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Abstract

The transformation of jointly dependent and predetermined

variables into principal components is shown to be an effective method

for handling multicollinearity in simultaneous equations at the second

stage. Estimates are obtained which are theoretically meaningful and •

statistically significant. Simulations from the reduced forms are

realistic relative to historical values.



The Use of Principal Components in Simultaneous
Equations: An Empirical Application

Introduction

Principal components (PC) are used in regression analysis for two

reasons: (1) to transform a set of correlated predetermined variables

(X) into orthogonal variables or vectors (P); and (2) to reduce an

excess number of predetermined variables relative to the number of

sample observations (N). Multicollinearity is addressed by the first

. method; insufficient degrees of freedom, by the second. Failure to

address either problem leads to singularity or near singularity of

the matrix of sums of squares and products of the predetermined variables

(XIX). The use of PC provides a solution to this matrix singularity

problem since PC are orthogonal variables derived as linear combinations

of an original set of predetermined variables.

Several authors have illustrated the use of PC in regression

analysis as a solution to multicollinearity (Pidot, 1969; Maddala,

1977; Chatterjee and Price, 1977; Mittelhammer and Baritelle, 1977).

Researchers employing PC in regression analysis as a solution to

insufficient degrees of freedom include (Kloek and Mennes, 1960;

Amemiya, 1966; Klein, 1969). As solutions to both problems, PC have

been limited to predetermined variables. This paper will illustrate

the use of PC on predetermined variables as well as sets of predeter-

mined and dependent variables (Y). Multicollinearity is the problem

addressed with both uses of PC.

Specifically, a simultaneous system of the U.S. potato industry

is illustrated with PC being used on the predetermined variables at



the first stage. Then, PC on predetermined and dependent variables

are derived for individual equations and used at the second and third

stages of estimation. Parameter estimates and the variances for the

original variables are then derived. It is shown that this extension

of PC to jointly dependent variables does not affect the variance

properties of the estimators. Some empirical and statistical results

from the estimated model are shown. Further, simulations from the

reduced form of the model are shown to be realistic relative to

historical values.

Model Specification

The sixteen equation system shown in table I was developed and

subsequently estimated. The structure of the potato industry is

captured by the first six equations; market equilibrium or product

flow characteristics are captured by the remaining equations. The

model is based on annual data for 1960-81. All endogenous variables

except total potato production (QRP), shown in equation 13, are

simultaneously determined.

Six areas are depicted in table 1 to be referred across the table

as I, II, and III for the first six equations and IV, V and III for the

remaining equations. The parameters in I account for causality among

structural variables while those in II suggest how product flaw vari-

ables should impact the structure in the same time period. In

contrast, the parameters in IV account for the structural impact on

product flow while the relationship among the flow variables is shown

in V. Finally, all exogenous variables are in area III. Note that
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Table 1 -- System of Equations for Analyzing the U.S. Potato Industry

Mdagerous Variables Exogenous Variables

NP? CRP Pal MR Cat UCA OPP ULF UZP IrF WI' }PR WF SPR trzo

•

1 -1 r13 I.,61
2 r21 -1 r24

3 r361

4 r42 r48 r49

5 r51 -1 r
56

6 r61..
••• •••• •••. ••••

r65 -1
—

r69_
••••• • •••• •••• ••••

7 -1

-1 r8,10 r8,11 re.14

9 r9,4 -1 r9,10 19,11 F914
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14 1 .01 .o1 -1

15

16
1-1 1 1 1

C If PM. Cr ra

/110

I 1120

, 30
I n
40

I
n 
5o

1 
1160

1
1170

'80

90

cK PS FPRL paC TR RS CC TF IT nN IN IN GR u!PL CRPL Mat.

n11 n12 u13 u14

1121 u22

u32

u2s 1125

142 $144

m52

n62

1155

076 1177 1179 07,10

1115,8

n11,9

n8,11 18,12 '8,13 118,14 118,15 118,16

119,11 119,12 n9,13 
11
9,14 19,15 1916,

n1,17 n1,18

n4,17

7,19

n13,19

n2,20

119,20

NPP
CH?
PCM
ASR
CZA
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rdRP
UZF
UZP
RPF
RI'?
WPP
FIR
RPT
SPR
020

