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"Necessary Conditions for DSD Efficiency of Mixtures of Risky Alternatives."

Francis McCamley and James B. Kliebenstein (University of Missouri)

Necessary conditions for DSD (decreasing absolute risk aversion stochastic
dominance) efficiency of -mixtures of risky alternatives are presented. A
concave programming problem which is equivalent to these conditions is stated.
A simple example is used to illustrate these ideas. An ex post analysis

provides additional insight.




NECESSARY CONDITIONS FOR DSD EFFICIENCY
OF MIXTURES OF RISKY ALTERNATIVES

Historically, mean-variance and mean-absolute deviations criteria have
been used to find appropriate mixtures of risky investments, production
activities and/or marketing alternatives. These criteria have been criticized
because they are not always consistent with expected utility theory. More
recently, methods more consistent with expected utility theory have been
presented. These include the Target MOTAD model which was independently
developed by Tauer and Watts, Held and Helmers as well as Porter's mean-target
semivariance model. These models are useful for identifying selected subsets
of the second (SSD) and third (TSD) degree stochastic dominance efficient
sets. For some problems, they can identify all or major portions of the SSD
and TSD efficient sets.

Although SSD and TSD are commonly used stochastic dominance criteria they
are not the only criteria that could ever be of interest. A more stringent
criterion 1is Vickson's decreasing (actually nonincreasing) absolute risk
aversion stochastic dominance (DSD) criterion. TSD, which exploits a
necessary condition for decreasing absolute risk aversion, is often used as a
substitute for DSD. The use of TSD by agricultural economists suggests that
the assumption of decreasing absolute risk aversion is sometimes accepted.
Several studies (Hamal and Anderson; Hildreth and Knowles; Lins, Gabriel and
Sonka; and Morin and Suarez) provide empirical evidence of decreasing absolute

risk aversion.

Although Vickson's algorithm can be applied to any pair of probability

distributions, using it to determine the DSD efficiency status of mixtures of
risky alternatives would be tedious. An article by Dybvig and Ross provides

the basis for an alternative approach. Although their article is most




directly applicable to the SSD criterion, it provides ideas which can be
applied to other criteria. This paper exploits these ideas to develop
necessary conditions for DSD efficiency of mixtures of risky alternatives.
Then, a method for determining when these conditions are satisfied is

described. This method is illustrated by applying it to a simple example.

Basic Assumptions and Notation
Some of the assumptions used in this paper are similar to those adopted
by others. A finite number, s, of states of nature is assumed. p denotes a
row vector of probabilities associated with these states of nature. The
elements of the column vector, y, are the (total) net returns associated with
the various states of nature. This net returns vector is related to
enterprise activity levels as follows.

(1) y-Cx=0

x is a column vector of n activity levels. C is a matrix of per unit net

returns associated with the activities and the states of nature.

Specifically, C.. is the net return per unit of activity j when the ith state

1
of nature occurs.
Activity levels are restricted by resource and/or technical constraints
as well as nonnegativity constraints.
(2) Ax s b
(3) x=z0

In (2), A is a matrix of resource or technical requirements and b is a column

of resource levels.

Necessary Conditions for DSD Efficiency
The approach used to obtain necessary conditions for DSD efficiency is

similar to that which Dybvig and Ross used to obtain necessary conditions for




SSD efficiency.l/ Their conditions combine properties of optimal solutions to

concave programming problems with properties common to the relevant class of
utility functions.

The relevant class for Vickson's DSD criterion is the class of decreasing
(nonincreasing) absolute risk aversion (DARA) utility functions. Vickson
defines the DARA class of functions as those functions, u, for which

(4) u'(y) = u'(a)-exp[-rir (q)da]
where u' 1is the derivative of u and u is a nonnegative, nonincreasing,
piecewise smooth function. u'(a), the value of the derivative at a fixed net
returns level, a, is (implicitly required to be) positive.

