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ABSTRACT

Two methods for building vector autoregression forecasting models are

proposed. The first allows exclusion of intermediate lags; the

second considers •the effects of jointly entering lags from different

series into an equation. Live hog market models are developed and

out-of-sample forecasting results suggest both methods have merit.
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Introduction

The univariate autoregressive moving average (ARMA) model has been

shown to be quite successful in the forecasting of time series. The

main problem with this type of model is that it fails to take into

account information about other variables which may have a strong

influence on the series of interest. Vector autoregression (VAR) models

represent one approach towards incorporating this potentially pertinent

information. However, researchers have typically found that unrestrict-

ed VAR models do not forecast well (e.g., Nerlove, et al, Kling and

Bessler). One reason for this may be that they are over-parameterized.

The subsequent variability associated with the parameter estimates

contributes to the lack of precision in the forecasts.

Attempts to overcome this degrees-of-freedom problem fall into two

broad categories: Bayesian estimation of the parameters (Litterman) and

the exclusion of explanatory variables [Tiao and Box, Hsiao (1979),

Caines, et al]. The first approach appears to be difficult to imple-

ment. Indeed, if a VAR is viewed as the direct estimation of a reduced

form model, it may be argued the Bayesian approach is inappropriate.

While economic theory may be used to form priors on structural coeffi-

cients, its value for reduced form coefficients is questionable.

The purpose of this paper is to suggest two new techniques for

building VAR forecasting models, both of which belong in the exclusion

of variables category. After detailing the proposed modeling proce-

dures, applications are made to the live U.S. hog market. The final

section of the paper offers some concluding remarks.



VAR Forecasting Models
 

Ignoring deterministic 
components (trends, con

stants, etc.), the

unrestricted form of a 
VAR is given by

Y(t) = gB) Y(t) 6(0 
(1)

where Y(t) is an m x 1 
vector of observations o

n the m series at tim
e t,

(B) is an m x m matrix
 of polynomials in the 

lag operator B [define
d by

k X(t) = - 0], and c(t) is an m
 x 1 vector of error t

erms. The

model is unrestricted 
in that the orders of 

all of the polynomials 
in

(1)(B) are the same and
 none of the coefficien

ts in the polynomials 
are

set to zero prior to es
timation.

If the polynomials in (
1) are of order Q, ea

ch equation necessi-

tates the estimation o
f mQ parameters. With limited sample si

zes, even

moderate values of m a
nd Q may result in few 

degrees of freedom. Tiao

and Box attempted to o
vercome this problem b

y deleting from each 
equa-

tion those variables w
ith statistically ins

ignificant coefficient
s. The

model is then reestima
ted using the method o

f seemingly unrelated

regressions (SUR). 
Potentially, variables 

are again deleted from

equations and this proc
ess repeats until al

l of the explanatory v
ari-

ables have significant 
coefficients.

Applications of the Ti
ao-Box technique have

 failed to yield good

out-of-sample forecasts 
(e.g., Brandt and Be

ssler, Kling and Bessie
r).

One serious drawback to 
this method is that a

 set of variables may 
be

statistically signific
ant, but each of the

 individual variables 
in the

set are not. This is especially li
kely in a VAR context,

 where multi-

collinearity is usually
 a factor.

A second approach to dec
reasing the profligac

y of VAR models has

involved treating each eq
uation in the model in

dividually. Right-hand-

side variables are chosen
 based on the minimiza

tion of a criterion w
hich
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is a function of the number of explanatory variables and the estimated

variance of the error term. A problem with this approach is the number

of reOessions called for may be quite large. If there are m series and

Q is the maximum lag length considered, 2mQ regressions may have to be

performed for each equation.

Hsiao (1979) suggested one way to overcome this problem is to

sequentially determine the "best" lags associated with each series. The

first step in his procedure involves ordering the series. At the start

of the j-th stage in the procedure, regressions involving previously

chosen right-hand-side variables and every one of the possible ways to

choose lags of the j-th ordered series are performed. lhe stage termi-

nates with the determination of which of the 2Q regressions yielded the

best criterion. Ihe associated right-hand-side variables are then

retained in the model and stage j + 1 begins. A total of m2Q regres-

sions may have to be performed for each equation, representing a consid-

erable savings over 2mQ. The computational burden could be further

eased by refusing to "zero out" intermediate lags, resulting in only mQ

regressions per equation.

