831.98 PEL4 \\ & (363.91) (2998.96) (2389.70) \\ & [1.7137] [1.1504] \\ & - 436.04 Z2L3 - 300.08 Z2L4] + (1 - \lambda) E1L4 \\ & (290.75) (287.58) \\ & [-.7934] [-.5460] \end{aligned}$$

with $R^2 = .9520$ and $\lambda = .2477$.
(.0609)

Egg Hatching (RLS)

$$\begin{aligned} E2 = & -63.5228 + .0263 E1L1 + .0263 E1L2 - 10.869 Z2L1 \\ & (102.283) (.0034) (.0034) (2.916) \\ & [.315] [.315] [-.237] \\ & + 188.90 PEL1 + 16.388 DV2 + .1422 DV3 - .4704 DV4 \\ & (26.414) (5.311) (4.282) (4.631) \\ & + .8759 TT + .0251 LP \\ & (.2787) (.0587) \end{aligned}$$

Egg Production Equation (RLS)

$$\begin{aligned} E3 &= 476.98 + .8805 E2L2 + 1.245 E2L3 + 1.154 E2L4 \\ (323.73) &\quad (.1003) \quad (.1418) \quad (.1314) \\ &\quad [.0807] \quad [.1142] \quad [.1058] \\ \\ &+ 1.063 E2L5 - 44.691 Z2L1 + 118.54 PELL + 4.460 DV2 \\ (.1210) &\quad (8.192) \quad (78.126) \quad (14.269) \\ &\quad [.0975] \quad [-.0894] \quad [.031] \\ \\ &- 6.819 DV3 + 27.100 DV4 - .1863 TT + .2473 LP \\ (11.038) &\quad (10.080) \quad (.499) \quad (.1597) \end{aligned}$$

a/ Structural estimates are accompanied by their standard error (in parenthesis) and elasticities evaluated at mean levels (in brackets).

Table 3.

Output Elasticities With Respect To
Wholesale Price and Feed Cost a/

Output Variable	Elasticity of output w.r.t	
	Wholesale Price	Feed Cost
<u>Broiler</u>		
B1	.9778	-.4413
B3	.291	-.132
B4	.087	-.035
<u>Turkey</u>		
T1	.8287	-.2714
T2	.250	-.106
T3	.2185	-.1524
<u>Egg</u>		
E1	.7094	-.3317
E2	.539	-.237
E3	.0310	-.0894

a/ elasticities evaluated at the mean values of the relevant variables.

Appendix

The homogeneity of degree zero of (5) implies

$$\frac{\delta Y^S}{\delta P} P + \frac{\delta Y^S}{\delta r_1} r_1 + \frac{\delta Y^S}{\delta r_2} r_2 = 0 \quad (A1)$$

From (10), we have

$$\frac{\delta Y^S_G}{\delta r_1} = \frac{\delta Y^S}{\delta r_1} + \frac{\delta Y^S}{\delta r_2} \frac{\delta r_2}{\delta r_1} \quad (A2)$$

and

$$\frac{\delta Y^S_G}{\delta P} = \frac{\delta Y^S}{\delta P} + \frac{\delta Y^S}{\delta r_2} \frac{\delta r_2}{\delta P} \quad (A3)$$

Substituting (A2) and (A3) into (A1) yields

$$\frac{\delta Y^S_G}{\delta P} + \frac{\delta Y^S_G}{\delta r_1} r_1 = \frac{\delta Y^S}{\delta r_2} \left\{ \frac{\delta r_2}{\delta P} P + \frac{\delta r_2}{\delta r_1} r_1 - r_2 \right\} \quad (A4)$$

Clearly, Y^S_G is homogeneous of degree zero in the prices P and r_1

only if $r_2 = \frac{\delta r_2}{\delta P} P + \frac{\delta r_2}{\delta r_1} r_1$, i.e. if $r_2(r_1, P)$ is a function

homogeneous of degree one.

Now, note that the function $r_2(r_1, P)$ is obtained from solving the equilibrium conditions in the market for X_2 , $X_2^D \left\{ \frac{r_1}{P}, \frac{r_2}{P} \right\} = X_2^S(r_2)$.

From the implicit function rule we have

$$\frac{\delta r_2}{\delta P} = \frac{\delta X_2^D / \delta P}{\delta X_2^S / \delta r_2 - \delta X_2^D / \delta r_2} \quad (A5)$$

and

$$\frac{\delta r_2}{\delta r_1} = \frac{\delta X_2^D / \delta r_1}{\delta X_2^S / \delta r_2 - \delta X_2^D / \delta r_2} \quad (A6)$$

Also, the homogeneity of $X_2^D \left\{ \frac{r_1}{P}, \frac{r_2}{P} \right\}$ implies that

$$\frac{\delta X_2^D}{\delta P} P + \frac{\delta X_2^D}{\delta r_1} r_1 = -\frac{\delta X_2^D}{\delta r_2} r_2 \quad (A7)$$

Using (A5), (A6) and (A7), we have

$$\frac{\delta r_2}{\delta P} P + \frac{\delta r_2}{\delta r_1} r_1 = \frac{\left\{ \delta X_2^S / \delta r_2 \right\} r_2}{\delta X_2^S / \delta r_2 - \delta X_2^D / \delta r_2} \quad (A8)$$

Thus, $r_2 = \frac{\delta r_2}{\delta P} P + \frac{\delta r_2}{\delta r_1} r_1$ only if $\frac{\delta X_2^S}{\delta r_2} = 0$, i.e. if the supply curve

for X_2 is perfectly inelastic.

