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OPTIMAL CONTROL OF GENERAL EQUILIBRIUM MODELS

Introduction

This paper discusses a methodology for applying optimal control to

dynamic general equilibrium models (GEN1s). Given a welfare criterion,

optimal government policies over a fixed horizon can be ascertained

using the classic quadratic linear approximation technique whereby the

model is linearized and solved using an extension of Johansen's method.

Intraperiod updates of the models' state variables, as well as inter-

period updates, are performed automatically by means of a prespecified

default value. This reduces the approximation error which can be

further reduced and made even arbitrarily small by suitable reductions

in the default value.

The use of a self-updating Johansen system rather than a more formal

solution algorithm greatly economizes on the computation time required

for final convergence which, even so, entails some difficulties arising

from bang-bang behavior. For this reason, welfare functions monotonic

in consumption or income were found very difficult to deal with regard-

less of terminal constraints, thus leading to the employment of outright

quadratic or "target" objective functions. Similarly, the use of more

than one policy instrument as control variable made final convergence

more difficult which, in the case of a single control, is achievable

within 8 to 12 iterations.
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Solution Techniques

In their most generalized form, Gals can be expressed as

(1)

where

Gt(Yt' X , z) = 0

G
t 
= vector of valued functions representing the equations of

the model (at time t)

Y
t 
= vector of endogenous variables (including prices)

X
t 
= vector of policy or control instruments

Zt = vector of exogenous and lagged endogenous variables.

In obtaining a first-order approximation of this system, the total

derivative of (1) is

(2)

and solving for dYt

where

GY dYt + 
GX dXt + 

Gz dZt = 0 
or

t t t 

dY
t 
= dX

t 
Et dZt

Yt = 6t)-1 (i dX
t 
+ dZ

t
)

t 
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Alternatively, one can rewrite (2) in Johansen form as

At yt = Bt xt + Ct zt

where small letters denote rates of change, i. e.,

yld Y
tYt 

[ d 

xt = 
dX
t

zt 
= 

Zt 
dZ
t

and

with brackets denoting square-diagonal matrices.

The advantage of the rate of change set up over a simple first-order

Taylor expansion lies in the resultant matrices of derivatives At, Bt,

and C. In (3), the elements of these matrices are either constant (per-

taining to log linear equations) or simple functions of Y
t' 

X
t' 

and Zt'

respectively, such that one can perform simple updates as follows:'

Ati-1 = At[l Yt]

Bt+1 = Bt[l xt]

C
t+1 = C [1 + z1.

This This is in contrast to Johansen, who treats the above matrices as

constant. Furthermore, one can perform intraperiod updates for the sake

of higher accuracy. Since it is not practically feasible to increase

the number of such updates ad infinitum (something that would duplicate

the actual nonlinear system), we opted for some sort of consistency rule
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that would would indicate the proper number of "period segmentations." Dixon

et al., who use a segmented version of Johansen's technique for purposes

of policy simulation, link this number to the percentage change of the

exogenous variables in each period. This, however, lacks consistency

since a given change in exogenous variables will have varying effects

according to the state of the economy.

The rule which we used (Derpanopoulos) calls for an update whenever

the largest absolute value deviation amongst all the variables exceeds

a certain default value, M. Assume that the largest such deviation is

2.3NI. Then the original vectors of control and exogenous changes (xt

and zt) are applied in three segments before solving for the complete yt

in (3). First, (1/2.3) xt and (1/2.3) zt are used to solve for part of

y
t 
followed by an update of At, Bt' and Ct' • then the process is

repeated a second time, leaving a remainder of (.3/2.3) of exogenous

and policy variable changes to be applied the third (and final) time.

Different default values were tried with a 12.5 percent default

value proving sufficiently accurate and at the same time economical for

the purpose of control. The average error resulting from this operation

was in the order of 0.4 percent with individual errors varying from 0 to

1.57 percent in the worst case.