A difficulty with Hsiao's procedure lies in the ordering of the

series. The lags associated with each series will, in general, depend

on when they are introduced into the equation. Caines, et al suggested

a procedure for automatically ordering the series. First, for every

pair of series (X and Y) they construct a bivariate AR model using P

lags. P is chosen to minimize the multivariate final prediction error

(MFPE)

MFPE(P) = [(1 + a/n) (1 - ain)]m det(ip ), 2)

where a is the number of explanatory variables in each equation, n is
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the sample size, m is the number of equations in the model, and Ep is

the sample covariance matrix of the residuals from the model ot order P.

The causal relationships between X and Y are then established using a

series of likelihood ratio tests.

The Caines, et al procedure then follows the lines suggested by

Hsiao, with some minor modifications. For each series, X, the first

stage consists of finding the "best" lags of X itself to include in the

equation. This is done using the criterion (2), with m = 1. Lags of

any series found to cause X are then introduced into the equation, one

series at a time, again using (2) to determine the "best" lags. The

causal series are introduced in decreasing order of the reciprocals of

their MFPEs. Once every equation in the model has gone through this

process, the entire system is reestimated using SUR.

The Caines, et al approach suffers from several shortcomings.

First, the criterion given by (2) is the multivariate version of

Akaike's Final Prediction Error (Akaike, 1969), which Shibata has shown

to be an inconsistent estimator of the lag length for an AR process.

Second, the determination of causality in a multivariate framework is an

extremely difficult problem [see Hsiao (1982)]. Empirically established

causal relationships between variables may change as more variables are

added to the model. This brings into question the appropriateness of

using bivariate AR models to determine whether lags from one series

should be used as right-hand-side variables in a regression of the other

series. Third, as already noted, the lags chosen for a particular

series depend on the order in which the series is introduced into the

equation. Using the reciprocal of MFPE to establish the ordering is ad

hoc. In fact, noting that COV (aX, bY) = a b COV (X,Y), it is easily

4 • ,4..11"1'.7.'Vfir



seen that the MFPE ordering is unit dependent. Finally, the sequential

manner in which series are introduced into the equation may cause

problems.

Proposed Alternatives

Most of the criticisms of earlier efforts could he met by treating

each equation individually and minimizing, with respect to pij, the cri-

terion

A m Q
ln(a2 ) + (E E p ) ln(n)/n, (3)

Ph' PQ1' Plm' *" PQm 
j=1 i=1 ij

where pij = 1 if lag i of series j appears as an explanatory variable in

the equation, else pij = 0 (i = 1, Q; j = 1, ..., m).

Two advantages to using (3) as opposed to earlier criterions)should

be noted. First, the criterion in (3) is the multivariate version of

the Bayesian Intormation Criterion proposed by Akaike (1977), which has

been shown to yield asymptotically consistent estimates of the orders of

an ARMA process (Hannan and Rissanen). Second, the minimization of (3)

explicitly takes into account the joint effects ot variables.

As previously noted, the problem with (3) is that it could entail a

large number of regressions (2mQ). Two compromises are proposed in this

paper. The first approach specifically addresses the idea that there

may be problems associated with the failure to allow for the possibility

of excluding intermediate lags. At the start of each stage of this

approach, the right-hand-side variables chosen from prior stages remain

in the equation. The remaining series are then searched to find the one

series (and its associated lags) which gives the most improvement in the

criterion (3). While this approach still has the problems associated



with the sequential way series enter an equation, the ordering of the

series is determined by the magnitudes of their effects on the criterion

(3). This appears to offer an improvement over the Caines, et al

approach to the ordering question.

The feasibility of the suggested approach depends on the computa-

tional burden. At the start of stage j there are r = m -(j -1) series

which have not entered the model. The maximum number of regressions

during stage j is then given by r(2Q - 1), and the maximum number of

regressions for one equation is (2Q - 1) E
i=1

The second approach proposed in this paper addresses the idea that

the chosen lag lengths may vary if two or more series are introduced at

the same time. At the start of each stage of this approach, the right-

hand-side variables chosen from prior stages remain in the equation.

Those series not already included are searched to find the subset of

series and the lag (K) such that entering these series with lags 1, ...,

K gives the most improvement in the criterion (3).

At the start of stage j there are r series which have no lags

appearing as right-hand-side variables. For every lag length (1, ...,

Q), 2r-1 subsets of series have to be checked. Thus, stage j requires

at most (2r-1)Q regressions, and the maximum number of regressions for
m 4

one equation is Q E (2 1 -1)
i=1

The feasibility of this latter procedure is due to the constraining

of additional series to enter the equation with the same number of lags

during each stage. However, this could cause severe problems. Consider

the case of two series which in the "true" model have lags 3 and 4

present. There is a good chance this procedure would enter these series



jointly with either both 
having 3 or both having 4 lags. In order to

address this problem, the 
above procedure is modified

 so that, if at any

stage more than one series
 is entered into the model

, the whole proce-

dure is restarted from that point, 
constraining the number of series

entering the equation at th
at stage to be no more than on

e less than was

previously found.