If X_2 is a variable input ($\partial X_2^S / \partial r_2 > 0$), then

$$\frac{\delta r_2}{\delta P} P + \frac{\delta r_2}{\delta r_1} r_1 - r_2 < 0 \quad (A9)$$

From (A4), it follows that

$$\frac{\delta Y_G^S}{\delta P} P + \frac{\delta Y_G^S}{\delta r_1} r_1 > 0 \quad (A10)$$

or, in elasticity form

$$\frac{\delta Y_G^S}{\delta P} \frac{P}{Y_G^S} + \frac{\delta Y_G^S}{\delta r_1} \frac{r_1}{Y_G^S} > 0 \quad (A11)$$

Thus if the supply curve for X_2 has a positive but finite slope, $Y_G^S (r_1, P)$ is not homogeneous of degree zero in prices and the corresponding supply elasticity plus the corresponding elasticity of output with respect to r_1 is greater than zero.

FOOTNOTES

- 1/ X_1 and X_2 are considered as variable inputs throughout the paper.
- 2/ Denoting the price index by I , equation (5) expressed in real terms becomes $\gamma_s = \gamma_p^s \left\{ \frac{r_1/I}{P/I}, \frac{r_2/I}{P/I} \right\}$ which is equivalent to (5).
- 3/ Using deflated prices, equation (10) becomes $\gamma^s = \gamma_G^s \left\{ \frac{r_1}{I}, \frac{P}{I} \right\}$ where I is the price index. In a small sector situation where a change in a particular price does not have a significant impact on the price index, it follows that $\frac{\delta \gamma_G^s}{\delta P} \frac{P}{\gamma_G^s} = \frac{\delta \gamma_G^s}{\delta (P/I)} \frac{P/I}{\gamma_G^s}$: the elasticity of supply with respect to a nominal price is approximately equal to the elasticity of supply with respect to the corresponding real price. In this context, since the homogeneity restriction can be expressed in elasticity form (such as in equation (8)), the use of deflated prices in supply response does not insure by itself the homogeneity of supply or demand functions with respect to either nominal or real prices. Thus, it still makes sense to investigate the validity of price ratios in supply response even if deflated prices are used. Although this argument strictly holds only for a small sector, it appears to be approximately valid for most econometric modeling of agricultural production.
- 4/ One issue raised here is the specification of the general price level (inflation) in the supply function (10). The choice of a price deflator could affect the estimates of separate parameters, implying that there is a chance that the estimated coefficients may be distorted. However, they should not affect the price ratio results.

- 5/ No economic adjustments were assumed between placement and testing.
For this reason, the testing function is not included in the broiler model.
- 6/ Non-linear least squares was used in order to obtain a standard error for each parameter of the partial adjustment model.
- 7/ The information about the average shape of a laying cycle for broilers, egg-type chickens and turkeys has been provided by Mr. W. Russell, Poultry Department, University of Missouri-Columbia.
- 8/ The predictive performance of the model outside of the estimation period has been investigated in Chavas (1978). It gives further evidence on the validity of the representation.

REFERENCES

Chavas, Jean-Paul, "An Econometric Model of the Poultry and Egg Industry", Unpublished PH.D. dissertation, University of Missouri-Columbia, 1978.

Chen, D. "The Warton Agricultural Econometric Model: Preliminary Equations." Wharton Econometric Forecasting Associates, August 1976.

Gardner, Bruce, "Determinants of Supply Elasticity in Interdependent Markets, American Journal of Agricultural Economics, 61: 463-475, 1979.

Gerra, M.J. The Demand, Supply and Price Structure for Eggs. USDA Technical Bulletin 1204, 1959.

Hein, D.M. "An Economic Analysis of the U.S. Poultry Sector." American Journal of Agricultural Economics, 58: 311-316, May 1976.

Johnson, S.R. and G.C. Rausser. "Systems Analysis and Simulation: A Survey of Applications in Agricultural and Resource Economics." In A Survey of Agricultural Economics Literature, Vol. 2. Judge, et. al., eds. University of Minnesota Press, 1977.

Marquardt, D.W. "An Algorithm for Least-Squares Estimation of Non-Linear Parameters." Journal of the Society of Indust. Appl. Math., 11 (2): 431-441, June 1963.

Rahn, A. "A Quarterly Simulation Model of the Livestock and Poultry Sub-sectors for Use in Outlook." Unpublished dissertation, Iowa State University, 1973.

USDA, ERS. Poultry and Egg Statistics, Supplement for 1972-1975 to Statistical Bulletin No. 525, September 1976.

USDA, ERS. Selected Topics Related to the Poultry and Egg Industries. Reprinted from the Poultry and Egg Situation, 1972-77, 1978.