

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Resource Stocks and Supply Estimation:

An Alternative Approach
Invar ε. Strand and Robert G. Chombere
ABSTRACT

An approach to resource supply estimation is developed which circumvents the need for direct observations in the resource stock. Estimation of supply response in this
framework will also permit direct estimation of several
important biological parameters from economic data.

$$
\begin{aligned}
& \text { Pusuated of a aEC: meeting, Urbana; } \\
& \text { July +7-30, } 1980
\end{aligned}
$$

A Altevintive Approach

Resource econoulsts are freguently asked for spectife folicy zecomendation regarding comon property ranemable ressurces. Thatr ceaponse uswally reiles on the conventionai wisdom with suggesta that allocarion of property rights of imposition of severance texes (or bountiea) are necssany
to achleve a zocial opifmum (fohring and Boyd). The wileriying logic is that the competitive market place neglectg the productive valus of the resource stock; hence, the government must manage the steck to assure optinal atock日izes

To determine optimal stock ofze, however, one must etudy the effect of the resource stock on the industry supply curve, one recent approach uber an estimesec resource grobith zunction ani a productior function to derfye a protit function which has resource stock aa an argumenc fHenderson and Tugwell). The second, more comon approach is to use an eavironmentai aurrogzte for the resource stock and obtain s supply curve independent of resource stock (oogo, Bell; Grifinn, Laceweli and Michols)e In this paper, a thira approach is taken finch uses fundamental production relationshipg to derige a supply equation which cen be directly estimated.

The approach offers not enly economic policy information, such as eupply elastactey and marginal vaiue cf resource stock, but considerabie blologtesi informetion inciuding egtimates of natural mertality aum average recruitmant (loea, now additione to the stoch). It ta therafore more generaliy applicable than the finet appreach and offers wore information than the secoad approach. Finally it allows the researcher (under cartain assurptions) to test statiotically the wifl aypothesta of a stock independent recruitment
relationship agafnat the alternetive hyporkenta of scock dependent recruimant. The appronch requires oniy indusity price, output and inpus data. Thus, to a lange eatent the suggeated approach circuments the need for deta on the sine of the resource atoch.

Enackground

Despite considerable artention affordad comon propersy resources (e.gc: Swith; Eurt ana Cuminga), very ifitle research has been undextaken to detersine the optimal quentity and value of a comon property resource in practical situatisns. Long-in, simulated oteady state models have dominated most attemptr at modeling optimal stock sizas (eogo, Cates and hortcr). While these are useful, one nust wonder why che uavally more romon econczestic approach has not talien hold. Using this approach; ore wight incorporate an abuncance variabie as a shift factor in the industry supply function eince oliput is usuaily preaumed to be responsive to stock denzityo

The problem, of courbe, is that this specification requizea reilabie data on the stock size。 Eosever, as Ylourde noced,

> "Pifficuls measurement probiems are inevitabie. One is the measurament of biomass [resource otock sizel. Another ta the [resource] growth functon." (p. 265)

Candidates for abundance or biomass yariabies have incluied indegendent bloiogical estimates of scock size (Tugwell and Henderson) anj yield per effort measures (Strand and hatteuces). Biological surpeys are in most ingtances not avaliatle, because of costs, and those availsole are often wet reiiable。 The use of the yiald per effort altarative is puesticanble because fndustriai changes wake the effort fariable subject to substantial error over time. Furthemime, inciuding a transformation of yield as a regressor in a Fifla equation prevents cnisietent estimatica by standard approaches afince there is correlation between the regresson matrix and the vector, of error terms.

