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ABSTRACT

A model is developed in which price variance is treated as a

function of a deterministic seasonal component and a stochastic

component which is conditional on past price changes. When

applied to the corn futures market, both components are found

to be significant. Implications for option pricing models are

discussed.



FUTURES PRICE VOLATILITY: MODELING NON-CONSTANT VARIANCE

The stochastic nature of speculative prices has been the object

of considerable interest and inquiry. Numerous probability models

have been suggested and empirically .investigated. For the most part,

however, these models have concentrated on the properties of the

marginal price distribution, with changes in prices being taken to be

independent realizations from an assumed family of distributions.

The opening of markets in options has focused attention on the

issue of non-constancy of price distributions when conditioned on

currently available information. In most option pricing models, the

volatility of price movements is a key factor which must be estimated

by market participants. Empirical evidence suggests that this

volatility changes over time. Futures prices for seasonally produced

corrimodities, for example, exhibit large seasonal differences in

volatility (Anderson, Gordon). It has also been observed (Mandelbrot,

Engle) that uncertainty about the future - is a cyclic phenomenon, with

prices being relatively stable in some periods and quite volatile in

others.

In this paper a model of futures price volatility will be

developed that incorporates a deterministic seasonal component and a

stochastic component which conditions current variance on past price

changes. In the next section a brief review of the past work on

which this model is based is given. Following this, the model of

futures price movements is developed and is then used to examine

price behavior in the corn futures market during the period 1974-1982.

The concluding section contains comments on the implications of this

study for the pricing of options.

Previous Modeling

It has long been noted that speculative prices exhibit both

periods of relative calm and of large, often wild, movement. In

particular, large movements in price tend to be followed by large

movements, though not necessarily in the same direction. In part this



can be explained by lumpiness in the arrival of information relevant

to the -future level o-F price. In agricultural commodity markets the

well known "weather markets" of the summer months, in which prices can

be extremely volatile, can be attributed to the continuous arrival of

new information about the upcoming harvest. Anderson found, for

example, that the monthly variance of futures price changes for corn,

wheat, and soybeans, tended to be highest in July and lowest in

February.

For commodities that are not produced seasonally and for other

types of traded assets, the seasonal explanation is not adequate to

explain the kinds o-F cyclic behavior that price volatility exhibits.

The causes of such uncertainty are many, complex, and difficult to

quantify. The result however, is that the conditional uncertainty

about the near future is closely linked to the uncertainty that

existed in the immediate past. Therefore, without knowing the causes

of the uncertainty about the future, it is nonetheless possible to

build plausible models of that uncertainty.

Engle has provided such a model, which he calls the ARCH model,

an acronym -for Autoregressive Conditional Heteroskedasticity. A

generalized version, called GARCH, has been developed by Boilerslev. A

discrete stochastic process, e
t, 

which fits the GARCH

that is distributed

t

where

and

N(0,h t),

ao E arie t-i E 4-1 •
i=1 j=1 t-'74

framework is one

> 0, > 0, for all i and j.

Such a process can be denoted as GARCH(p,q). The ARCH model takes

the pi terms to be identically zero, i.e. it is GARCH(0,q). GARCH

processes can be thought of as having variances which behave like

Autoregressive-Moving Average (ARMA) processes with the a terms

•



associated with the MA components and the P terms with the AR

components.

Boilerslev provides a number of results concerning the

properties of these processes. The necessary and sufficient

condition for the wide sense station'arity of GARCH processes is that

E. a.
3. E P.

The marginal variance of such a process is given by.

Var(et) = ao/(1- Ei oc i — Ei

It also can be shown that GARCH processes, though conditionally

normal, have marginal distributions that are more kurtotic (fatter

tailed) than is the normal distribution.

