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ON THE SELECTION OF ALTERNATIVE LAG MODELS"

Given the need for a distributed lag model, there is generally no

unambiguous rule for deciding among alternative distributed lag specifications.

Despite the large quantity of theoretical and empirical work which currently

exists, opinions differ widely as to the general appropriateness of alterna-

tive lag specifications. Indeed, it is highly probable that the selection

decision is based on the availability of convenient software packages for

estimation and/or conventional local use rather than a rigorous comparison of

alternatives. The purpose of this paper is to compare two widely used lag

specifications, the polynomial and rational lag models, by estimating the

identical lag structure using both procedures. Since comparison of the two

methods achieves little if the true structure remains unknown, data generated

from an economic model with known lag structure is used.

METHODOLOGY OF ESTIMATION

A general specification of the linear regression model in which the current

dependent variable is a function of both current and past exogenous variables

may be given as:

(1) Yt = a + B1 
(L) 

XIt 
B2 (L) X2t + E (L) Et

where: Yt

X and
It X2

= the dependent variable

= exogenous variables

=-stochastic residual assumed to be randomly
distributed

= an unknown intercept

"This paper complements a previous paper by Thompson and Mount.
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Bs (L) 1. Li; s = 1, 2 is an unknown lag structure
i=0 

3s1

of the exogenous variables and Li is a lag operator

where Ll X = X 5st t-1

E (L) E L lag structure of the residual
i=0

Since the lag structures are assumed to be infinite, then it is necessary

to reduce the number of unknown parameters in order to estimate the structure.

This can be achieved in two ways. First, it may be possible to truncate the lag

structures after N periods such that (3,5i = 0 if i > N. It is this type of

truncation which underlies polynomial distributed lags. A second procedure is

to approximate each infinite lag structure by the ratio of two finite lags;

this procedure underlies the rational lag.

Polynomial Distributed Lags

Generally, the polynomial lag can be estimated by ordinary least squares

(OLS) methods, but the OLS estimator will be inefficient unless E (L) = no,

hence, ni = 0 for i > O. The general method of estimating N would appear to

be to fit successively longer lags until ideally the lag approaches zero. A

change in sign of the last added parameter will often indicate the end of the

lag structure. Such an exercise, however, may be hazardous when the nature of

the true lag structure is unknown.

As is well known., the introduction of successive lags of exogenous variables

often introduces a high degree of collinearity among the regressors, making the

OLS estimators inefficient. In such a case, further constraints may be imposed

on the structure. When faced with a potentially serious multicollinearity

problem (especially with long lag structures), some additional constraints may

be imposed to further reduce the number of parameters requiring estimation. For

instance, the truncated lag structures in equation (1) can be expressed as:



(2) si

where: Ms

isj

Ms
j=0 Isj Wsj (i)
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for s = 1, 2, and i = 0, 1, 2, ... N

= the degree of the polynomial of the lag structure

= unknown parameters

W5. = known functions of i which define weights for
3

Equation (2) can then be substituted into equation (1) and the parameter

estimates can be obtained by OLS regression.

There are two recognized procedures for specifying the weights of the

unknown lag structure in equation (2). The first procedure, adopted by Chen

etal. (1972), may be termed the direct polynomial (DP) method, where the weights

are given by:

(3) W. (i) =

The alternative is the procedure suggested by Almon using Lagrangian interpola-

tion polynomials (LIP) where the weights are given by:

_ mk
(4) Wj (1) = [71,44 m. m 1; k = 1, 2 --- M

Nrj

where: m0' m1 
m are scalars chosen in the interval [O, N].

While both methods yield equivalent lag structure estimates, the regression

coefficients will be different under each method. It appears that a decision as

to which weighting procedure to use is directly related to the importance of the

selection of N (the appropriate lag length) and M (the degree of polynomial).

If it is considered that the selection of M is of paramount importance, then DP

weights may be preferred. When equation (3) is adopted, each Wj corresponds to

the j
th 

power of the polynomial. If M is to be determined, it can be tested by

the recognition of one regression coefficient being equal to zero.

On the other hand, the properties of the LIP method make it relatively

easy to test for N (lag length). It is generally found that the lag length is



-4-

often more difficult to determine than the degree of polynomial. It is rare

that anything more than a 4
th 

degree polynomial is required for the regression

model, and generally, a 3rd  degree polynomial provides sufficient flexibility

to pick up most lags. Moreover, although the LIP weights are theoretically

more difficult to estimate, they do not have as great of variability as do the

DP weights. For instance, DP weights with M = 3 and N = 10 give weights W3 (0)

= 0 and W3 (10) = 1000. LIP weights, on the other hand, fall within a relatively

narrow range of -1.0 to 2.0. In addition, it would appear that regressions

based on DP weights tend to be more highly collinear than the LIP weight regres-

sors (Yon and Mount, 1975). Therefore, LIP weighting procedures seem to have

a relative advantage over the alternative DP weights.