Endogenous Variables

Number of processing plants
Concentration in potato processing
Price cost margins
Advertising-to-sales ratio
change in processing capacity
Utilization of processing capacity
Production of fresh potatoes
Utilization of potatoes for fresh consumption
Utilization of potatoes for processing
Retail price of fresh potatoes
Retail price of processed potatoes
Wholesale price of processed potatoes

Farm price of fresh potatoes
Research and promotion tax • ,

Spread between retail and farm price
Utilization of other potatoes

MS
PCML
CT
CD
CK
PS
FPRL
MC
TR
RS
GC
TF
FF
PN
IN
WN
Ca

ASI,L

Exogenous Variables

Minimum efficient plant size
Price cost margins lagged
Transportation cost
Geographic dispersion of potato production
Cost of capital
Price of sugar beets lagged
Farm price of fresh potatoes lagged
Marketing cost
Trend variable
Risk •
Produce sales through retail grocery stcres
Total away-from-home restaurants food sales

Fast-food sales as a percent of total food

Pcpulation
Income
Women in labor force
Expected growth
Utilization of potatoes for processing lagged

PrcIdtiction of fresh potatoes lagged

Advertising-to-sales ratio lagged

LJ



within III there are five lagged endogenous variables.

Principal Components Use at the First and Second Staytt

The system outlined in table I can be expressed as

(1.1) rY + + U = 0.

Referring to table 1, it can be readily seen that this system

satisfies the order condition, as a common characteristic among the

equations is their overidentification. The system also has been

verified to satisfy the rank condition for identification.

The model is based on annual data and several variables tend to

be highly correlated. Such correlations create potential problems at

the first and second stages of estimation. At the first stage,

Y = OX, but if vectors of X are correlated, then the value of 0 is

questionable. An alternative would be to define an orthogonal set

f vectors P such that P = WX, where W is a matrix of eigenvectors

estimated using principal component analyses (Chatterjee and Price;

Kloek and Mennes; Amemiya). As each principal component captures

the maximum variance among the exogenous variables, the parameters 0

generally can be estimated using some subset of the vectors of P. For

example, given five exogenous variables, the first and second

principal components may suffice. That is, Y = aPi, where P1 is a

subset matrix of P.

When a system is somewhat sparse as in table 1, similar corre-

lation problems can arise at the second stage among the variables X

and Y entering particular equations. The logic of statistical

theory suggests that principal components could be equally applied



at this stage. Simultaneity in the system is maintained by defining

as separate variables those parts of the components resulting from

. the stochastic and nonstochastic explanatory variables. Greater

precision in the parameter estimates is gained by using a subset of

PC at the second stage as well as at the first stage.

The use of PC at the second stage requires the orthogonal vector

A
P
2' 

where P
2 
= ZW

2' 
Z = (Y,X), and W2 

is a new set of eigenvectors

for the second stage estimation. If identities and third stage

estimates are part of the system, the Y must be identified explicitly

in each equation. This identity is lost if P is used as in equation

(1.3) below

(1.2) Y
1 
=ZT +U whereZ = (Y,X)

(1.3) Y = P 6 + U where T = W
2
6.

1 2

Simultaneity can be maintained by defining the variables associated

with the weights applying to the endogenous variables (W21) and those

applying to the exogenous variables (W22). 
Estimation at the second

stage then would follow as

(1.4) Y
1 
= P

21
6 + P

2 
6 + U

A.

where P
2 

= YW
21

and P22 =
XW22.

Estimation of the above equation requires an equality restriction on

6 since the parameter for P2 
applies to P

21 
and P

22' 
The identities

. 

for P
21 

must be carried as additional restrictions on the system of

equations.

Note that a subset of PC is proposed for regression analysis



because regression on all PC not only would yield the same parameters

as the original variables, but also would lead to very imprecise

estimates (Maddala; Chatterjee and Price). While there are several

methods for selecting PC, the size of the present system limits the

practical selection of PC according to the size of the characteristic

roots (Kloek and Mennes). Regression analysis on a subset of PC

which is selected according to the size of characteristic roots leads,

however, to biased parameter estimates. This biasness arises from

the fact that PC are functions of the correlation matrix for the

explanatory variables without regard to the dependent variables

(Maddala; Mittelhammer and Baritelle). The estimated parameters,

however, are functions of the dependent variables as well as the

principal components. Consequently, a PC which.is deleted because

of its small characteristic root may have .a high degree of corre-

lation with the relevant dependent variable (Maddala).