Optimal Control

Having set up an efficient and economical framework for solving GEMS,

one can proceed to derive optimal government policies over a fixed time

horizon for given preference orderings as expressed in a social utility

function, W, where



(4) W =
t=1
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 pt) wt (Yt xt )

and where W = total discounted utility and pt = discount rate for

period t. The optimization algorithm used is the quadratic linear ap-

proximation technique (Athans) whereby a second-order expansion of the

welfare function (4), together with a first-order expansion of the sys-

tem equations (1), are performed around a base path for the economy.

This path could be a simple projection of the current state of affairs

together with anticipated levels for policy and exogenous variables over

0 Tthe horizon of the planning exercise. Thus, given (Xt, Zt) t=i,

one could, through the use of the solution algorithm discussed above,

solve for (Y0) T t1. In doing so, one has also obtained the necessaryt =

first-order expansions around the base path from equation (3) with the

derivative matrices At, Bt' and Ct evaluated at each interval of the

base path for t = 1, ..., T. One, therefore, is left-with only the task

of performing a quadratic approximation of (4) around the base path, i.e.,

( 1dW
t = W 

YT
1 

dYt + dW
x 
dXt tt

0, 

+ 1.(dYt dXt)

iwYY
t W

t

,v)CY
11XX (Xt j

Making the latter compatible with the Johansen framework, the control

problem can thus be expressed as:



(s)

subject to

where
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T 
1Maximize dW =

(xl, XT) t=1 OwtYt+wt xt

(Yt

vxty mxx
ut

y
t 
= A71(B x + C z)t tt tt

0Y
t - Yt

Yt Yt

0xt = Xt

z
t = et

wY = w fy.01
t t t

wx = wX rx01
t t

wyy = Lry01 wYY ry01

TaXX = rx01

rit L tj t
[00

wXy = [x]0 ryol

rit t t

4
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This problem can be approached using dynamic programming where one

solves for a set of closed-loop feedback rules (Gt, g.) Theset t=1*

indicate the optimal deviation in the control variables for each period,

x
t' 

conditional on the changes in the lagged endogenous and exogenous

variables of that period, zt.

Working backward from the optimality conditions of the last period,

where

(6)

xT = GT zT + gT

GT = (I)T {BT (Cr) WV AT CT}

gT = T {(14)' Br(:r) WYt1

(1)T = 
{BT( wirr BT vcrx}-1,

•

one must next solve the Riccatti equations for the previous period,

h
T-1 

= + -1 W,Y,Y1 + WTI /A.1-.1(BT GT + + wx GT T'

T-i(Br Gr 4Y1A-r-li(Br GT 4. t 14x

H
T-1 and hT=1 can be used in place of er and WYY' respectively, inT 

(6) to compute GT_1 and g which can then be used for HT_2 and hT_2

and so on until one finally arrives at the optimal feedback rules for

the first period. This optimality, however, pertains to the linear

quadratic version (or approximation) of the actual problem. It is cus-

tomary practice to use the derived feedback rules and the associated
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control deviations as indicative of the direction toward which welfare

is increased and not of the actual location of the optimum. This leads

to the use of step sizes whereby a certain fraction of the indicated

change in control variables is actually enforced at each time period.

Thus, if the deviation indicated for period t is

xt = Gt zt + gt =

then, at the simulation stage,

xt = at

where a
t 
is the step size for period t. Under the new deviations of

the policy variables, simulation of the GEM for the T periods will give

rise to a new path for the economy,

where

vl . y0 [1 .1. yt]

it t

1 r
X
t 
= a + x

t
]

T
t' t t=1'

1 « T.
— —

Normally, this new path should be closer to the optimal than the '

first (i. e., should increase the value of the objective function).

It is not unusual, however, if, instead, it gives rise to a decrease in

welfare. This will be the case if the step size is too large leading to

"overshooting." Unfortunately, there is no rule for establishing the

optimum step size although conditions do exist for placing upward bounds

on the step size which guarantee convergence (Ortega and Rheinbolt,
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Kailath). Such bounds are usually on the conservative side and, in

practice, much larger step sizes can do the job more efficiently. We

discovered that step sizes of either 1/4 or 1/8 worked quite well--at

least for the early iterations. As one approaches an optimum, these

step sizes have to be reduced for the sake of smoother convergence.