A Model for Futures Prices

The GARCH model, combined with a seasonal component, can b

used to describe the time series behavior of the changes in the logs

of daily futures prices, which will be denoted y t. Specifically, this

discrete random process is modeled as follows:

yt 1\1(0,h t),

with

h s vt t

where st is a deterministic seasonal component and v t is a stochastic

GARCH component. Before describing these two components, a few

comments on general assumptions are in order.

First, the process y t is assumed to have zero mean. In a

number of markets, notably the grain markets, previous studies have

provided support for this assumption, and it should, therefore, cause

few problems. The assumption allows attention to be focused on the

volatility of the process. It would not be difficult, however, to

model the mean of the process as an ARIMA process and/or as a

function of some set of regressors.,

In keeping with the GARCH model, the assumption is made that the

process is conditionally normal. As has already been noted, this does

not imply that y t is marginally normal, but rather it is more kurtotic
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than is the normal distribution. This property is consistent with

conventional wisdom about the nature of price distributions.

The• seasonal component used in this study has two principle

features. First it is deterministic,. which allows it to be

incorporated into a GARCH model without changing any of the essential

features of that model. The second feature is that it is a smooth

function of time, which contrasts with such work as Anderson's, in

which monthly dummy variables were used. Specifically, s t is taken to

be a sum of trigonometric functions of the day of the year. Letting

dt be the day of the year on which observation t falls (thus on Jan. 1

dt=1, on Jan. 2 d t=2, etc.), this component can be written

E CO cos(2Trid /365) +
i=1

isin(21rid t/365)3.

This representation not only ensures that the seasonal component is

a periodic function with a period of one year, but can be justified as

a kth order Fourier approximation to an arbitrary seasonal component.

Furthermore, because each of the terms in the summation is bounded

on C-1,13, computational problems that can plague Taylor approximations

are avoided.

Two alternative specifications of the GARCH component, v t, are

examined. The, first alternative is a restricted ARCH formulation.

The exact specification of this model is intended to address an issue

that exists in the options pricing literature. It is common to use so

called "historical volatilities", which amount to moving averages of

past squared realizations, to provide forecasts of future variance

(Chiras & Manaster). There are two problems with this practice.

First, it is not clear how many observations to use and second, and

more importantly, there is a presumption that simple unweighted

averages provide good forecasts of future volatility. This

presumption may have some validity in a constant variance model, in

which case, however, the forecasting problem essentially ceases to

exist. In any model in which the variance changes over time there



will be better forecasting methods. Furthermore, as a general rule,

the more recent past is more useful for forecasting than is the more

distant past. This suggests that a weighted moving average, with

weights that decline with the lag length, would provide better

forecasts than an unweighted sample.

To shed light on these issues, three moving average components

were computed as follows:

MA
kt E (yt-i

)2 
/nk'

where i=1,...,5 for k=1, i=6,...,10 for k=2, and i=11,...,20 for k=3. The

divisors, nk, are thus 5, 5, and 10, respectively. The v t component is

written as a function of these three variables:

3

vt a0 k ak Ak

This is equivelent to an ARCH(20) process with equality restrictions

imposed on groups of the coefficents. With such a specification the

question of how many lags to use in generating forecasts of variance

and whether equal weight should be given to each lag used can be

addressed in a formal manner.

The second alternative uses the simple GARCH(1,1) process.

Bollerslev points out that, if stationary, this model can be written as

an infinitely ordered ARCH model. It can, therefore, provide a

parsimonious way of representing a system with declining weights on

past realizations and avoids the need to specify an exact lag length.

Thus, the ARCH model treats the variance as a function of a weighted

sample variance, with weights given by the a , while the GARCH(1,1)

model uses weights equal to cciPit-i+1

Estimation of these models is fairly straightforward. The

likelihood function for a sample can be defined as the product of the

conditional likelihoods and maximum likelihood techniques can be used

to estimate model coefficients. The conditional log likelihood

function, apart from a constant, is given by



1(h = -0.5Eln(h y t2/h t.1,

where ht is given above. In this study maximum likelihood est1mattp4

were _obtained using the modified method of scoring (Berndt, et al.)

with numerical derivatives and using hal-F step squeezes to determing

the step length. Initial coefficient values were obtained by setting

the coefficient on the constant term, °to, to the variance of the total
sample and all other coefficients to zero.