Although biased, parameter estimates from a subset of PC with

large characteristic roots have smaller variances and greater

precision. This follows from the fact that the variance for any PC

parameter is inversely proportional to its characteristic root. Let

(5. be the parameter estimates for the PC in equation 1 of table 1.

Then, the variances for these parameters are s
2
A where s

2 
is the

estimated variance of the residual term, and A are characteristic

roots. A !mall X. would lead therefore to a very imprecise estimate

for its associated parameter. This imprecise estimate would carry

over to parameters for the original variables since, as shown in
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equation 1.3, parameter estimates for original variables are derived

from PC estimates.

Multicollinearity among a set of variables always leads to large

and small characteristic roots. Dropping the PC associated with the

small characteristic roots results in a gain of precision because of

the relationship between the variances of the parameters for PC and

the original variables. With few exceptions, there is a direct

relationship between these variances. By dropping the PC associated

with a small characteristic root, a sizeable reduction -is realized in

the estimated variance for all parameters. With this background, we

now turn to the use of PC at the third-stage and the derivation of third-

stage parameters and the associated variances for these parameters.

Third Stage Estimation

Collinearity among the endogenous and predetermined variables at

the second stage requires, as noted, separation of the PC into their

endogenous and exogenous parts. Estimation of these equations further

requires equality restrictions on the parameters for the endogenous

and exogenous parts of these PC. In essence, a restricted system is

estimated at the second and third stages. Derivation of the parameters

and variances for a restricted system with PC follows similar pro-

cedures as outlined for a restricted system without PC. Consequently,

the derivation shown here follows the restricted three-stage least

squares (3SLS) method as derived by Schmidt (1976, p. 243).

Note that restrictions on a system of equations can be repre-

sented as r = RB, where r is a Gx1 known vector, R is a Gxk known



matrix of restrictions on the elements of B, and B is (rm. That is,

equation (1.1) can be rewritten as

(1.5) Y = ZB + U •where Z = (Y,X).

Schmidt (p. 243) has shown that the 3SLS restricted estimator is

-1
(1.6) B = B + CR'(RCR') (r-RB)

where B is the unrestricted estimator as derived by Goldberger

(p. 351). Mathematically, this unrestricted estimator is

(1.7) B = 
{ZIX[i-10(X'X)-11x,z}-1 z,x[A-10(x,x)

-1]
x,y.

The C in equation (1.6) is the first part of equation (1.7) enclosed

-
as t 

}1;
 R and r are as defined previously. Note that X and Z are

diagonal matrices.

The above B is tantamount to the estimator for the PC parameters

in the present system. To derive the estimator for the original

variables which are embedded within the PC, the expression in (1.6)

must be multiplied by the set of weights used in the transformation

of the original variables to PC. As PC are standardized variables,

this expression then must be divided by'the vector of standard

deviations corresponding to the weights or eigenvectors. The 3SLS

estimator for the original variables is therefore

(1.8) B = 114[11 + CR'(RCIII)
-1 
( -RB)J1V .

Note that no adjustment has been made for the intercept term, Bo. 
If

the researcher is interested in getting an accurate estimate for
 B

then the means of the original variables must also be subtract
ed

from the expression in 1.8. Since intercepts generally are of

limited interest, this additional step has been excluded to 
avoid



cluttering the expression.

Third Stage Derivation of Variances

While Schmidt derived the estimator for a 3SLS restricted system,

the author failed to show the variance properties for this estimator.

Moreover, a search of the literature failed to reveal that any author

had derived these variance properties. Therefore, the variance for

this restricted estimator is derived below. Then it is shown how the

variances for the original parameters can be derived from this

restricted system with PC parameters.

The variance for B is derived by using B as defined in (1.7) and

Y as defined in (1.5). Substituting B and Y into the first part of .

(1.6) gives

A 1-(1.9) B = Z'Xr 0(XTX) DCZ} ) j X'(ZB U) +
-

CR T(RCR')
1
 (r-RB).