While the theoretical problems associated with the polynomial lag specifica-

tion do not appear to be serious, the selection of N and M has remained problem-

atic and their selection generally involves ad hoc methods. In addition, it

would appear that the selection methodology can be manipulated to obtain desired

results. The importance of selecting the correct lag length and degree of

polynomial is exemplified by comparing the estimated short-run, 3,0, and long-run

effects, E 13. for different specifications of the lag structure, e.g., see
i=0

Chen et al. (1972).

Although the problem is recognized by most researchers who work with poly-

nomial lags, relatively little in the way of objective testing of N and M is

available. Harper (1977) has suggested the use of specification error tests to

empirically determine if incorrect length of lag and/or degree of polynomial

has been chosen in Almons method. The tests which Harper suggests involve the

use of RASET and RESET developed by Ramsey (1969). Basically, the testing pro-

cedure involves the determination of specification errors through location of

non-zero mean of residuals, using either F-tests or Spearman's rank correlation



test. Harper argues that these tests can be used to detect errors in lag

length or degree of polynomial or both, despite the many other possibilities

of model misspecification.

Rational Lags 

The infinite lag structure in (1) can also be approximated by the ratio of

two finite lag structures (Jorgenson). Direct estimation, however, includes

nonlinear regression, and the model is usually reformulated in a simplified

linear form such as:

(5) D (L) Yt = D (L) a + C (L) Xit + C2 (L) X2t D (L) E (L) 6

where: Ds (L) = E w.L is the denominator lag structure where

and:

C
s 
(L

i Si 

D
1 
(L) = (L) = D (L) =1 - E L

= -E isi1=0

i .1 1

Li is the numerator lag structure, for s = 1, 2

lso = (-)1 wso

1s1 = iso wsi wsO

1s2 = 0 ws2 wsl + 2 W 2

•

(wsO is assumed to be 1

by convention)

isk = ISO wsk f31 wsk-1 31,< ws0

While it is possible to apply OLS methods to this model, there are two basic•

serious problems:

1. the model may be underidentified if there are no constraints imposed; and

2. the residuals are serially correlated, thus causing OLS estimates to

be biased and inconsistent.

The solution to these problems have been varied in the literature. With

respect to the underidentification problem, some nonlinear constraint is usually

imposed. Unfortunately, this limits the flexibility of the lag structure, but
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seems to be the most tractable alternative. Several solutions exist for the

autocorrelation problem. One is to assume an Mth order Markov process for the

residuals, but this is extremely restrictive, usually requiring nonlinear regres-

sion techniques if the assumption is modified. Another solution is to assume

that the residuals are uncorrelated, but this is extremely hard to justify. The

final solution, and one which is adopted in this paper, assumes the residuals

exhibit Mth order serial correlation, thus requiring the use of an autoregressive

scheme.

Despite, again, the theoretical underpinnings, the problem still remains

to select M and N. Griliches has shown that even with N = 0 and M = 2, the

potential shape of the lag structure can vary widely. This is supported by

the findings in this paper. Since the transformation process of Cs (L) and D (L)

into Bs (L) is nonlinear, it is difficult to identify the statistical properties

of the estimators. This remains a serious problem in rational lags.

Lags in General

In summary, while both polynomial and rational lags involve some restrictive

assumption, the most serious practical problem is the selection of N and M. In

both cases, it would seem that the most serious of these two problems is the

selection of lag length (N), since it would seem to be rare to find lag structures

of more than 4th degree polynomial and usually 3rd degree allows sufficient

flexibility for the relevant shapes. Deriving the relevant lengths and shapes

of lag structures implies considerable knowledge of the specific problem of

concern, and this is perhaps the major point to be made. Where knowledge of the

decision-making strategies in an industry are unknown, the true structure of

the lag remains obscure.

EMPIRICAL ESTIMATION

Previous attempts to compare polynomial and rational lags have involved the

use of real world data, implying that the real structure of the lag model is
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known. In this rather simple experiment, however, any uncertainty as to the

true lag structure is eliminated by generating the data from a simple economic

model with known lag shape and length. In this way, an attempt is made to show:

1. the essential differences between the two estimation methods;

2. the ability of each method to describe the lag structure;

3. the overall "predictive ability" of the estimated model; and

4. some simple, yet sensible, rules for the use of polynomial and

rational lags.