Following Dybvig and Ross, the necessary conditions for DSD efficiency
can be obtained by considering the problem of maximizing the expected utility
for a DARA function subject to (1), (2) and (3). Suppose y° (= Cx°) maximizes
this function. Then, there must exist a support vector z° which satisfies the
inequality

(5) 2°y% 2%y

for all y vectors satisfying (1), (2) and (3). z° can be regarded as a vector

of relative shadow prices for the net returns associated with various states

of nature or as a generalized marginal expected utilities vector. Any element

0

of z°, z:,

is the product of P; and the relative marginal utility of y? which

is denoted by w? in this paper.

0 _ 0
(6) 'z = pyw;

The balance of the necessary conditions for DSD efficiency are based on
characteristics common to the class of DARA functions associated with the DSD
criterion. Two of these characteristicé are obvious implications of (4). One
is that marginal utility of net returns must be positive for all levels of net

returns.




This means the marginal utility vector and the associated support vector must
contain only positive elements. That is,

(7) w°, 2° > 0.
Since u is a nonnegative function, it is obvious that an additional necessary

condition for DSD efficiency of yo is
0 o . 0 0
(8) w; 2 Wy if y;< Y5

A somewhat stronger necessary condition can also be derived from (4). It
isg/
(v - ¥/ (yp - ¥9)

0,0 0, 0\7j j e 0. 0 _ .0
(9) WilwWs 2 (Wj/wk) iy <y <Y

Comparison with Necessary Conditions for TSD Efficiency
Analogous necessary conditions for TSD efficiency are the same as those

stated above except that (9) is replaced by
0

i
(10) —521+

0 04/,,0 0

(.YJ' -yi)(wj "wk)
0 0 0

W5 (yg = v3) w5

It is possible to show that the DSD necessary condition (9) requires w?/wg to

when y? < y? < yz.

be strictly greater than the right hand side of (10) unless yg equals y? or wg

equals wﬁ. Thus, as would be expected, the necessary conditions for DSD
efficiency are more stringent than those for TSD efficiency.
A Concave Programming Formulation
of the Necessary Conditions
The necessary conditions pose a saddlepoint problem. The statement of
an equivalent concavé programming problem is simplified by assuming that the

indices for the states of nature have been permuted so thaté/

(11) yg < yg f cee < Yo

The concave programming problem is

(12) Minimize b'v - z'y0




subject to
(13)
(14) z, - p.w; for i =1, 2, ..., s
(15)
. (16) 0 N
0 0 0 0
(17) wi+1(wi+1/wi+2)(yi+1 =Yl Wiap = ¥ia) v, 50
fori=1,2, ..., s-2
(18) v=z0 (the signs of z and w are not formally
restricted)
Relation to Necessary Conditions
The objective function can be related to (5) by noting that b'v - 2'y0 is
the maximum (with respect to feasible y vectors) of z'(y - y°). This can be

verified by remembering that, if the feasible set of y vectors is bounded, it

can be defined as the set of convex combinations of extreme or "corner" y

vectors.}’ 1f this definition is used instead of (1) through (3), then b

would be replaced by 1 and (13) would be replaced by

(19) v - z'yk

20 for k=1, 2, ..., t
where yk is the kth extreme or corner vector asscciated with the feasible set
of y vectors and t is the number of extreme vectors.

(14) and (17) are merely restatements of (6) and (9); (16) and (17)
ensure that (8) is satisfied. (15) guarantees that marginal utility is always
positive. A right hand side value of 1 was arbitrarily selected for (15); any

5/

other positive constant could have been chosen.=’ (13) requires the imputéd
shadow prices for the resources to be large enough to guarantee that, at the
margin, the value of the resources used by each activity (or enterprise) is at
least as large as the expected marginal wutility of the net returns

distribution associated with that activity.