Hypothesis testing can be carried out using any or all of the

likelihood ratio, Wald, or Lagrange multiplier tests (Harvey). These

tests can be used to help determine whether either the seasonal or

the GARCH components are useful in modeling volatility. They can also

be used to help assess the appropriate order of the Fourier terms

and, in the ARCH(20) specification, which o-F the moving average terms

are significant and whether they can be pooled.

Empirical Results

The data used in this study consists of the daily Chicago Board

of Trade futures prices for December corn for the Jan.-Nov. 1974-1982

period. The first twenty business days of each year are not used in

the analysis except in the computation of the variables involving lags.,

These include the three moving average terms used in the restricted

ARCH(20) specification, as well as the lagged squared term and the

ht1 term in the GARCH(1,1) specification.-

Due to the discontinuities in the data arising from the maturing

of contracts, the GARCH(1,1) model requires a small modification. In

general the starting value used for h ti is somewhat arbitrary and in

this study starting values are required for each contract. The

sample variance for the first 20 business days of each year provide

reasonable starting values. It is doubtful that any other reasonable

selection would have a large impact on the results given that the

sample used is composed o-F 1897 observations.

Estimation results are given in Table 1 -For each of the two

model specifications. A third order seasonal component is shown in



the presented reults. This order was chosen after examination of

likelihood ratio statistics -For second and fourth order models, from

which it was determined that significant gains in fit were to be had

by going from second to third order, but not from third to fourth

order models. -

The results provide clear support for the model. In particular,

the coefficients associated with the GARCH components are highly

significant in both of the specifications examined. Furthermore, the

two models seem to be similar in their ability to capture the

essential features of the variance. While they are not nested

models, it is worth noting that their two log-likelihoods are quite

close, being, apart from a constant, -1295.73 and -1292.98 for the

ARCH(20) and the GARCH(1,1) models, respectively. This can be

contrasted to the constant variance model, for which the comparable

value is -1505.97.

The seasonal components in the models are also statistically

significant, though all of the individual coefficients are not. Wald

test statistics for the hypothesis that all of the trigonometric

terms have zero coefficients have values of 21.7044 and 19.8475, with

associated asymptotic p-values of 0.0014 and 0.0029.

The seasonal patterns for the two models are illustrated in

Figure I. Both have similar patterns of peaks and troughs, with the

highest peak being in July, as expected. Other smaller peaks occur in

early March and November. These may, in part, reflect the release of

planting intentions and farm program specifications in -March and of

final crop reports in November.

There is an interesting contrast between the seasonal

components, however. The ARCH(20) model exhibits far greater

variation than does the GARCH(1,1) model, with the former having a

range of about -0.3 to 0.5, as compared to about -0.02 to 0.05 for

the latter. It is possible that this can be explained in part by the

difference in the length of memory in the two models.



Despite the relatively small size of the seasonal component for

the GARCH(1,1) model, however, there is still a non-zero probability

that it could yield a negative predicted variance. This can be seen

by noting that the seasonal component is negative and absolutely

greater than the constant for some time periods. While empirically

this is not a problem, it is nonetheless a bothersome feature and

suggests that an alternate, less constraining specification of either

the seasonal or the GARCH component might yield better results. The

ARCH(20) model does not share this defect.

As was noted earlier, the GARCH aspect of these models can be

thought of as taking the current variance to be a weighted sample

variance of past realizations. While the stationary GARCH(1,1)

framework constrains these weights to decline with the lag length, the

estimated coefficients on the moving average terms in the ARCH(20)

model also imply this feature. These weight structures are

illustrated in Figure 2, where it can be seen that the weights on the

first 20 lags, except the 11th, are larger for the ARCH(20) than for

the GARCH(1,1), while the latter has a longer memory.

