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Abstract

The transformation of jointly dependent and predetermined
variables into principal components is shown to be an effective method
for handling multicollinearity in simultaneous equations at the second

stage. Estimates. are obtained which are theoretically meaningful and

statistically significant. Simulations from the reduced forms are

realistic relative to historical values.




The Use of Principal Components in Simultaneous
Equations: An Empirical Application

Introduction

Principal components (PC) are used in regression analysis for two
reasons: (1) to transform a set of correlated predetermined variables
(X) into orthogonal variables or vectors (P); and (2) to reduce an
excess number of predetermined variables relative to the number of
sample observations (N). Multicollinearity is addressed by the first

method; insufficient degrees of freedom, by the second. Failure to

address either problem leads to singularity or near singularity of

the matrix of sums of squares and products of the predeterminéd variables -
(X'X). The use of PC provides a solution to this matrix singularity
problem since PC are orthogonal variables derived as linear combinations
of an original set of predetermined variables.

Several authors have illustrated the use of PC in regreséion
analysis as a solution Fo multicollinearity (Pidot, 1969; Maddala,
1977; Chatterjee and Price, 1977; Mittelhammer and Baritelle, 1977).
Researchers employing PC in regréssion analysis as a solution to
insufficient degrees of freedom include (Kloek and Mennes, 1960;
Amemiya, 1966; Klein, 1969). As solutions to both problems, PC have
been limited to predetermined variables. This paper will illustrate
the use of PC on predetermined variables as well as sets of predeter-
mined and dependent variables (Y). Multicollinearity is the problem
addressed with both uses of PC.

Specifically, a simultaneous system of the U.S. potato industry

is illustrated with PC being used on the predetermined variables at




the first stage. Then, PC on predetermined and dependent variables
are derived for individual equations and used at the second and third
stages of estimation. Parameter estimates and the variances for the
original variables are then derived. It is shown that this extension
of PC to jointly dependent variables aQes not affect the variance

properties of the estimators. Some empirical and statistical results

from the estimated model are shown. 7Further, simulations from the

reduced form of the model are shown to be realistic relative to

historical values.

Model Specification

The sixteen equation system shown in table 1 was developed and
subsequently estimated. The structure of the potato industry is
captured by the first six equations; market equilibrium or product
flow characteristics are captured by the remaining equations. .The
model is based on annual data for 1960-81. All endogenous variables
except total potato productién (QRP), shown in equation 13, are
simultaneoﬁsly determined.

Six areas are depicted in table 1 to be referred across the.table
as 1, 1II, and III for the first six equations and IV, V and III for the
remaining equations. The parameters in I account for causality among
structural variables while those in II suggest how product flow vari-
ables should impact the structure in the same time period‘ In
contrast, the parameters in IV account for the structural impact on
product flow while the relationship among the flow variables is shown

in V. Finally, all exogenous variables are in area III. Note that




Table 1 -- System of Equations for Analyzing the U.S. Potato Industry
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Endogenous Variables

sumber of processing plants
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Advertising-to-sales racio
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Letilizacion Of processing capacity
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Exogenous Variables

Minimum efficient plant size

Price cost margins lagged

Transportation cost

Geographic dispersion of potato production
Cost of capital

Price of sugar beets lagged

Farm price of fresh potatoes lagged
Marketing cost

Trend variable

Risk

Produce sales through retail grocery stcres
Total away-from-home restaurants tood sales
Fasc-food sales as a percent of total fcod
Pcpulation

Income

wWomen in labor force

Expaected qrouzh

UZPL Utilization of potatoes for processing lagged
cki‘L Preduction of fresh potatoes lagyed
ASKL Advertisiny-tu-sales racio lagyed




within [II there are five lagged endogenous variables.

Principal Components Use at the First and Second Stages

The system outlined in table 1 can be expressed as
(1.1) rY + IX + U = 0.

Referring to table 1, it can be readily seen that this system
satisfies the order condition, as a common characteristic among the
equations is their overidentification. The system also has been
verified to satisfy the rank condition for identification.

The model is based on annual data and several variables tend to
be highly correlated. Such correlations create potential’problemsAat
the first and second stages of estimation. At the first stagé,

Y = 68X, but if vectors of X are correlated, then the value of 8 is
questionable. An alternative would be to define an orthogonal set

of vectors P such that P = WX, where W is a matrix of eigenvectors

estimated using principal component analyses (Chatterjee and Price;

Kloek and Mennes; Amemiya). As each principal component captures
the maximum variance among the exogenous variébles, the parameters 8
generally can‘be estimated using some subset of the vectors of P. For
example, given five exogenous variables,lthe first and second
principal components may suffice. That is, Y = agl,where Pi is a
subset matrix of P. '

When a system is somewhat sparse as in table 1, similar corre-
lation problems can arise at the second stage among the variables X

"and Y entering particular equations. The logic of statistical

theory suggests that principal components could be equally applied




at this stage. Simultaneity in the system is maintained by defining
as separate variables those parts of the components resulting from
the stochastic and nonstochastic explanatory variables. Greater
precision in the parameter estimates is gained by using a subset of
PC at the éecond stage as well as at the first stage.