Neoclassical theory suggests that suppiy is a function of factor pisees, the output price and any fizot factors of production rocorporatiog abundance terme in econometric suppiy equations implicltly assumes that abundance can be treated as a fixed factor of production. This fan tum finplies that abundance Is freely vardable over the loag run and under the dract control of the economic egent. Hecause of the blolcgical and social processes involved, this is usually not the case. For erample, standard formulations such as a Cobb-Douglas production function with abuncance extering as a fixad factor (c.f. Hezrerson and Tugwell) Euggest that shere erista some degree of substinutabilfty, at least in the long run, between effort and stock density. While economic agenta can whoubtediy aubstitute sxtra effort in response to decreasing stock density, it is not entirely clear that this relationship ia bymatric since stock deosity fs rot usually wier the control of the Individual agent nor even necessarily under the ditect control of all agants aggregated rogather. Thus, spectifynis stock jensity as an "input" to a production process appears questionable. This paper cffexs an aiternatize epproach; namely that stock density be treated as an effichency parameter which is capabie of parying irom period to period.

Once stock densioy 13 treated as a varying efficiency parameter, the way is cieared for a atraightforwara approach to supply estimation. A production function is specified and this along with standara assumptions about beheyior In a market for a comon property resource leads to a well-defined supply function that is a function of cutput and factor prices. 1 In fact urier appropriate asswaptions, consistent estimates of the profuction paramerers can be recovered from consistent estimates of the supply paremeters. The surply equatica is thus a reduced-form for the production model.

1 Because of the varying parameter form of the efficiency tern, it will Riso be necessaxy to incluge an effort serm in the constant.

The analysis begins with a thooretical developuent of population dynamics in a rememable rescuxce industry. The current population or resource size is presented as a solvable difference equation. The solution is then incorporated in production and supply reiationships. As it turns out, the resuleing supply equation ia autoregressiye but can be astmated using maximum 1ikelthood methois.
theoretical foundation

Resource Stocis Considerations

Renemable resource stochs (numbers ox biomass) at a point in efme (itl) are dependent on a variety of factors that are beot categorized as preyious stock sfze $\left(X_{t}\right)$, efrort $\left(E_{t}\right)$ or other measures of uariabie fnput to the production process and environmental factors $\left(z_{t}\right)$:

$$
\begin{equation*}
x_{\underline{\Sigma}+1} \Rightarrow g\left(X_{ \pm}, z_{\Sigma}, z_{\mathbf{\Sigma}}\right\} \tag{1}
\end{equation*}
$$

The form of g(...) and the componenta of $z_{\hat{\imath}}$ will yary accoraing to the resource mider considerationo For example, if the resource was an estuarine finfizh (e-go, siriped bass), nert year's stock of the resource mould depend on the current stock level, the eurrent effort expended to harvest current stocics, and the salinity or temperature changes during the critical embryonic Btage of developwent. In the case of insect populations, the enviromental factors might include spring rainfall or mean minter temperature.

A plausibie approach ${ }^{2}$ to speciffing aquation (1) is to assume that the function $g(\ldots .$.$) is segarable to a degree that permits quasi-independent$ investigation of the effect of previous stocic leyel and enviromental factorsa For a wide variety of resource stock problems, the effect of environmental

[^0]fectors can be confined to the ievel of recruitraent fanw mpecimens entering the stock). It will be assumed in the succeeding amalysts tint g(o..) is in fact additive and further that recruftment $\left(\mathbb{R}_{\tau}\right)$ can te decomposed finto a stock dapencent and stock incependent effect, fo..,
\[

$$
\begin{equation*}
R_{t}=A_{t} \div z\left(\mathrm{Y}_{t}\right) \tag{2}
\end{equation*}
$$

\]

where ${ }^{4} t$ is stock fndependent recruitment which is taken to be a ranion variable with mean A_{0} ana aduifive stochasitc component $\varepsilon_{t} f\left(X_{t}\right)$ is the stock dependent recruifment function. To simplify, is is assumed that the etock dependent recruitment function is proportional to brocka \{i.e., $I\left(X_{c}\right)$
 do not vany greatly. Fingily, the non-anvironmental portion of g(...) will be specified as $\gamma_{t}\left(E_{t}\right) X_{t}$ which is the amount of current popuiation eransmitted to the mext period. Equation (1) can therefore be rewritten as the foilowing difference equation:

$$
\begin{align*}
x_{t+l} & =\gamma_{t}\left(E_{t}\right) x_{t}+r_{t}+A_{t} \tag{r}\\
& =\left(\gamma_{t}+\frac{x_{2}}{}\right) x_{t}+A_{t}
\end{align*}
$$