While it is not suggested that either of these models provides

the optimal weighting structure, it can be shown that the weights

implied by the ARCH(20) model are superior to an equally weighted

sample of the previous 20 observations. The equal weights hypothesis

is equivelent to the hypothesis that i=a2=a3/2, where the a i are the

coefficients on the moving average terms. The Wald test statistic

for this hypothesis has a value of 6.9483, with an associated

asymptotic p-value of 0.0310, and, thus, the equal weights hypothesis

can be rejected. This suggests that studies, such as Chiras &

Manaster, which compared variance forecasts from "historical

volatilities" to those implied by option prices, biased their results in

favor of the latter by using a suboptimal forecasting method.



Implications for\ Option Pricing Models

The GARCH framework with a deterministic seasonal component

provides a plausible model of the conditional variance of futures

prices for seasonally produced commodities. The specific models used

here assume that the changes in the logs of prices form a

• conditionally normal, zero-mean process, the variance of which is

composed of a deterministic seasonal component and a component

conditional on past realizations of the process. Both of these

components were found to be significant in explaining variance in the

corn market.

The nature of futures price volatility has important implications

for option pricing models. Black's model, which is the most widely

known and used, requires a forecast of future variance. This study

suggests that forecasts of future variance based on a weighted

sample of past realizations, with weights declining with the lag length,

and with a seasonal adjustment, are an improvement over the

unweighted, fixed-size samples variances that are often used. While

only the one-step ahead variances have been discussed here, it is

possible to. derive multistep variance forecasts. An examination of

the nature of such forecasts would be an interesting extension to

the current study.

Another implication of the GARCH framework is that the

assumptions on which current option pricing models are based may not

yield accurate descriptions of the nature o-F price movements. A

common assumption of such models is that the variance component is a

known function of at most, time and current and past realizations of

price. This allows options to be valued using only arbitrage

considerations and is a feature of the constant elasticity of

variance (CEV) model of Cox & Ross, and of Black's model, which is a

special case of the CEV model.

The addition of a deterministic seasonal component can be

incorporated into these models with little difficulty; the GARCH model,



however, adds an element not found in the specific models mentioned.

In the CEV model price enters into determination of the variance

through the price level, while the GARCH model specifies that it is

the size of price changes that is important.

These two assumptions, of course, are not incompatible. Indeed,

an interesting topic for further research is the exploration of GARCH

type models which include the price level as an explanatory variable.

The further issue that naturally arises from this study is whether an

explicit option pricing formula could be developed that is based on a

GARCH like process, with the variance being a function of the size of

price changes. Given the empirical results presented, such a model

would be a useful addition to the study of option pricing.
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Table 1. Estimation Results for Corn Futures Prices, 1974-1982

ARCH(20) GARCH(1,1)

Coefficient Asymptotic Coefficent Asymptotic..-,..T-----

Variable Value p-value Value p-value

Constant 0.3595 0.0000 0.0191 0.0107

MA1 0.3002 0.0000

MA2 0.2108 0.0003

MA3 0.2587 0.0000

2
Yt-1 0.0565 0.0000

ht-1 0.9297 0.0000

COS1 -0.2537 0.0004 -0.0245 0.0072

SIN1 -0.1263 0.0132 0.0017 0.7214

COS2 0.0690 0.2755 0.0067 0.3874

SIN2 0.0070 0.8836 -0.0057 0.1887

COS3 -0.1402 0.0144 -0.0199 0.0113

SIN3 -0.0741 0.1374 0.0025 0.6631

1. MA• refer to the 3 moving average terms described in the text.

COSi and SINi are taken with respect to 2-ffidt/365, where d t is the

day of the year.
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Figure 1. Seasonal Components for the ARCH(20) and GARCH(1,1) Models
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