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"Necessary Conditions for DSD Efficiency of Mixtures of Risky Alternatives."

Francis McCamley and James B. Kliebenstein (University of Missouri)

Necessary conditions for DSD (decreasing absolute risk aversion stochastic

dominance) efficiency of • mixtures of risky alternatives are presented. A

concave programming problem which is equivalent to these conditions is stated.

A simple example is used to illustrate these ideas. An ex post analysis

provides additional insight.



NECESSARY CONDITIONS FOR DSD EFFICIENCY
OF MIXTURES OF RISKY ALTERNATIVES

Historically, mean-variance and mean-absolute deviations criteria have

been used to find appropriate mixtures of risky investments, production

activities and/or marketing alternatives. These criteria have been criticized

because they are not always consistent with expected utility theory. More

recently, methods more consistent with expected utility theory have been

presented. These include the Target MOTAD model which was independently

developed by Tauer and Watts, Held and Helmers as well as Porter's mean-target

semivariance model. These models are useful for identifying selected subsets

of the second (SSD) and third (TSD) degree stochastic dominance efficient

sets. For some problems, they can identify all or major portions of the SSD

and TSD efficient sets.

Although SSD and TSD are commonly used stochastic dominance criteria they

are not the only criteria that could ever be of interest. A more stringent

criterion is Vickson's decreasing (actually nonincreasing) absolute risk

aversion stochastic dominance (DSD) criterion. TSD, which exploits a

necessary condition for decreasing absolute risk aversion, is often used as a

substitute for DSD. The use of TSD by agricultural economists suggests that

the assumption of decreasing absolute risk aversion is sometimes accepted.

Several studies (Hamal and Anderson; Hildreth and Knowles; Lins, Gabriel and

Sonka; and Morin and Suarez) provide empirical evidence of decreasing absolute

risk aversion.

Although Vickson's algorithm can be applied to any pair of probability

distributions, using it to determine the DSD efficiency status of mixtures of

risky alternatives would be tedious. An article by Dybvig and Ross provides

the basis for an alternative approach. Although their article is most
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directly applicable to the SSD criterion, it provides ideas which can .be

applied to other criteria. This paper exploits these ideas to develop

necessary conditions for DSD efficiency of mixtures of risky alternatives.

Then, a method for determining when these conditions are satisfied is

described. This method is illustrated by applying it to a simple example.

Basic Assumptions and Notation

Some of the assumptions used in this paper are similar to those adopted

by others. A finite number, s, of states of nature is assumed. p denotes a

row vector of probabilities associated with these states of nature. The

elements of the column vector, y, are the (total) net returns associated with

the various states of nature. This net returns vector is related to

enterprise activity levels as follows.

(1) y - Cx = 0

x is a column vector of n activity levels. C is a matrix of per unit net

returns associated with the activities and the states of nature.

Specifically, Cij is the net return per unit of activity j when the ith state

of nature occurs.

Activity levels are restricted by resource and/or technical constraints

as well as nonnegativity constraints.

(2) Ax b

(3) x a 0

In (2), A is a matrix of resource or technical requirements and b is a column

of resource levels.

Necessary Conditions for DSD Efficiency

The approach used to obtain necessary conditions for DSD efficiency is

similar to that which Dybvig and Ross used to obtain necessary conditions for
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SSD efficiency)' Their conditions combine properties of optimal solutions to

concave programming problems with properties common to the relevant class of

utility functions.

The relevant class for Vickson's DSD criterion is the class of decreasing

(nonincreasing) absolute risk aversion (DARA) utility functions. Vickson

defines the DARA class of functions as those functions, u, for which

(4) e(y) = u'(a).exp[-4ru(q)dq]

where u' is the derivative of u and ru is a nonnegative, nonincreasing,

piecewise smooth function. u'(a), the value of the derivative at a fixed net

returns level, a, is (implicitly required to be) positive.

Following Dybvig and Ross, the necessary conditions for DSD efficiency

can be obtained by considering the problem of maximizing the expected utility

for a DARA function subject to (1), (2) and (3). Suppose y° (= Cx°) maximizes

this function. Then, there must exist a support vector zo which satisfies the

inequality

(5) z013,0 > z0ly

for all y vectors satisfying (1), (2) and (3). zo can be regarded as a vector

of relative shadow prices for the net returns associated with various states

of nature or as a generalized marginal expected utilities vector. Any element

of z0, z7, is the product of pi and the relative marginal utility of 3/7 which

is denoted by w7 in this paper.

(6) zi = piwi

The balance of the necessary conditions for DSD efficiency are based on

characteristics common to the class of DARA functions associated with the DSD

criterion. Two of these characteristics are obvious implications of (4). One

is that marginal utility of net returns must be positive for all levels of net

returns.
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This means the marginal utility vector and the associated support vector must

contain only positive elements. That is,

(7) wO, z0 0.