The economic model used is a simple three variable linear function such

as:

(6) Q = f (P, I)

where: Q = quantity

P = price

I = inventory

The data used to generate Q is from the U.S. Beef Industry and is generated with

the following lag structures:

(7) Pt_ i = (- .5) P0 (- .6)P + (- .") P2 + (- .3) P (.3) P5

(.") P6 (.") P (.6) P8 + (.55) P9 + (.") P/0 (.3) P/1

Notice that this is a 12 period lag (i.e., with P4 and PI2 = 0) and that the

lag is best described as a 3rd degree polynomial.

(8) = (.3) 10 + (.4) I + (.45) 12 .5 .45) 14

(.375) 15 + (.3) 16 + (.2) 17

This is an eight period lag (18 = 0) and is probably best described as a 2

degree polynomial. Q is generated as:

(9) Qt = 300 + Pt_i + t= 1„ ..., 52

i = 0, • • • , 12

= 0, • • • , 8
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In Tables 1 and 2 the estimated lag structures for various specifications

of the polynomial and rational lag models are presented. Comparison of the

estimated structures, however, is facilitated by the plots of the various lag

specifications as depicted in Figures 1 to 2. Each model is evaluated with

respect to its ability to approximate the true and known lag structure.

As shown in Figure 1, all of the fitted polynomial lag models provide

reasonable approximations to the true lag structure; the only possible exception

might be the 2
nd 

degree polynomial. The major inadequacy of the 2
nd degree

relationship in Figure 1 is in its misrepresentation of the short-run influence.

Hence, given the particular nature of the true lag structure of price, a 3rd

degree polynomial is sufficient to effectively capture the nature of the true

structure. Notwithstanding minor differences in the estimated polynomial results,

perhaps the "best" estimate of the price lag would be the specification where

N = 12, MI = 3 and N = 0. In Figure 2 the inventory lag structure is well

approximated by all-fitted relationships with N2 = 8. Selection criteria also

included consideration of the model's ability to approximate the true short-

and long-run effects.

Dramatically different results are obtained among the alternative rational

lag specifications (see Figures 3 and 4). Substantial differences occur among

the estimated structures shown in Figure 3. When a simple geometric constraint

is placed on the lag structure (i.e., M = 1) a severe misrepresentation of the

true lag structure results. Specifically, the long-run effect of the geometric

price model is highly negative and indeed approaches the horizontal axis

asymptotically from below. In Figure 4 similar misrepresentations are observed,

especially when the geometric constraint is imposed. Given the postulated true

structures of both price and inventory, the closest approximations are achieved

when M = 2.



TABLE 1. ESTIMATED POLYNOMIAL DISTRIBUTED LAG STRUCTURES

Ni
 = 11

Aa 0 cc 
D d

Unconstrained 

10 
-.81 -.52 -.47 .32

5
11 -.53 -.54 -.56 .16

812 -.27 -.45 -.50 .02

813 -.06 -.23 -.32 -.08

14 .12 -.05 -.08 -.16

15 .27 .19 .20 -.22

16 .39 .40 .46 -.25

.47 .59 .66 -.25

818 .52 .68 .76 -.23

6
19 .53 .67 .71 -.18

110 
.51 .51 .47 -.10

6'111 
.46 .18 0 0

112 
_

.113 - -

Long-Run
Effect 1.61 1.37 1.34 -.98

N2 = 7

'..-'-20 .31 .29 .31 .26

821 .40 .41 .40 .42

22 .45 .46 .45 .51

623 .48 .47 .47 .54

0 
24 

.46 .44 .45 .50'

225 
.40 .38 .40 .40

2.6 .30 .30 .31 .23

27 
.17 .21 .19 0

228 
- - -

29 
_

"

