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INTRODUCTION

Monte Carlo Programming (MCP) involves random sampling from the

feasible set of some farm planning or investment analysis model, the

feasible set being defined in mucﬁ the same way as in the more traditional
linear programming (LP) pfoblem, The primary aanntages cited by those who
used MCP were: 1t allowed the inclusion of an arbitrary number of objec—
tive functions; inﬁeger level constraints were easy to specify; and the
computer algorithm was very easy to program using available machines.
Among its disadvantages were the.high cost of usiﬁg the procedure and

the lack of ability to find the optimal solution in most cases. The

cost factor, combined with the improvement in coméating analytic methodé
such as mixed integer programming (MIP) and quadratic programming (QP),
ultimately extinguished much of the enthusiasm for the traditional kind
of MCP and there hasrbeen no significant new published research of tﬁag
type since 1969.

In this paper, I>review the basic MCP methodology used in farm plan-
ning and investment evaluation models in the late 1960's. Key féatures
of tﬁis early fesearch are discussed along with a briéf survey of more
modern extensions of thé basic techniques. Finally, the advantages and

disadvantages of MCP as a research tool are considered.
BASIC METHODOLOGY

Although a number of articles appeared in 1966-1967 espousing
basically similar methods, Stryg (15,16) .was apparently the first to
apply Monte Carlo methods to farm planning problems. In a paper which

immediately followed, Lindgren and Carlsson (l1) developed a "seeking'




procedure for efficiently zeroing in on.solutions which were near opti-
mal in tefms of the objective function(2). At about the sa@e time;
Thompson (17), Dent and Thompson (6), and Donaldson and Webster (7,8)
produced élightly modified versions of Stryg's or Liﬁdgrenis’models and
applied these to various farm planning problems. For the most. part, thése
papers ﬁere simply expository of the basic methodology and did not treat
problems which Were\especially iﬁportant in theirvown right.

Since the predominant analytic tool used for farm planning pfob-
lems in the 60's was linear programming, the Monte Carlo programming
problem was invariantly set.up in a similar manner (this was»also prac—
ticai since the results were often bompared to LP results for similar
problems (8,15,16)). The objective function and comstraints were usually
presented‘in a’' tableau, élthough the solution algorithm dpefated on aﬁ
‘equation-by-equation basis and involved no matrix operations. -The alge-
- braic form of the Monte Carlo meﬁhod is presented here, following thei-
terminology of Carlsson, Hovmark and Lindgren (3).

The objective function(s) is defined as a function of the n activities:
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- where Xj is the level of the jth activity. Zlmay'be of almost any form

(smoothness and convexity in the range of the feasible set are desirable,
but not essential, features). 'Xj may be integer or real, subject to:
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k activities are assumed to be independent random variables. The
remaining n~k are dependent on one or more of the k independent activi-

-ties according to the equation:

(h=1,2, ... , n-k)




Constraints are formulated as linear functions of the independent

act1v1t1es.—/ The -form of the constraints varies from the LP in that a.

fixed and a.variable resource cost is specified for -each activity relative

to each constraint:
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Finally, a constraint may be imposed on the number of activities
which may enter a solution.

These constraints define a feasible region which will most likely
look much different from.that of fhe staqdard LP problem. The_constfaints
on range, integer constraints, the resource cost or efficiency component
(qij; which may or may not enter the solution, thus varying the net re-
source constfaint level) and the limits on number of activities virtually
assure that tﬁe feasible set is non-convex.

The solution process simply involves randomly sampling from the so-
defined feasible set. The activities to enter the solution are chosen
randomly from'among the~indepehdent activities. A random value (rounded
for integers) within the predetermined limits (xglin to X?ax) is éssignéd
ﬁo the selected activity and each of the resource levels (constraints)
is decreased by the resource use of that activity. 1If any of the con-

straints are violated, the activity level is reduced until either all re-

source levels are non-negative or the minimum activity level is passed

Several authors suggest that non-linear constraints might be used,
but none appeared in the surveyed literature..
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zero.  Another activity is randomly selected and the process is repeated

-

until the prespecified number of activities have entered the solution or

). If the latter occurs, the activity level is set equal to

until all of the activities have been tried.
A second stage process moves the solution from the interior to the
boundary of the feasible set (if this is desirable). Each of the activity

levels is increased (in the order in which they were selected) until at

least one constraint is reached for each. Finmally the value of the ob-

jective function(s) is calculated.