It should be noted that th
e actual number of regressio

ns required

for the proposed technique
s may be much less than the 

reported maximums.
A

Knowledge of the current "best" criterion and the minimum po
ssible G2

(all possible variables use
d as explanatory variable) 

allows computation

of the maximum number of va
riables to be considered. 

Further savings in

computations can be achieved using the subset regressi
on procedure of

Hocking and Leslie.

Empirical Applications 

The model building techniques proposed in this paper have been

applied to the live U.S. hog 
market. Seven series were consider

ed (see

Kaylen for a discussion of t
he relevance of these seri

es): sow farrow-

ings (SF), hog slaughter (HS
), live hog price (HP), feed price (FP),

retail beef price (RB), retail pork price (RP), and the log of total

disposable personal income (IN). Ihe income and price series were

deflated by CPI. Quarterly data was used; t
he estimation period covered

58-1 through 80-4 and 16 out
-of-sample forecasts were

 generated for 81-1

through 84-4. The maximum lag length considered was eight quarters,

corresponding to the maxi
mum lag length Bessler and Binkley f

ound for

some of the series using un
ivariate AR models.



The theory behind the criterion used to choose lags requires the

series of interest to be stationary. To help ensure this, sow farrow-

ings and hog slaughter were seasonally differenced and the other series

were first differenced.

The lags included in each equation for both models are shown in

Table 1. Two teatures stand out. First, for every series having a lag

appearing in both equations for a dependent variable, VAR-1 (excluding

intermediate lags) used higher-order lags. Second, for all of the

dependent variables other than hog slaughter, VAR-1 involved more

right-hand-side variables.

Table 2 reports summary out-of-sample forecasting statistics for

the two models developed in this paper, an unrestricted, six lag VAR

(Kaylen), and ARIMA models (Kaylen). The statistics are only given for

the three variables of primary interest: sow farrowings, hog slaughter,

and hog price. For the hog slaughter series, all three measures of

performance rank the models from best to worst: VAR-1, VAR-2, VAR-3,

ARIMA. For sow farrowings, three of the models can be ranked: VAR-1,

VAR-2, ARIMA. While VAR-3 performed the worst in terms of cardinal

measures Lmean absolute deviation (MAD) and root mean square error

(RMSE)], it performed the best using the ordinal measure (direction).

The statistics for hog price forecasts yield mixed rankings. While the

ARIMA model performed the best by cardinal measures, it performed the

worst in forecasting direction. Of the VAR models, VAR-1 did the best

in terms of MAD and RMSE, but the worst in terms of direction.

Table 3 compares hog prices forecasts generated by the models

developed in this study with other forecasts which have appeared in

recent literature. By all three measures of performance, the experts

•••



(F3) did the best, although VAR-1 did as well in forecasting the direc-

tion of hog prices and had only slightly higher MAD and RMSE (the

differences were only 0.6 and 0.3 percent, respectively). The VAR model

developed along the lines suggested by Tiao and Box performed the worst

using all three performance measures.

Concluding Remarks

This paper has proposed two new methods for building VAR forecast-

ing models. Each method addresses a potentially severe shortcoming of

the Caines, et al approach. The first technique allows for the

exclusion of intermediate lags, while the' second allows lags from

different series to jointly enter an equation.

Both VAR model building techniques proved to be quite feasible.

The first method could have entailed a maximum of 49,980 regressions,

but only 7,686 were actually needed. Most of these involved a small

number of right-hand-side variables, so the cost using Purdue Univer-

sity's CDC computers was low (under $3). In comparison, the second

method was more expensive (about $16). For the large problem considered

in this paper (seven series, a maximum of eight lags), the computational

burdens appear reasonable.

ihe empirical results suggest both of the proposed model building

techniques result in forecasting models which are competitive with other

forecast generating mechanisms. In particular, allowing for the

exclusion of intermediate lags appears to be the most promising avenue

for improving the forecasting ability of VAR models.