Equation (1:) has the general solution

$$
\begin{equation*}
X_{t+1}=X_{t-\mathbb{L}} \prod_{i=0}^{\pi}\left(\gamma_{t-1}+x\right)+\sum_{i=0}^{m} A_{t-i}^{j=0} \prod_{i-1}^{\#}\left(\gamma_{t-j}+x\right) \tag{3}
\end{equation*}
$$

$$
t-1
$$

Where for notational convenience $\sum_{i=t}^{\pi}(\ldots)=1$, Letting m tend to infinity and recognizing that both y_{t} and I are less then one, reduce (3) to:

$$
\begin{equation*}
X_{i+1}=\sum_{i=0}^{m} A_{i-1} \prod_{j=0}^{i-1}\left(\gamma_{i-j}+r\right)_{0} \tag{4}
\end{equation*}
$$

Current stocks can be expressed solely as an fnfinite order distributed lag function of past recrultment and effort. Therefore for practical econometric
purposes, the current level of stocke can be viewed as independent of previous stock levels. The actual form of $\gamma_{\text {e-j }}$ further limits the effect effort In period he has on current atcek since γ t-k will identically equal zero Eor lisge enougi k, Therefore, effort oniy enters the distibused lag with a finite order.

Moreling Supply

-In this zection, a general supply equation is developed. The assumed sndustry production relation is

$$
\begin{equation*}
Y_{t}=\exp \left(\beta X_{t}\right) s_{t}^{c} \tag{5}
\end{equation*}
$$

there B is nozpadization factor, and Y_{i} is oucput at time t and X_{t} is defined above, Free entry into the market and the comnon property nature of the resource can force the industry to a zero profic situation. ${ }^{3}$ Hence,

$$
\begin{equation*}
P_{\Sigma} Y_{\Sigma}=\bar{W}_{t} E_{\tau} \tag{6}
\end{equation*}
$$

where P_{t} is output pifce and \mathcal{H}_{t} is the price of effort. Taking logarithes and solving (5) and (6) obtaina

$$
\begin{equation*}
\ln E_{t}=\left[1 n P_{t}+\beta X_{t}-\operatorname{In} N_{t}\right] /(I-c) . \tag{7}
\end{equation*}
$$

Substitution of this expression finto (6) yields the industry supply function (in logaritimic form)

$$
\begin{equation*}
\lim _{t}=\left[B X_{t}+\alpha \ln \left(P_{t} / W_{c}\right)\right] /(1-\alpha) \tag{8}
\end{equation*}
$$

Expression (8) is the induatry supply function and contains the stock ievel дa a shifter. As is cieat from previous specifications, the R_{t} term consists of a parametric component (albeit varying) and a stochagtic component. Subsequent development will make use of this fact. Finally, Gubstituzion of (4) into (8) Fle?ds

[^1]\[

$$
\begin{equation*}
\ln X_{1}=\left[B \sum_{i=1}^{\infty} A_{t-i} \prod_{j=1}^{i-1}\left(\gamma_{t-j}+r j+a(\operatorname{InP}-\ln \pi)\right] /(1-c j\right. \tag{9}
\end{equation*}
$$

\]

which, upoo noting that $A_{t}=A_{c}+\varepsilon_{t}$, can be rewricten as

$$
\begin{align*}
& \ln Y_{t}=\left[\sum_{i=1}^{\infty} A_{0}^{i-1}\left(\gamma_{t-j}+T\right)+a \ln \left(P_{t} / p_{t}\right)\right] /(1-a) t \\
& B\left[\sum_{i=1}^{\infty} \varepsilon_{i-i}^{i=1} \prod_{j=1}^{i-1}\left(Y_{i-i}+r\right)\right] /(1-\alpha) . \tag{10}
\end{align*}
$$

Eence, the optimal supply for the industry under question can be represented as possesing an intinite order, moving average error procese.