The solution proéess is repeated a specified number of times- to pro~v
duce a characteristic sampie of'the feasible set. The number of itera-
tions,.usually 1,000 or more, is deterﬁined based oﬁ én'éstimate of how
large the sample need be to get the desired number of solutioné whiéh
are near>optimal with réspect to the various objective functiomns with a
given probabilify.

If some activities are preferred to others, a weighting scheme is
used to increase the probability that the ?referred activities will‘entér
the solutioﬁ. Since earlier-selected activites tend to have higher values;
the preferred activitiés will be largef on aVérage;with weighting than
without. 1If,a priori, certain activities are known to be more important
in the objective functions, appropriate weighting will produce more solg;
tions near opti;um levels.

Carlsson, et al. (3) suggest a 'multi-step seeking process' which |
takes a systematic approach to calculating weights comﬁined with "interval'
reduction" which results in a much higher percentage of solutions in the

neighborhood of the optimum. A set of solutions is produced using the

basic procedure outlined above without;prior weights. - The solutions with
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objective function values above certain minimum levels are selected; If
certain activities nevgr occur in these solutions, they are removed from
further consideration. The range limits of the included activites are
reset to the Qbserved range in the sample ("interval reduction'). Weights
are calculated for these variables based onltheir relative frequencies in
the acceptable solutions. ﬁsing the»more precise intervals and the cal-
culated weights, a new set of solutions is computed’ using MCP.

Other improvements were made in the Monte Carlo methodology, although
these were fairly straightforward extensions of the basic techniques.
Most notably, Dent and Thompson (6), in their analysis- of feed ration
problems, made three modifications. 'Ip the first part of the sblution
process, violations of constraint minima are ignored. 1In most cases,
after the specified number of activities entered the-solution, there was

no problem in achieving feasible results in the second step when the ac-

e > 2/ - . e e
tivity levels were increased.~ Another extension was the inclusion of

step-sizes for‘activity levels (greaterbthan unity). This was desirable
because many of the feeds could only be bought in multi-unit packages (i.é.,
bushels rather than pounds). Finally, following the method suggested
earlier by Thompson (17), certain activities were.conétrained to ge mutu-
ally exclusive so that some of the solutions wpuld contain each of the mu-
tually excluéive activities, but none ‘would have more than one of them.

All of the above modifications testify to the simplicity of modifyving the

computer program to build in any conceivable type of boolean or linear con-

straint.

2/

It is likely that earlier writers did not address this issue simply
because their problems did not include minimum constraints.
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Several ﬁechniques were used to process the MCP output into é'mean~
ingful form fdr ana;ysis. Most popular among these is the estimation of
_efficiency‘iines which show the trade—off between various pbjectives; An
efficiency line is a chart of.optimum levels of one objaétive for'given
levels of a second ijective. If the quectives are maximum profit and
minimum ﬁariance, for instance, this is equivalent to a sample estimate
of the E-V frontier. The advantage of MCP is that éfficiency lines may
be derived for all possible pairs of.objectives with no additional com-

putation.
SOME APPLICATIONS

An example of how these techniques might be applied is given by Dent
and Byrne (5) in their investment planning paper. They compare éfficiancy
lines for mutually exclusive iﬁﬁestmenté; wherevminiﬁized capital invest~
ment for given levéls of net present value are.the objéctives. In the case
of land improvement for sheep versus cattle, they find that cattle prdduces
higher returns for low levels of investmenﬁ, but sheep are more profitable
at higher levels. 1If capital is tight in the near—term, but further in-
vestment is planned later, the less ﬁrofitablé invEStﬁent in the short~ruﬁ,
sheep, would be the best choice for the 1ong—run; ‘When more capital be-
comes available, this would go to.further land ;mprovément for Shéep,
producing highgr total profits overall. Dent and Brynme suggest that this
type of analysis would be applicable for any investments which are addi-
tive over time.

More recent research has attacked more concrete problems with widely

varying implementations of the Monte Carlo method. Cassidy, Rodgers and

McCarthy (4) used an MCP~type approach to simulate risky outcomes. The
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notion of the feasible set was replacedAby a joint probability space.
For each éctivity, the minimum, maximum and most likely outcome were de-
termined subjectively based on questioning of the farm plénner. These
three parameters are sufficient to specify a triangular distribtﬁion.