This expression reduces to

rk, r^-1 -1
(1.10) B = B + C{Z'XLE GOCX)

1 
IX TU + CR'(RCR')

Substituting B in the last part of (1.10) yields

"-1 - 11 -
(1.11) B + 

r 
O(KIX) JX'U + CR' (RCR')

1

r - RCZ'X[i
-10(x,x)-1]x,u

or simply

(1.12) = B + {I - CR'(RCR')- R}

-RB)

Now let A = I - CR'(RCR')
-1

R. Then the variance becomes

(1.13) Ea B) a - = E{ACZ'X E-101(XTX)-/iX'UU'X
[(x,x).4]

XP
•

ZCTA').
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once they are specified. The V can be dropped because it is unnecessary

to adjust for the scale factor in deriving t-values (Chatterjee and

Price, p. 171). Equation (1.17) therefore becomes

(1.18) var = 1,1[Z1X{i-10(X'X)- 
1}x,i]-1 w,.

For two equations, this expression can be written out as

(1.19) var a') =

-1 -1

X(XIX) XTZ
1
a
11 

Z
1
X(XIX

,

1 
Z a

12

- -1

X(XIX)
1 
X TZ a Z X(X'X) X'Z a

2 2 12 2 2 22

Now clearly the diagonal elements are variances while the off-

diagonal elements are covariances. The final step requires multi-

plication by the weights or eigenvectors.

Empirical and Simulation Results

Multicollinear variables are known to cause serious threats to the

proper specification and the effective estimation of the structural rela-

tionships underlying regression analysis (Farrar and Glauber). Because

of these problems, researchers often will alter the specification of econb-

metric models to alleviate multicollinearity and therefore improve the re-

sulting estimates. An alternative to respecification, particularly when

the model is theoretically well-specified and all the variables are impor-

tant to the researcher, is the application of statistical methods to handle

multicollinearity. As seen below, the use of principal components proved

to be an effective method for handling this problem.

Because of space limitations, results are provided only for two of the

equations in table 1. These are equations 2 estimating concentration (CRP)

within the potato industry, and equation 9 estimating the utilization
 of

potatoes for processing (UZP). The parameters and their associated statistics

are shown in table 2. Simulation results are shown in figures 1 and 2.
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gable 2 -- Parameters and T-Ratios

C.ncentration (CRP) Parameter T-Ratio
Utilization of Potatoes
for Processing (UZP) Parameter 1-Ratio •

Intercept (1120)• 64.607 223.606 Intercept (n90) . 59.94 48.31
NIT (1 71) -.007 -13.684 ASR (r

94
) 1308.08 7.66

ASR (r2-4) 272.668 5.973 RPF (r910)
,  -.20 -.26

-IS
"21)L .059 15.619 RPP (r911)

, -2.35 -6.26

CK (r2)5 .146 5.384 RPT (r
9,14
) -.81 -1.02

(II )
- 23

.069 4.607 CC (U )
9,11 18.58 2.87

11111.
(122) -.393 -8.751 TF (n

9,12
) .0001 4.02

/MIL (II
2,20) 269.984 7.079 FF 13.97 7.50

PN 09,14) .09 - 8.95

IN .0056 13.28

(119,16) 26.97 3.68

ASRL 09,20) 1159.69 8.01

These parameters were used to derive the reduced forms for the

two equations and to forecast the results beyond the 1960-81 data

period to 1990. The forecasts are based on changes in the exogenous

variables at (1) their meaa rate for the last five data periods, (2)

25 percent above mean, and (3) 25 percent below mean. Relative to

historical values, these forecasts seem quite realistic.

SIMI,LATE POTATO MODIMAYSINC SCSNEGANDSULDI
. ACTUAL VALUES

Z---Z---2 PREDICTED VALUES AND SImuLATIONS FROM REAM
SIMULATIONS FROM 25 PERCENT ABOVE meAm

---N ---V SIMULATIONS FROM 23 PERCENT BELOW REAM

nm
I sow: b•Iliss• lot

1965 1990 1960

ZZWULATE POTATO WO= USING 5T5REG AND =LIN
u---.---4 ACTUAL VALUES

PREDICTED VALUES ANO SIMULATIONS FROM MEAN
S.--t---1 SImULATUONS FROM 23 PERCENT ABOVE meAm
7---Y.--Y • SIMULATIONS FRON 25 PERCENT SEWN MEAN

1975

nm

:. Actual, Predicted /960 ,1••• tog ?vices..

1963 1970 1960 1903 1990
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