Since ru 
is a nonnegative function, it is obvious that an additional necessary

condition for DSD efficiency of y° is

(8) _ o i o o
4 W. f y. < y.,

' "1

A somewhat stronger necessary condition can also be derived from (4). It

isv

61°. - V?)/(w° 
°1

(9) W?/W°. (wo/w0) J 41"'Jk Yji o o o
1 k Is

Comparison with Necessary Conditions for TSD Efficiency

Analogous necessary conditions for TSD efficiency are the same as those

stated above except that (9) is replaced by

(10) 1+ J 1 J 

—

_ wo)
k' when

w.

o o oy. < y. < yk.
1

o o
It is possible to show that the DSD necessary condition (9) requires w/wj to

be strictly greater than the right hand side of (10) unless y equals 4 or w3

equals w. Thus, as would be expected, the necessary conditions for DSD

efficiency are more stringent than those for TSD efficiency.

A Concave Programming Formulation
of the Necessary Conditions

The necessary conditions pose a saddlepoint problem. The statement of

an equivalent concave programming problem is simplified by assuming that the

indices for the states of nature have been permuted so that"

(11) y°1 < y < <ys•
The concave programming problem is

(12) Minimize b'v - z'y°
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subject to

(13) Alv - C'z 0

(14) zi - piwi = 0 
for i = 1, 2, ..., s

(15) w
s = 1

(16) w5-1 ws °

(17) wi+1(wi+1/wi 2)
(4+1 - 4.2

for i = 1, 2, s-2

(18) v 0 (the signs of z and w are not formally
restricted)

Relation to Necessary Conditions

The objective function can be related to (5) by noting that b'v - ey° is

the maximum (with respect to feasible y vectors) of z 1(y - y°). This can be

verified by remembering that, if the feasible set of y vectors is bounded, it

can be defined as the set of convex combinations of extreme or "corner" y

vectors.' If this definition is used instead of (1) through (3), then b

would be replaced by 1 and (13) would be replaced by

(19) v - z'yk a 0 for k = 1, 2, ..., t

where yk is the kth extreme or corner vector associated with the feasible set

of y vectors and t is the number of extreme vectors.

(14) and (17) are merely restatements of (6) and (9); (16) and (17)

ensure that (8) is satisfied. (15) guarantees that marginal utility is always

positive. A right hand side value of 1 was arbitrarily selected for (15); any

other positive constant could have been chosen.-' (13) requires the imputed

shadow prices for the resources to be large enough to guarantee that, at the

margin, the value of the resources used by each activity (or enterprise) is at

least as large as the expected marginal utility of the net returns

distribution associated with that activity.
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DSD Efficiency Test Criteria

If the optimal value of the objective function equals zero, then y°

satisfies the necessary conditions for DSD efficiency; otherwise it does not.

When available, the solution to the dual of the concave programming problem

provides 'a more sensitive indication of the efficiency status. The portion,

x , of the dual solution vector associated with (13) can be interpreted as an

enterprise mixture vector. Cx equals yo when y (and xo) satisfies the

necessary conditions for DSD efficiency, but does not equal (and tends to be

very different from) y° if the necessary conditions are not satisfiedY

Comparison with Vickson's DSD Algorithm

Vickson's algorithm was designed to determine whether two probability

distributions can be ordered by the DSD criterion. Although the problem

considered in this paper is more complex, it appears that a modified version

of Vickson's algorithm could solve it. Regardless of the solution method

adopted, at least one characteristic is shared by the solutions to the concave

programming problem stated in this paper and Vickson's algorithm. In both

cases, the function ru is approximated by a step function.

An Example

Some of the ideas presented above are illustrated with data from

Anderson, Dillon and Hardaker (pp. 209-210). The feasible set of crop mixes

is portrayed in Figure 1. Selected feasible mixtures are presented in Table

1. A and G are two corners of the feasible set of crop mixtures. Mixtures

through F are convex combinations of these corner mixtures.

The set of mixtures which satisfy the necessary conditions for DSD

efficiency must be a subset (perhaps improper) of the set of mixtures

satisfying the necessary conditions for TSD efficiency. The mixtures which





8

TABLE 1. Selected Crop Mixtures

Mixture
Wheat Oats New Wheat Expected DSD

x1 x2 
x
3 

Net Returns Test Criterion

(hectares)

A 0 3.2000 8.0000 1232.99

B .5500 3.5300 7.4500 1244.28

C .5830 3.5498 7.4170 1244.96

D .6000 3.5600 7.4000 1245.31

E .6459 3.5875 7.3541 1246.25

F .6659 3.5995 7.3341 1246.66

G 1.3333 4.0000 6.6667 1260.37

(dollars)

16.09

15.41

14.98

0

0
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satisfy the necessary conditions for TSD efficiency include all convex

combinations of C and G. These mixtures also satisfy sufficient conditions

for TSD efficiency.

The class of DARA utility functions includes the class of negative

exponential utility functions. Thus, a sufficient condition for a crop

mixture, x0, to be DSD efficient is for its net returns vector, y0, to be the

only net returns vector which maximizes some negative exponential utility

function subject to (1), (2) and (3). The set of such crop mixtures is called

the NESD efficient set in this paper. It includes all convex combinations of

E and G.