Econometric Constieretiona

Expression (10) suggests that there axe enime serious econometric probiems that must be faced in estimating any such aupply equation. Both the constanc term and the error structure contain the parametrice expression, γ_{t}, which is capable of varying from one time period to the next. Secondly, the error structure is both heteroscedastic and autoccrajated. Fut another way, the sovariance matrin for the error texms (assuming e_{t} ia 1.jod with mean zero and variance σ^{2}) can be witten as $\Omega(\sigma \beta / 1-\alpha)^{2}$ where Ω is the matria with typical diagonai element wit $=\left[1+\sum_{j=1}^{\infty} \sum_{k=1}^{j}\left(\gamma_{t-k}+T\right)^{2}\right]$
 Therefore, each element of the covariance matrio is itaelf of inflaite order so that in the cost general case estimation will be impossible tecause of a lack of degrees of freedom. Fortunately, the very nature of γ_{t} obviates this problem. Flrst of all, chere will be some finite k (say d) such that
 that after a is reacined, the expression for $\omega_{\text {th }}$ can be decompesed fato a Ennite order tem and an infinite seriss in r, i.e.,

Of course, a bimilar decomposition will apply for each of the off disgoat Elements.

Biological studies fill often leave the researcher with an excellent idea of exectly hos to specify $\gamma_{\underline{f}}\left(E_{t}\right)$. Suppose, foliowing Eaverton and Rolt, that $\gamma_{t}\left(E_{t}\right)=\exp \left(-M-c E_{t}\right)$ where K and c are defined ss fnatantaneous naturai mortality rate and in parameter that ralates effort to instantanaous finhing mortaility, respectively. Both are assumed constant but unknown, This assumption redues the problem ascociated with the covariance matrin to that of estimating these parameters, of course, there is otill sowewhat of a degrees of freedon probiem but this can be compensatec for by performing the stathstical estimation starting with the dilth observationa

From the precseding arguments, it is apparent that estimation (if possible) of the supply function in the form of (10) will provide the researcher with some valuable blological and economic information. This follows from the fact that this supply wodel is a reduced form for the production nodel. Direct estimation, say by maximum likelihood methods, will provide estimates of the cutput elasticity with respect to effort (0) the rean recruftment legel (A_{0}), the rate of instantaneous mortality (i), the density dependent rectuitment rate (r) and the catch coefficient (c). Addirionaliy, iransformation of these estimates will provide maximum likelihood estimates of a/1- α, the elasticity of supply with respect to output price. The estimation of the biological parameters r and H is particularly relevant as it suggests that much of the biological information that is currentiy gathered by survey
techniques conld be astimated consiatentiy from observable maxket data. Furthermore, scme important biolegical byporheses are easily tested within thas framesork. For example, there is a whesprend beliai that for certain rescurcea the jeyel of recruitment is really ecock independent and the result of rambin entiromental factors. In the framework of the above model the sypothesis of stcck izdepeudent recruitment is equivaient to the supposition that mo. Therefore, it is possible to test directly the null hypothesis of stock incependent recruitment via classicai techniques.

Roiicy Considenations

Because many of the resources to minch this model applies are coraron groperty resources, it is interesting to examine the possible policy contant of the proposed methodoicgy, Floturies resources, wialife resources and pests are among classes of resources that have required government intervention to praciude oves or under-utilization, The nature of most ezternalities associated with common property zasources are supply zasociaced and therefore ahould be containei in equation 10.