DSD Efficiency Test Criteria

If the optimal value of the objective function equals zero, then yo
satisfies the necessary conditions for DSD efficiency; otherwise it does not.
When available, the solution to the dual of the concave programming problem
provides a more sensitive indication of the efficiency status. The portion,
x*, of the dual solution vector associated with (13) can be interpreted as an
enterprise mixture vector. Cx* equals yo when yo (and x°) satisfies the

necessary conditions for DSD efficiency, but does not equal (and tends to be

very different from) y° if the necessary conditions are not satisfied.g/

Comparison with Vickson's DSD Algorithm

Vickson's algorithm was designed to determine whether two probability
distributions can be ordered by the DSD criterion. Although the problem
considered in this paper is more complex, it appears that a modified version
of Vickson's algorithm could solve it. Regardless of the solution method
adopted, at least one characteristic is shared by the solutions to the concave
programming problem stated in this paper and Vickson's algorithm. In both

cases, the function r_ is approximated by a step function.

u

An Example

Some of the ideas presented above are illustrated with data from
Anderson, Dillon and Hardaker (pp. 209-210). The feasible set of crop mixes
is portrayed in Figure 1. Selected feasible mixtures are presented in Table
1. A and G are two corners of the feasible set of crop mixtures. Mixtures B
through F are convex combinations of these corner mixtures.

The set of mixtures which satisfy the necessary conditions for DSD
efficiency must be a subset (perhaps improper) of. the set of mixtures

satisfying the necessary conditions for TSD efficiency. The mixtures which




X3
New Wheat

Figure 1. Feasible crop mixes




TABLE 1. Selected Crop Mixtures

Expected DSD
Mixture Net Returns Test Criterion

2000
5300 . 1244,
5498 . 1244.

5875 . 1246.25
5995 . 1246.66

3.
3.
3.
3.5600 . 1245,
3.
3.
4.

0000 . 1260.37




satisfy the necessary conditions for TSD efficiency inc1uqe all convex
combinations of C and G. These mixtures also satisfy sufficient conditions
for TSD efficiency.

The class of DARA wutility functions dincludes the class of negative

exponential wutility functions. Thus, a sufficient condition for a crop

mixture, x°, to be DSD efficient is for its net returns vector, yo, to be the

only net returns vector which maximizes some negative exponential utility
function subject to (1), (2) and (3). The set of such crop mixtures is called
the NESD efficient set in this paper. It includes all convex combinations of
E and G.

The necessary conditions for DSD efficiency were applied to several crop
mixtures. Some of the results are included in Table 1. Given the considera-
tions discussed above, it is not surprising that mixture F satisfies those
conditions and mixture B does not. Only the efficiency statuses of mixtures
between C and E are not known a priori. D is one such mixture. It is not DSD
efficient. A series of tests on mixtures approaching E suggests that the DSD
efficient set is 1little, if any, larger than the set of mixtures which
maximize negative exponential utility functions.

The DSD efficient set is approximately 11 percent smaller than the TSD
efficient set. Thus, the relative effectiveness of DSD was less than the
average effectiveness, but well within the range of effectiveness percentages,

observed by Vickson and Altmann.

Ex Post Analysis
The discussion above provides some insight into the nature of the method
proposed in this paper. Additional insight can be provided by considering a
characteristic of the necessary conditions, characteristics of the DSD

criterion and the nature of the example.
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A mixture will satisfy the necessary conditions for DSD efficiency only

if it is not dominated by a mixture which is "close" to it.z/ The fact that,

for our example, all TSD efficient mixtures lie on a (single) line segment
means that, effectively, only two "close" mixtures need be considered as
alternatives when determining the DSD efficiency status of any mixture.

Vickson has shown that several conditions can limit the ability of the
DSD criterion to order TSD efficient probability distributions. When the
means of two probability distributions are the same, the DSD criterion is
equivalent to the TSD criterion. Since no two TSD efficient mixtures share
the same mean, that potential barrier to the effectiveness of the DSD
criterion was not present for our example. A mixture cannot be dominated by
one which yields a smaller mean net return. For our example, this means that
no TSD efficient mixture can be dominated by one closer to C.