The use of PC at the second stage requires/the orthogonal vector

PZ’ where P, = sz, Z = (Y,X), and W

9 is a new set of eigenvectors

2

for the second stage estimation. If identities and third stage
estimétes are part of the system, the Y must be identified explicitly
" in each equation. This identity is lost if P2 is.used gs in equation
(1.3) below

(1.2) Y ZT+ U where Z = (Q,X)

1

(1.3) Y1 = P26 + U where T = WZG.

Simultaneity can be maintained by defining the variables associated

with the weights applying to the endogenous variables (W21) and those

applying to the exogenous variables (WZZ)' Estimation at the second

stage then would follow as

(1.4) Y, =Py 8 + P8+ T

where P21 = YW21

and.P22 = szz.

Estimation of the above equation requires an equality restriction on

§ since the parameter for Pz applies to P21 and P22' The identities

for P21 must be carried as additional restrictions on the system of

equations.

Note that a subset of PC is proposed for regression analysis




because regression on all PC not only would yield the same parameters
as the original variables, but also would lead to very imprecise
estimates (Maddala; Chatterjee and Price). While there are several
methods for selecting PC, the size of the present. system limits the
practical selection of PC accordiﬁg to the size of the characteristic
roots (Kloek and Mennes). Regression analysis on a subset of PC
which is selected according to the size of characteristic roots leads,
however, to biased parameter estimates. This biasness arisés from
the fact that PC are functions of the correlation maﬁrix for the
explanatory variables without regard to the dependent variables
(Maddala; Mittelhammer and Baritelle). The estimated parameters,
however, are functions of the dependent variables as well as the
principal components. Consequently, é PC which .is deleted because
of its small characteristic root may have a high degree of corre-
lation with the relevant dependent~variable (Maddala). |

Although biased, parameter estimates from a subset of PC with

large characteristic roots have smaller variances and greater

precision. This follows from the fact that the variance for any PC

parameter is inversely proportional to its characteristic root. Let
Gi be the parameter estimates for the PC in equation 1 of table 1.

. . 2 2 .

Then, the variances for these parameters are s /Ai, where s~ is the
estimated variance of the residual term, and Ai are characteristic
roots. A small Ai would lead therefore to a very imprecise estimate
for its assoclated parameter. This imprecise estimate would carry

over to parameters for the original variables since, as shown in




equation 1.3, parameter estimates for original variables are derived
from PC estimates.

Multicollinéarity among a set of variables always leads to-large
and small characteristic roots. Dropping the PC associated with the
small characteristic roots results in a gain of precision because of
the relationship between the variances of the parameters for PC and
the original variables. With few exceptions, there is a direct
relationship between these variances. By dropping the PC associated
with a small characteristic root, a sizeable redpction~is realized in
the estimated variance for all parameters. With this background, we
now turn to the use of PC at the third-stage and the derivation of third-

stage parameters and the associated variances for these parameters.

Third Stage Estimation

Collinearity among the endogenous and predetermined variables at
the second stage requires, as noted, separation of the PC into their
endogenous ‘and éxogenous parts. Estimation of these equations further
requires equality restrictions on the parameters for the endogenous
and exogenous parts of these PC. In essence, a restricted system is
estimated at the sécond and third stages. Derivation of the parameters
and variances for a restricted system with PC follows_similar pro-
cedures as outlined for a restricted system without PC. Consequeﬁtly,

the derivation shown here follows the restricted three-stage least

squares (3SLS) method as derived by Schmidt (1976, p. 243).

Note that restrictions on a system of equations can be repre-

sented as r = RB, where r is a Gx1l known vector, R is a GxK known




matrix of restrictions on the elements of B, and B is (T',II). That is,
equation (1.1) can be rewriften as

(1.5) Y =2B + U -where Z = (Y,X).

Schmidt (p. 243) has shown that the 3SLS restricted estimator is
(1.6) B =13+ CR'(RCR')"! (r-RB)

where ﬁ is the unrestricted estimator as derived by Goldberger

(p. 351). Mathemati;ally, this unrestricted estimator is

(1.7) B = {z'x[ﬁ’lg(x'x)“llx'z}’l 2yt e ) xy.

The C in equation (1.6) is the first part of equation (1.7) enclosed
as { }_l; R and r are as defined previously. Note that X and Z are
diagonal matrices.