Long-Run
Effect 2.98 2.97 2.97 2.85

N = 12
1 N1 = 13

True
Lal,Ee F f A B C D E F A B C D E F

Constrained Unconstrained Constrained Unconstrained Constrained

-.23 -.24 -.83 -.64 -.56 -.93 -.56 -.57 -.81 -.64 -.42 -1.96 -.79 -.91 -.50
-.02 .06 -.52 -.55 -.54 -.57 -.47 -.49 -.48 -.50 -.49 -1.24 -.59 -.93 -.60
.09 .21 -.25 -.40 -.42 -.25 -.33 -.35 -.20 -.34 -.43 -.60 -.39 -.80 -.45
.13 .23 -.03 -.21 -.25 0 -.16 -.18 .03 -.15 -.29 -.07 -.18 -.54 -.30
.11 .15 .15 0 -.03 .21 .02 0 .21 .03 -.09 .37 .03 -.22 0
.05 .02 .30 .21 .19 .37 .19 .19 .35 .20 .13 .71 .22 .14 .30
-.03 -.13 .41 .39 .41 .47 .34 :36 .44 .35 .36 .95 .39 .52 .65
-.10 -.27 .47 .54 .57 .53 .46 .49 .47 .47 .54 1.10 .51 .85 .55
-.16 -.37 .49 .63 .67 .53 .53 .56 .46 .54 .66 1.16 .60 1.12 .60
-.17 -.37 .48 .64 .67 .48 .54 .57 .40 .55 ..68 1.12 .63 1.27 .55
-.13 -.26 .42 .55 .55 .37 .46 .49 .29 .49 .58 .98 .60 1.27 .45
0 0 .33 .33 .27 .21 .29 .31 .12 .35 .32 .75 .49 1.08 .30
- .19 -.03 .17 0 0 0 -.OS .11 -.13 .42 .29 .68 0

- - -.34 -.23 -.81 0 0 0

-.47 -.95 1.61 1.46 1.36 1.42 1.30 1.39 -.87 1.21 .60 3.71 1.32 3.55 1.35

N
2 . 8 N2 =

.28 .24 .30 .29 .31 .29 .30 .31 .32 .28 .33 .32 .27 .37 .30

.39 .41 .40 .40 .40 .39 .40 .40 .40 .41 .40 .39 .41 .41 .40

.48 .51 .46 .47 .45 .45 .46 .46 .45 .48 .44 .42 .49 .43 .45

.53 .54 .48 .48 .47 .48 .48 .43 .46 .49 .45 .44 .49 .43 .50

.51 .51 .46 .45 .45 .46 .46 .46 .45 .45 .43 .43 .45 .41 .45

.43 .41 .40 .39 .40 .41 .40 .40 .40 .38 .39 .39 .37 .37 .38

.26 .24 .31 .29 .30 .31 .30 .30 .32 .28 .31 .33 .27 .31 .30

0 0 .17 .17 .18 .17 .17 .17 .21 .17 .21 .24 .17 .23 .20

- -.03 .03 .01 0 0 0 .06 .06 .07 .13 .07 .12 0

- - -.11 .04 -.09 0 0 0

2.88 2.87 2.98 2.98 2.98 2.98 2.97 2.97 2.95 2.97 2.96 3.09 2.99 3.06 2.98

Nk
a A: Mi = 2, 112 = 2, no restrictions Long-Run Effect . E aki; k = 1, 2

8: Mi = 3, M2 = 3, no restrictions i=0

c C: Mi = 3, 112 = 2, no restrictions Short-Run Effect .
D: M1 = 2, 112 = 2, 51 = 0

e E: Mi = 3, M2 = 3, = 0

F: Mi = 3, 112 = 2, RN = 0

140, k = 1, 2



TABLE 2. ESTIMATED RATIONAL LAG STRUCTURES

N = 0 N = 1 N =

M = 1 M = 2 M = 1 M = 2 M = 1 M = 2 True
LagA B A B A B A B A B A B

10 - 1.82 - 1.06 .09 .09 - .60 - .22 - .15 - .15 -1.18 - .68 - .37 - .42 - .50

11 - 1.63 - 1.00 .14 .15 -1.44 - .73 .07 .08 - .50 - .87 - .39 - .46 - .60

a12 - 1.47 - .96 .16 .15 -1.21 .64 .21 .22 -1.13 - .75 - .02 .02 - .45

1313 - 1.32 .91 .16 .17 -1.02 - .55 .29 .29 - .88 .60 .19 .23 .30

B14 - 1.18 .86 .15 .15 - .85 - .48 .31 .31 .68 - .48 .30 .35 0

fi5 - 1.06 - .81 .12 .13 - .72 - .42 .28 .29 - .53 - .39 .31 .37 .30

B16 - .95 - .78 .08 .09 - .61 - .36 .24 .25 .41 - .31 .27 .33 .45

17 - .85 .73 .06 .06 - .51 - .32 .19 :19 - .31 .25 .21 .26 .55

18 - .76 .70 .03 .03 - .42 - .27 .13 .13 .25 - .19 .15 .19 .60

B19 - .69 .66 .01 .01 - .36 .24 .07 .07 .19 .16 .09 .12 .55

fi10 - .62 - .63 0 0 - .30 .20 .03 .03 - .15 - .13 .05 .06 .45

B111 - .55 - .59 - .02 - .02 - .26 - .18 0 0 - .12 .10 .02 .02 .30

8112 - .49 - .56 -.02 -.02 -.21 -.16 -.02 -.02 -.09 -.08 -.02 0 0

Long-Run
Effect -17.71 -20.80 .89 .94 -9.66 -5.80 1.48 1.52 -6.72 -5.33 .72 .891 1.35