_The sampling prdcedure simply involved generéting random values for each
activity based on its derived probability density fu@ction. ‘Results.of
the simulation were presented to the planner in the form of a sample cum-
ulative density function for each of the objectives.

For analyzing a particular investment, Cassidy's method provides a
different kind of information'than earlier MCP studies did. The pianﬁer
can judge the prdbability of acheiving each of his various objgctives.
Cassidy points out that this appréach éan also indicate the value of
better information (reduced variance) in terms of ultimate objectives.

The elements of the system which contribute most to reducing risk can be .
videntified as targets for: further résearch;g/

A limitation to the gross sampling approach to Moﬁte Carlo program-
ming is that a large number of solutions must be generated to produce
meaningful information. Anderson (1) suggests analyzing alﬁe;natives
based on conditions of third degree stochastic. dominance to selectbthe

"risk-efficient” set of farm plans. In applying this to Hazell's (10)

four—enterprise vegetable farm problem, only 48 plans needed to be gen-

erated to find 20 in the risk efficient set.
Using the same approach, he showed how '"risk-efficient Monte Carlo

programming" (REMP) may be used to evaluate farm policy. REMP was applied

3/

-~ Etherington (9) uses a similar approach to simulate price and yield
variability over time in a rubber tree replacement model.
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to two taxing altepnatives in'AustraliaQ Sinéé the characteristics of
the risk-efficient sets generéﬁed‘in each case_wé;e éssentially ideﬁtical,
Anderson concluded that takaﬁion policy considerations should focus on
the stabilizétion effects.and "... need not_bé cOmﬁlicated‘by attempts
to account for priée effects caused by po}icy-induced changes’in aggre~
gate iévels of production." (1, p:'th) |

Anderson suégesté théf REMP is a good élternaﬁiﬁe to.conQentional
fisk—programming approaches when risk is non-normal (hé uses beta distri-
butions in the examples) or when utility is not quadratic. Coﬁpared to
the MCP approach of presenting the farm planngr.with a large set of alter-
native plans with prbbableioutcomes and letting him eQaluéte the risk
subjectively, REMP requires thé'eliéitation of’subjective probabilities
and some assumptions about the nature of thé farmef?é dtility function.

- COMPARISON WITH OTHER METHODS

Donaldson and Webster (8), in their 1967 farm planning study, eluci-
date some of the major.features of farm enterprisés and constraints which
could not suitably be modelled using LP’(and which could be using MCP).
Fifsf among these is "lumpiness of'resource,floﬁs." LInputé such as labor

and machinery cannot be bought in small quantities or in fractiomal quan-~

tities. MCP deals with this problem by specifying the range and stép-

size for ac%ivities which use these resources.

Some capital items, such aé buildings for livestock and .special
cropping equipment command an économic rent vhether or not they are used.’
These "short—run resource fixities" of available farm inputs result in a
preselection of certain aétivities. MCP can treat these activities by

using weighting to increase the probability of their inclusion.
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Other factors in the'production'process which are better handled
MCP are non-linear production functionsaﬁd.aconbmiés of_écale.. Since tl
ijectng‘function in MCP may take almost any fprm, ?he first'probleﬁ
trivial. For the latter, the Specification of the consﬁraints allows for
largé»starteup costs (via the qig~term) with average variable costs.de—
creasing with highervaétivity levels.

‘Aside from constraints.on physical relationships; MCP offers several
direct advantages over LP for the farm manager. 'Although ﬁe may-wiéh to
consider ﬁany alternatives, he often preferé to limit the total number

of enterprises engaged in and this can't be accomplished using sﬁandard LP.
A disadvant;ge of linear'programﬁing is that it can onlyvconsiderA

solutions which lie at the vertex of the boundary of the feasible set.

Renborg (14) has shown that in farm planning pfoblems there is likely to .

be a fairly wide range of near-optimal solutions and'these cannot be ade-
quaéely'represented using L?; ‘if the fa?mer‘s preferences can be reduced
to a single objeétive function then this is obviously not a‘probieﬁ. If
there are only two objectives, such as minimum risk for each level of in-
come, and if the risks associated with each activity may be quantified; 
 then a sample:of plans.giving various income levels With.minimum risk
.may be generated by minimizing risk with income levels as a constraint
varied parametrically. With crop rotation as a secondary objective, Poweli .
and Hardaker (13).conc1uded that this was a superior approach invone of the
few casés where ﬁCP was compared to LP methods and lost.
A concensus among the authors who adopted MCP is that farmers have

many 0bje¢tive$ and tﬁat these objectives cannot easily be quantified.