Finally, for convergence we required that the welfare function

increase by less than 1 percent for two consecutive iterations. In

the majority of cases, such a situation was achieved within 8 to 12

iterations .
2

The Welfare Criterion

Regarding the functional form of the welfare function, one can distin-

guish between two general types: monotonic functions and quadratic

functions. Monotonic functions are logically more sound, adhering to

principles of nonsatiation with respect to welfare-bearing arguments

(whether these are consumption, income, capital stock, etc.). In prac-

tice, we encountered considerable difficulty in inplementing this type

of welfare criterion. Attempts were made in this direction following

the traditional method of second-order approximation of these functions.

Under this approach, the idea is to guide the system in the direction of

the steepest ascent, i. e., the direction which increases welfare most

rapidly. One problem is that gradients are not constant from iteration

to iteration but change depending on the point of approximation. This

results in a somewhat erratic control policy Which inhibits smooth con-

vergence to an optimum (to the extent that the latter is not well

defined since it changes with each iteration).
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Amore serious problem with monotonic welfare functions is that

optimal solutions are not guaranteed to be as appealing as the principle

of monotonicity upon which they are built. Bang-bang solutions were

often encountered, characterized by greatly reduced income in certain

periods for the sake of higher income in other periods. Under monotonic

welfare functions, where the goal is to maximize total discounted income

(or consumption), bang-bang solutions will arise from the dynamics of

the particular model.

GEN[s generally have few lagged dependent variables. In our model,

these were the capital stocks of each sector, the price level, and the

rate of money increase. All remaining variables which did not appear in

lagged form were associated with unitary eigenvalues. This, in itself,

is sufficient to give the system oscillatory tendencies which, in cer-

tain cases, can diverge in an outward direction with time. Optimal

control will exploit this characteristic unless there is a stabilizing

force exerted by the welfare function. Monotonic functions do not have

such a stabilizing effect since the goal of maximum income or consump-

tion might be achievable through alternations of high and low income

periods.

These difficulties led us to employ quadratic or target-oriented

welfare functions. These functions have the chief shortcoming of being

symmetric around their particular targets and, hence, of penalizing

equally outcomes which are on different sides of a target. One way to

get around this difficulty is to ensure that the targets are never

superseded. There is a trade-off, however, between the infeasibility

of the targets on the one hand and the smoothness of the results on the
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other. By setting the targets too far, one will induce the same sort of

bang-bang behavior that is characteristic of monotonic-function solu-

tions. In other words, given that targets in such a case cannot all be

satisfied simultaneously, optimal policy will tend to satisfy certain

of these targets at the expense of others.

Once again, we can attribute this to two reasons. On the one hand,

distant targets are assocated with steep gradients which induce sharp

and erratic behavior. On the other, there is the potential for system

oscillation (mentioned earlier) which is exploited by the optimization

process .
3

Consequently, in our experiments, we operated with targets which

were slightly beyond reach. By this, we mean growth rates of relevant

variables which are roughly between 1/2 and 1 percentage point above

what can be actually achieved.
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Footnotes

*John Derpanopoulos is Chief Economist for Sarasin International

Securities, London, England.

1In CES-type functions where the elasticity of substitution (p) is

not equal to unity, the relevant matrix of elements must undergo additional

-0-1

updating of the sort et— (113(0 Yit
2Regarding computation time, an average iteration required approxi-

mately 30 seconds of CPU time on a PDP 11/780 for a 53 x 53 dimensional

problem. If several within-period approximation updates were involved,

computation time obviously exceeded this.

3
As one would expect, oscillations are greatly reduced with a reduc-

tion in returns to scale. Other factors which influence oscillations in

a negative (reduced) direction are the share of labor in value added and

the speed at which the effective capital stock is affected by invest-

ment. Surprisingly, oscillations increase as one lowers the elasticity

of substitution in production.
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