i320 .37 .22 .28 .28 .26 .26 .26 .26 .28 .29 .27 .28 .30

1'321 .33 .21 .44 .44 .48 .40 .44 .44 .38 .38 .41 .40 .40

'22 .30 .19 .51 .51 .41 .35 .51 .51 .56 .52 .53 .54 .45

823 .27 .18 .50 .50 .34 .30 .51 .51 .44 .41 .53 .54 .50

824 .24 .17 .45 .45 .29 .26 .45 .45 .34 .33 .46 .47 .45

25 .21 .16 .36 .36 .24 .23 .36 .36 .26 .27 .35 .36 .375

826 .19 .16 .27 .27 .20 .20 .27 .27 .20 .21 .24 .25 .30

827 .17 .15 .17 .18 .17 .17 .17 .17 .16 .17 .15 .15 .20

a28 .15 .14 .09 .09 .14 .15 .09 ...09 .12 .14 .07 .07 0

Long-Run
Effect 3.62 4.29 2.74 2.74 3.30 3.28 2.75 2.75 3.16 3.26 2.84 2.89 2.975

Y10 - 1.824 - 1.061 0.091 0.096 -0.601 -0.215 -0.151 -0.146 -1.183 -0.682 -0.374 -0.417

711 - - - -0.935 -0.565 0.309 0.309 0.414 -0.329 0.153 0.146

Y12 - - - - -0.736 -0.049 0.321 0.394

Y20 0.373 0.219 0.279 0.279 0.256 0.256 0.260 0.261 0.279 0.290 0.274 0.281

Y21 - - - 0.269 0.174 0.034 0.034 0.160 0.152 0.011 -0.003

l22 - - 0.268 0.207 0.109 0.121

LI 0.897 0.949 1.586 1.586 0.841 0.869 1.563 1.564 0.776 0.801 1.439 1.443

L'2 - -0.688 -0.688 - -0.670 -0.671 - -0.578 -0.581

Ns 14

a A = estimated by 0.L.S. Long-Run Effect = E ysi / ( 1 - E Wi ); S = 1, 2

B = corrected for autocorrelation
i=0 j=1

Short-Run Effect = 13s0 = y50; s = 1, 2

CD
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Figure 1

Selected Estimated Polynomial Lags (Price)
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In comparing the results of the two alternative estimation techniques, it

would appear that the polynomial model is generally a superior approximation

specification. However, in order to provide a more powerful test of this con-

clusion, some means of testing for specification error would seem appropriate

(Ramsey, 1969). Use of the LIP weights and a 3rd degree polynomial lag model

appears to maintain adequate flexibility to approximate most lag structures.

The length of the lag can be estimated by fitting various lag lengths (without

imposing additional constraints) and then inspecting the estimated structures

to determine which specification most closely conforms to economic logic and

the specific problem under investigation.

Polynomial lag approximations are particularly appropriate when long lag

structures are expected. Hence, estimation of the nature of lagged responses

when monthly or quarterly data are used is often conducive to a polynomial

approximation. On the other hand, when the number of available observations

is small relative to the number of regressors, a rational lag specification'

may prove to be the only effective means of capturing a lagged relationship.

SUMMARY AND CONCLUSIONS

* When confronted with the problem of estimating the nature of a lagged re-

sponse relationship, the selection among available techniques is often difficult.

To facilitate this selection decision, in this paper a comparison is made

between the polynomial and rational lag models. A theoretical discussion of

the two models is presented followed by an empirical illustration of the effective-

ness of each model to approximate the true lag structure. An effective empirical

evaluation is achieved by comparisons to the true lag structure. The data used

are generated from a simple economic model with a known double lag structure.

The results support the contention that a 3rd degree polynomial lag model

is a good approximation of a fairly complex lag structure; a 2
nd degree
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polynomial was found to be adequate. In the rational lag specifications

estimated here, good approximations of the true lag structure were not achieved,

especially when a geometric constraint is imposed. These findings have

important implications for applied price analysts interested in obtaining

reliable elasticity estimates for, say, policy recommendations.
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