The above é is tantémount to the estimator for the PC parameters
in the present system. To derive the estimator for‘the original
variables which are embedded within the PC, the expression in (1.6)
must be multiplied by the set of weights used in the transformation

of the original variables to PC. As PC are standardized variables,

this expression then must be divided by the vector of standard

deviations corresponding to the weights or eigenvectors. The 3SLS

estimator for the original variables is therefore

(1.8) B = {w[ﬁ + CR'(RCR')—l (r—Rﬁ)]}v"l.

Note that no adjustment has been made for the intercept term, By. If
the researcher is interested in getting an accurate estimate for By,
then the means of the original variables must also be subtracted

from ﬁhe expression in 1.8. Since intercepts generally are of

limited interest, this additional step has been excluded to avoid




cluttering the expression.

Third Stage Derivation of Variances

While Schmidt derived the estimator for a 3SLS restricted system,
the author failed to show the variance properties for this estimator..
Moreover, .a search of the literature failed to reveal that any author
had derived these variance properties. Therefore, the variance for
this restricted estimator is derived below. Then it .is shown how the
variances for the original parameters can be derived from this
restricted system with PC parameters.

The variance for B is derived by using % as defined in»(1.7) and
Y as defined in (1.5). Substituting B and Y into the first part of
(1.6) gives |
(1.9) B = {z'x[fl'l@(x'x)'l]x'z} z'x[f:'l@(x'x)“lj X' (ZB + U) +

CR'(RCR") ™Y (r-RB). |

This expression reduces to

(1.10) ¥ = B + clz'x[f T@'x) "LX'U + CR' (RCR") " (x-RB)
Substituting % in the last part of (1.10) yields
@.11) =3B+ c{z'X[£'1®(x'x)'l]x'U + CR' (RCR")

rez'x[r ') Hx'w

or simply

(1.12) B + {1 - cr'(Rer) R} cz'x[z e 0)]x U,

Now let A - CR'(RCR')-lR. Then the variance becomes

.13 EE - B) & - B)' = Bacz'x[z s 0 " x'vu'x

[§"1®(X'X)”1]x'zc'A'}.




once they are specified. The V can be dropped because it is unnecessary
to adjust for the scale factor in deriving t-values (Chatterjee and
Price, p. 171). .Equation (1.17) therefore becomes

(1.18) var B = w[z'x{ﬁ"ﬁg(x'x)’l}x'z]'l w'.

For two equations, this expression can be written out as

] T 7
' -1 1 ' -1 '
ZlX(X X) X Zloll ZlX(X X) X 22012

(1.19) wvar (%) =W

' — -
Z,X(X'X) L g Z,X(X'X) 1y

25919

29922,

Now clearly the diagonal elements are variances while the off-

diagonal elements are covariances. The final step requires multi-

plication by the weights or eigenvectors.

Empirical and Simulation Results

Multicollinear variables are kﬁown to cause serious threats to the
proper specification and the effective estimation of the structural rela-
tionships underlying regression analysié (Farrar and Glauber). Because
of these problems, researchers often will alter the specification of ecop6:
metric models to alleviate multicollinearity and therefore improve the re-
sulting estimates. An alternative to respecification, particularly when
the model is theoretically well-specified and all the variables are impor-
tant to the researcher, is the application of statistical methods to handle
multicollinearity. As seen below, the use of principal components proved
to be an effective method for handling this problem.

Because of space limitations, results are provided only for two of the
equations in table 1. These are equations 2 estimating concentration (CRP)
withiﬁvthe potato industry, and equation 9 estimating the utilization of
potatoes for processing (UZP). The parameters and their associated statistics

are shown in table 2. Simulation results are shown in figures 1 and 2.




table 2 -~ Parameters and T-Ratios
Utilization of Potatoces B
Concentration (CRP) Parameter T-Ratio for Processing (UZP) Parameter
,” 64.607 223.606 Intercept (Mg,) - 59.94
NI'P ) -.007 -13.684 ASR (l‘%) 1308.08
ASR (48 21.) 272.6A8 5.973 RPF ("9.10) -.20
MS 0, .059 15.619 RPP (r ) . -2.35
9,11
)
)
)

Intercept (N

CK (n 146 ) 5.384 RPT (1'9'11‘) -.81
1 (n .069 4.607 GC (“9'“) 18.58
VeMIL ( -.393 -8.751 TF (“9,12 .0001
) 269.984 7.079 FF (ng'13 13.97
PN (n°.14 .09 .
m‘ (ng' 5 .0056
("9'16 26.97
(n

SRL
ASRI (117'2()

9,20) 1159.69

These parameters were used to derive the reduced forms for th;
two equations and to forecast the results beyond the 1960-81 data
period to 1990. The forecasts are based on changes in the exogenous
variables at (1) their meaa rate for the last five data periods, (2)

25 percent above mean, and (3) 25 percent below mean. Relative to

historical values, these forecasts seem quite realistic.
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