TABLE 1. Lags Included in Hog Market Vector Autoregre
ssions. 2/

Dependent
variable Model SF HS

SF VAR-1 1,3
SF VAR-2 1,2 1,2

HP
Lags

Rv Fp

7

HS VAR-1 1,2 3,4,5 1,2,3,5, 1,2,4,5

HS VAR-2 1,2 1,2,3,4,5 1,2 1,2,3,4,5 1

HP VAR-1 1,3,5 5 1 1,6

HP VAR-2 1 1,2

IN

RP VAR-1 1 5 1,3,4,5 1,2 6 1

RP VAR-2 1 1,2,3,4,5 1 1

FP VAR-1 4

FP VAR-2 1 1

RB

4,6

IN VAR-1 
4 4,6

IN VAR-2 1

RB VAR-1 
1,6 5

RB VAR-2

2/The lags for VAR-1 were chosen using the first tech
nique proposed in this paper

(excluding intermediate lags). the lags for VAR-2.were chosen using the 
second

technique (jointly entering series into an equat
ion).
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'TABLE 2. Summary Out-of-Sample Forecasting Statistics 2/

Dependent b/ c/ d/ e/ f/
Variable Statistic- VAR-1 VAR-2- VAR-3 ARIMA

SF MAD 4.24 4.61 4.91 4.87
RMSE 4.91 5.73 6.33 5.80
Direction 87.50 87.50 93.75 81.25

HS MAD 2.28 2.74 3.14 4.05
RMSE 2.85 3.48 3.8? 5.07
Direction 100.00 100.00 87.50 75.00

HP MAD 8.99 11.44 10.06 7.61
RMSE 10.50 12.26 14.77 9.05
Direction 81.25 87.50 81.25 75.00

-VAII models were initially estimated using 58-1 through 80-4 data.
The estimates were updated after each one-quarter-ahead forecast.
Forecasts were generated for 81-1 through 84-4.

12/
The statistics are defined as follows:

MAD - Mean Absolute Deviation as a percentage of the actual
mean for 81-1 through 84-4.

RMSE - Root Mean Square Error as a percentage of the actual
mean for 81-1 through 84-4.

Direction - The percentage of times the model correctly forecast
the direction of movement. If F denotes the forecast
made at time t for time t + 1 and At denotes the actual
value at time t, the direction is 'correctly forecast if

sgn(Ft - At) = sgn(Atil. - At).

L The lags for this model were chosen using the first technique proposed
in this paper (excluding intermediate lags).

/
The lags for this model were chosen using the second technique
proposed in this paper (jointly entering series into an equation).

/The forecasts for this model were generated by an unrestricted, six
lag vector autoregression (Kaylen).

I'These forecasts were generated by ARIMA models (Kaylen).
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TABLE 3. Comparison of Hog Price Forecasting Mechanisms 
W

b/ Cl d/ e/ f/
Date Actual VAR-1- VAR-2- Fl- F2 F3I-4

81-1 15.63 18.5J 17.88 18.15 17.04 19.19 17.90
-2 16.21 19.16 18.79 14.87 15.42 16.35 14.88
-3 18.22 20.14 19.76 17.18 15.81 18.97 16.72
-4 15.20 15.93 18.46 20.62 18.14 17.12 16.01

82-1 17.05 16.55 15.38 17.8/ 18.87 17.17 15.33
-2 19.69 19.87 18.63 17.50 18.74 17.79 17.80
-3 21.21 21.95 22.21 21.90 19.52 20.53 18.77
-4 18.82 20.92 20.94 22.38 20.82 20.83 20.49

MAD hi
RMSE
Direction

. 8.45 10.93 12.39 9.86 7.83 9.58
10.25 11.66 15.04 10.59 9.97 9.97
87.50 87.50 50.00 62.50 87.50 75.00

_VAll reported forecasts are for one quarter ahead. The Fl through F4
torecasts were originally reported in nominal terms. They were deflated to
tacilitate comparison with the forecasts generated by the models developed in
this study.

12/ihe lags for this model were chosen using the first technique proposed in
this paper (excluding intermediate lags).

/The lags for this model were chosen using the second technique proposed in
this paper (jointly entering series into an equation).

L'Forecasts from a VAR model using the Tiao-Box method (Brandt and Bessier).

!/Forecasts from a single equation econometric model (Brandt).

V
Expert forecasts (Brandt).

2/Forecasts from a ARIMA model (Brandt).

.
12/

Mean Absolute Deviation as a percentage of the actual mean for 81-1 through
82-4.

/Root Mean Square Error as a percentage of the actual mean for 81-1 through
82-4.

1/The percentage of times the model correctly forecast the direction of movement
during 81-1 through 82-4. See footnote b of Table 2.

,
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