The necessary conditions for DSD efficiency were applied to several crop

mixtures. Some of the results are included in Table 1. Given the considera-

tions discussed above, it is not surprising that mixture F satisfies those

conditions and mixture B does not. Only the efficiency statuses of mixtures

between C and E are not known a priori. D is one such mixture. It is not DSD

efficient. A series of tests on mixtures approaching E suggests that the DSD

efficient set is little, if any, larger than the set of mixtures which

maximize negative exponential utility functions.

The DSD efficient set is approximately 11 percent smaller than the TSD

efficient set. Thus, the relative effectiveness of DSD was less than the

average effectiveness, but well within the range of effectiveness percentages,

observed by Vickson and Altmann.

Ex Post Analysis

The discussion above provides some insight into the nature of the method

proposed in this paper. Additional insight can be provided by considering a

characteristic of the necessary conditions, characteristics of the DSD

criterion and the nature of the example.
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A mixture will satisfy the necessary conditions for DSD efficiency only

if it is not dominated by a mixture which is "close" to it.72 The fact that,

for our example, all TSD efficient mixtures lie on a (single) line segment

means that, effectively, only two "close" mixtures need be considered as

alternatives when determining the DSD efficiency status of any mixture.

Vickson has shown that several conditions can limit the ability of the

DSD criterion to order TSD efficient probability distributions. When the

means of two probability distributions are the same, the DSD criterion is

equivalent to the TSD criterion. Since no two TSD efficient mixtures share

the same mean, that potential barrier to the effectiveness of the DSD

criterion was not present for our example. A mixture cannot be dominated by

one which yields a smaller mean net return. For our example, this means that

no TSD efficient mixture can be dominated by one closer to C.

A mixture cannot be dominated by another mixture if the smallest element

in the y vector associated with the first mixture is larger than that for the

second mixture.
{i./ The fact that the smallest element of y increases as the

mixture approaches F from C means that this sort of relationship was not a

barrier to the effectiveness of the DSD criterion for mixtures associated with

the line segment CF. By the same token, the fact(s) that the smallest element

of y decreases while the mean income increases as the mixture moves from F to

G means that all mixtures on FG are both NESD and DSD efficient.

When two probability distributions are compared, the number of times

which the cumulative probability distributions cross determines the relative

effectiveness of DSD and other criteria (Vickson). If the cumulative

functions do not cross or cross only once, then DSD is equivalent to FSD and

SSD. In such cases, DSD would also be equivalent to TSD. When the cumulative

distribution functions cross twice, then the NESD criterion described earlier
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is equivalent to DSD. When there are at least three crosses, the NESD

criterion is likely to be more stringent.

On line segment CE, all pairs of mixtures are associated with pairs of

cumulative probability functions which cross three times. This suggests that

the DSD efficient set may be larger than the NESD efficient set. The fact

that the difference in these two sets is, at most, negligible may be

attributed to the relationship between the set of risk aversion coefficients

needed to make mixture E DSD efficient and the (single) risk aversion

coefficient needed to make it NESD efficient. The implicit NESD risk aversion

coefficient associated with mixture E is approximately .0485. A similar risk

aversion coefficient is implied by the DSD criterion for net returns smaller

than $978,44 while a risk aversion coefficient of zero is implied for larger

net returns. Both criteria assigned marginal utilities to the smaller net

return levels which are very large relative to those assigned to larger net

return levels.

Conclusion

This paper has presented necessary conditions for DSD efficiency of

mixtures of risky alternatives. The solution to a concave programming problem

reveals whether these conditions are satisfied for specific mixtures. A

simple example was used to demonstrate the application of these ideas.
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Footnotes

1/ Actually, Dybvig and Ross' Theorem 1 states necessary and sufficient

conditions for an income vector, y0, to be stochastically efficient.

Stochastic efficiency is a necessary condition for SSD efficiency.

2/ Condition (9) can be derived by noting that the ratios of marginal

7 utilities associated with any three income levels (y < y < ) involve

integrals of the function ru over the intervals (y9, 4) and (4, 4).

Expressions for the upper limit of w9 /w(). and the Tower limit of w°./w° can

be obtained by substituting the unknown parameter r(y) for ru in the

integrals. Eliminating this parameter yields (9).

3/ The modifications which are required to deal with "ties" among y° vector

elements can be obtained from the authors.

4/ If the set of feasible y vectors is not bounded, arbitrary bounds can be

added. As noted later, a vector y° is DSD efficient only if it is not

dominated by a feasible y vector "close" to it. Thus, any set of bounds

which does not exclude these "close" feasible y vectors can be added

without affecting the validity of the argument.

5/ If the right hand side of (15) were some positive number, h, other than

1, the optimal value of the objective function would merely be h times

its optimal value when the right hand side of (15) equals 1. Since, as

noted later in the text, the crucial question is whether this optimal

value is zero, the choice of h does not affect any conclusions about DSD

efficiency status.

6/ In this paper, a mixture, x0, is assumed to be DSD efficient if the

income vector, yo, associated with it is DSD efficient. The approach

used in the text allows for the possibility that a DSD efficient income

ovector, y, might be associated with several feasible mixtures.
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7/ Although the necessary conditions do have desirable "global" properties,

they are useful largely because of an equivalence between local and

global properties.

8/ This is sometimes referred to as a "left-tail" problem.
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