Considering the production processes (equation (1) and (5) and a fixed output price $\left(P_{\hat{c}}\right)$) a single owner of the resource would solye the following:

$$
\begin{aligned}
\max _{E_{T}} L= & \sum_{t=0}^{T}\left[\left(\bar{Y}_{t} \exp \left(B X_{t}\right) E_{t}^{a}-W_{t} E_{t}\right)(1+i)^{-t}\right. \\
& \left.-\lambda_{t+1}\left(X_{t+1}-X_{t} \in E p\left(-M-c E_{t}\right)-A_{c}\right)\right]
\end{aligned}
$$

where λ_{t+1} is the discounted marginal waiue of the resource in $\& \div 1$ and 1 is the discount rate.

Solving the first order conditions yields

$$
\begin{equation*}
P_{t} Y_{\tau}-H_{t} E_{t}=E_{t}(I+i)^{E}\left[\lambda_{t+1} c_{t}^{T} \exp \left(-M-c E_{t}\right)\right] \tag{11}
\end{equation*}
$$

Comparing this result with the equilibrivin represented in (5). leads one to the typical conclusion that competicite exploitation overexploits for beneficial resources $\left(\lambda_{t+1}>0\right)$ and under exploita for harmilul resources ($\lambda_{+1}<0$). One could also use the information gained from estimation of equation (i0) to soive the sole owner problem and determine optimal levels of effort.

CONCIUETOH

The purpose of this paper was to propose an alternative method of estimating supply for naturel resource industries. The wethod does not require information on the stock of resources but rather relies on appropziate specification and randomness of resource growth to obtain consistent estimates of production, market and bioingical relationships. Application of the method is currently underway and should offer guidence as to its general usefulness.

Literature Clted

Bail，Frearick W．，＂Technclogical Externalitties and Common Properiy Easources：An Empirical Study of the J．S．Lobater Industiyn，I． of Po1．Econ．，Yo1． 80 （1972）：148－158．

Beverton，R．J．H．，and S．V．Holt，1957．On the Mrnamice of Exploited Fish Pop：11ations，Fisiaery Investigations，II，Vol．19，Lcndon：H4SO．

Burt，O．R．and R．G。Cumingss＂Production and Investment in Natural Rescurce Industries＂，Amer，Rcon，Rev，110（1970）：570－590，

Gates，John M．and Virgil Jo Norton，＂The Benefits of Pisheries Regn－
－letion：A Case Study of tie New England Yellowtail Flounder Ftshery＂，Merine Tech．Report，Ho．2I；U．Of Rhode Isiand，Kingston， Rhode Island， 1974.

Gaiffen，W．I．，R．D．Lacewell，and J．P．Nicholls＂＂Optimum Effort and Rent Districution in the Guif of Mexico Shrimp Fishery＂，Am．J． Ags．Econe， 58 （1976）：644－652．
\＃enderson，$工, 7$ ，and M．Tugwell，＂Empioitation of the Eooster Fishery： Some Empirical Resuits＂，J．of Env．Econ，arte Man．，Vel． 5 （1979）： 287－295．
 Intersction＇vs＇Asset Utilization＇Frameworiks，＂Economica， August，1971：347－361．

Plouras，C．G．，＂Exploitation of Comon－Froperty Replenishable Matural Resources，＂West．Econ．J．， 23 （1973）：256－267．

Smith，Vernon Z．，＂On Hodels of Comercial Pishing＂．Journal of Pol－． 1的cai Economy， 77 （1569）：181－190．．

Strand，Fis．and A．Katreucci，＂Economic Interdependencies in Fisheries： Empinical Evidence and Kanagoment Implicatinns＂，Faper presented at the Amezican Agricuitural Economics Assoc．Meeting；San Diego；CA， 1977．

[^0]: 2 For purposes of exposition, stock size is definec as mumers of the resource. This is a usaful approximation for resources that do not grow in slae during expiovtation or for pests whare. the total bicmass is not relevant. For many resources, however: more development (and mathematical clutter) is reguired.

[^1]: ${ }^{3}$ In many instances; one mighe choose other alternative equilibrium condiaious.