A mixture cannot be dominated by another mixture if the smallest element
in the y vector associated with the first mixture is larger than that for the
second mixture.g/ The fact that the smallest element of y increases as the
mixture approaches F from C means that this sort of relationship was not a
barrier to the effectiveness of the DSD criterion for mixtures associated with
the line segment CF. By the same token, the fact(s) that the smallest element
of y decreases while the mean income increases as the mixture moves from F to
G means that all mixtures on FG are both NESD and DSD efficient.

When two probability distributions are compared, the number of times
which the cumu]ativé probability distributions cross determines the relative
effectiveness of DSD and other criteria (Vickson). If the cumulative
functions do not cross or cross only once, then DSD is equivalent to FSD and
SSD. In such cases, DSD would also be equivalent to TSD. When the cumulative

distribution functions cross twice, then the NESD criterion described earlier
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is equivalent to DSD. When there are at Tleast three crosses, the NESD
criterion is likely to be more stringent.

On line segment CE, all pairs of mixtures are associated with pairs of
cumulative probability functions which cross three times. This suggesté that
the DSD efficient set may be larger than the NESD efficient set. The fact
that the difference in these two sets s, at most, ﬁeg]igib]e may be
attributed to the relationship between the set of risk aversion coefficients
needed to make mixture E DSD efficient and the (single) risk aversion
coefficient needed to make it NESD efficient. The implicit NESD risk aversion
coefficient associated with mixture E is approximately .0485. A similar risk
aversion coefficient is implied by the DSD criterion for net returns smaller

than $978.44 while a risk aversion coefficient of zero is implied for larger

net returns. Both criteria assigned marginal utilities to the smaller net

return levels which are very large relative to those assigned to larger net

return levels.

Conclusion
This paper has presented necessary conditions for DSD efficiency of
mixtures of risky alternatives. The solution to a concave programming problem
reveals whether these conditions are satisfied for specific mixtures. A

simple example was used to demonstrate the application of these ideas.




Footnotes

Actually, Dybvig and Ross' Theorem 1 states necessary and sufficient

conditions for an income vector, y°, to be stochastically efficient.

Stochastic efficiency is a necessary condition for SSD efficiency.
Condition (9) can be derived by noting that the ratios of marginal
utilities associated with any three income levels (y? < y? < yi) involve

integrals of the function r, over the intervals (y°, yg) and (yg, yﬁ).

(e LA 4 ‘/f

Expressions for the upper limit of w?/wg and the lower limit of wg/wi can

be obtained by substituting the unknown parameter ru(yg) for r, in the
integrals. Eliminating this parameter yields (9).

The modifications which are required to deal with "ties" among y° vector
elements can be obtained from the authors.

If the set of feasible y vectors is not bounded, arbitrary bounds can be
added. As noted later, a vector y° is DSD efficient only if it is not
dominated by a feasible y vector "close" to it. Thus, any set of bounds
which does not exclude these "close" feasible y vectors can be added
without affecting the validity of the argument.

If the right hand side of (15) were some positive number, h, other than
1, the optimal value of the objective function would merely be h times
its optimal value when the right hand side of (15) equals 1. Since, as
noted later in the text, the crucial question is whether this optimal
value is zero, the choice of h does not affect any conclusions about DSD
efficiency status. |

In this paper, a mixture, xo, is assumed to be DSD efficient if the
income vector, y°, associated with it is DSD efficient. The approach
used in the text allows for the possibility that a DSD efficient income

vector, yo, might be associated with several feasible mixtures.
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Although the necessary conditions do have desirable "global" properties,

they are useful largely because of an equivalence between 1local and

global properties.

This is sometimes referred to as a "left-tail" problem.
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