Dent and Byrne (5) represent this position fairly well:
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"It has become clear ... that the objectives of farmers,
particularly their long term objectives, cannot be re—
duced to a single criterion. The list of factors which
influence the selection of farm plan will include the
stability of the plan in a changing economic and physi-
cal environment, the ease with which the business can be
expanded (or in some cases contracted), the need for new
capital investment, the position on the farmer's concept
of social scale which a particular way of farming per-
mits, as well as short term profitability and maintenance
of family income ... Therefore, the alternative to an
optimizing approach is to offer the farmer a number of
feasible plans. These plans should be similar in terms
of ... the primary criterion ... In addition, values of
a number of other criteria may be calculated ... The
farmer may then make a choice from the range of plans
offered with some knowledge about the financial and
physical implications of each plan. (pp. 104-105)

An obvious shortcoming of MCP is that it will virtually never report
‘the true optimum. Candler, Cartwright and Penn (2), in their critique

of Thompson's farm planning model, caution that simulation methods may

fall far short of the true optimum. Using Thompson's example, they were

able to incorporate the same kinds of constraints in a MIP model. The
MIP solution for the objective function (gross margin) was 15% higher

"... if the solution

than the best MCP solution. Candler summarizes:
space 1§ fairly flat, then we may be almost indifferent between any of
the tép 1 percent of solutions ... The queétion is: -How often is the
solution space an n-dimensional. pancake and how often an n-dimensional
orange?" (p. 238) Although the probability of obtaining near-optimal
solutions may be increased by using heuristic algorithms such as weighting -
or Carlsson's seeking pfocedﬁre, these bear the risk of excluding the
optimum entirely if miéspecified: V... raising the. expected value of

plans selected does not necessarily also’ raise the expected value of the

best plan selected." (2, p. 238)
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Thompson. (18), in a rebuttal, argued that MCP's main advantage lies
in its handling of multiple objectives. The estimation of efficiency

lines, for instance, is comparatively simple using MCP, whereas the MIP

efficiency frontier, while technically more precise, involvas much greater

difficulty and cost.

Thompson contends that whether or not you hit upon the optimal value
of the objective function is irrelevant:

"The Monte Carlo algorithm can handle large numbers of ob—

jectives with little extra effort, so that its role becomes

less that of .an optimum seeker and more a portrayer of the

significant relationships present in the system under study.

The emphasis on an optimum (a concept which is largely il-

lusory in agricultural systems) is then replaced by emphasis

on a 'road map' from which a farmer may judge the consequen-

ces of different courses of action." (p. 241)

If the relevance of an optimum in agricultural research is an argu-—
able point, the cost of MCP is not. It is easy to see that as the num-
ber of activities increases the size of the feasible set tends to increase
exponentially. Thus, the size of the sample must be very large for more
than trivial models. Where reported, the number of iterations ranged
from l,OOOVto 4,000 in the early MCP studies. All of the problems ware
Very small by LP standards.- Aside from the computing cost, the sophis-—
ticated multivariate analysis requires that many or all of the sample
plans be stored for analysis and this adds significantly to total cost.
The result is that MCP is impractical for large problems. Candler, et al.
suggest that the cost of achieving the added information which MCP pro-

vides compared to deterministic alternatives may often excede the value

of the information.




CONCLUSION

‘MCP is a useful tool for agricultural production eéonomics, al-

though its promise as a routine instrument for farm.planning was probably

overstated by early authors. Due to its flexibility, it offers a neans
of dealing with problems which are too mathematically complex to be
treated with deterministic methods.‘ Application. . of MCP to. simulating
the outcomes of stochastic processes, although somewhat far afield from
the initial résearch,‘seems a particularly appropriate aréa for futuré
research. Where analytic alternatives ére available,'hOWever, they aré
usually the more cost-effective alternative. Some research in develop-
‘ing methods like Anderson's REMP; which help to identify mear—optimal
solutions as they are gensrated and thus reduce costs, might vastly in-

crease the applicability of MCP.
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