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ABSTRACT

STOCHASTIC DOMINANCE OVER CORRRELATED PROSPECTS

A difrficulty occurs in stochastic dominance applications when

alternatives are not mutually exclusive and mixed prospects may be

formed. Exhaustive examination of all possible mixed prospects 1is

often impractical. In this paper, rules are derived and tested for

deciding when and to what extent mixed prospects should be

examined.




STOCHASTIC DUMINANCE OVER CORRELATED PROSPECTS

Stocnastic dominance procedures are powerful methods for evaiuating deci-

sions under uncertainty (as reviewed in Bawa; Cochran, Robison and Lodwick or
Zentner et al). However, difficulties can occur when the individual prospects
examined may be diversified; i.e., a convex combination or portfolio may be
formed. In such cases, while one pure prospect may dominate another,
diversified alternatives containing the dominated prospect may not be

dominated by the dominant pure prospect. £.g9., monoculture corn might

dominate monoculture soybeans but fail to dominate croopping patterns

including both crops. Such results indicate that stochastic dominance can

vield misleading conclusions when the alternatives considered are not mutual-
ly exclusive. In this paper rules are developed indicating when dom:inance of
one prospect over another implies dominance over ail convex combinations oz
the two. The rules also identify cases when-users of -stochastic dominance

analysis should systematically study diversified alternatives.

-

THEORETICAL DOMINANCE OF A PURE ACTIVITY 6VER DIQERSIFICATION

Ordinarily the examination ot diversification in stochastic dominance
analysis would be difficult because explicit integration of the probability
density function would be required. However, a number of moment based
stochastic dominance rules have been derived (Pope and Ziemer give a partiai
review of the literature). Use of the moment-based rules in a study ot the
diversification problem requires knowledge of 'the distribution oI the
diversified combinations. This requirement léd to the wuse of normal
distriputions for ihe tneoretical =~ 1nvestigations. Importanctly, this

restrictive assumption 1S reiaxed 1ln the empirical analys:is.

The first theoretical result can pbe stated 1n the foilowing theorem:




ToEorem L

Siven two normally cistrisutec procsgects, X, anc X, CiSuributed wWlthn m2ans
i (=
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and 32, positive variances 51 and U; and correlation coefficient #, where
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prospect x, dominates x_, by SSD, then x, dominates all convex combinations ox

1 2

. -
X, and X, by SSD if £ 2 01/02.
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Proof of this theorem is based on the moment-based S5D rule for normally

distributed prospects. . This rule says that x, dominates x_ by SSD if i

1 2
and 612 RS 522,

A
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with at least one inequality holading strictly. The mean

variance of a convex combination (x3) of xl and x2 are given by

.(l) 33 = Aul + (1 - A)Mz and

2 _ .22 o 2, 2
2) 0% = A0,% + 2000 - MO0, ¢ - N7,

2 : A : .
where ua and 03 . are, respectively, the mean and variance ot the convex combi-

nation, ¢ is the correlation coetficient between xl and x2, and A 1S a real
number such that 0 2 A =z 1. . -
The SSD condition on the means will be preserved over convex combinations

since uavwill always be less than or equal to nl.» For.x1 to dominate X the’

variance condition must also be satisfied. This condition is
2 2 2 2 2.2 '
AT

L2 L2
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where k isbequal to the ratio Uzlu1 and nust be greater than or equal to 1.

It can be shown that this condition is always satisfied only if
2 .. 2 . '
(4) (A - 1) Ak -2fk + 1) - (k -1 =20
This is a convex function in A and thus will 6nly violate the 1inequality
between the roots (i.e., :those A where the above .function equals zero). Cne

root is at » = 1l; the other must fall at or above L for the result to hola.

The second roct willi always pe greater than or egual to L wnenever - - i/K Or

equivalently, -~ =2 fl / 52, which 1is the result statea 1in theorem i.




Discussion of Theorem 1

In general when X, dominates %, by SSD, theorem i says x., can be dismissea

2

from consideration in all convex combinations whenever thelir correiation co-
efficient is no less than the ratio of their standard deviations. This ratio,

given that Xy dominates X5 by SSD, is known only to be positive and less than

or equal to 1. This implies that the only value of ¢ that will always satisfy

the relationship is Ff=1. Thus to safely use SSD Sn potentially diversified
strateéies without considering diversified alternatives one must assume per-
fect correlation. In an empirical setting, however, sample estimates or =, ;l
and 52 will be known and one can speculate that it is safe to disregard
diversified strategies as long as rule 1 (theorem 1) holds (Clearly, this
would be subject to sampling error). Ruie 1 also implies that diversified
strategies can never be ignored when X and x, are negatively correlatea

since Gl/UZ cannot be negative.

Dominance Based on Relaxation of the SSD Criterion

The SSD criterion is rather conservative, being adverse to low probability’

crossings. Thus, a rule will be developed based on expectea utility theory.
Freund has shown that under normality and constant risk aversion an equiva-
lent way of evaluating whether one uncertain prospect has larger expected

utility than another is to examine whether the following inequality holds:

-2, _ 2
(3) u1 - 6/2 Ul 2 u3 0/2 03

where U i1s the Pratt risk aversion parameter from the constant risk aversion
utility zfunction. Use ot this condition leads to .the following theorenm.

Theorem 2

Given two normally aistributea prospects X  anc X., WwllA neans
£ -—

2 2 . 4
.«'«32. varliances 'v'l ana hz ana corre.ation coexzxiclent 3

L . A . . z
that xl~com1nates %, DY SSU such that “y > ~, and i,
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c) a value o which is the Pratt risk aversion coefficient, and
d) the definition that dominance occurs between two aistributions,

x1 and xz, such that

2, i - 0.50¢.°2

1) L, 2 4 and 2) 4, - O:bb Ul 3 3

1 2 1
Xy will dominate all convex combinations of Xy and X, whenever
<nl - i)

2
o 0102

This theorem’s proof relies upon the same approach outlined for theorem 1 but

(6)

1s omitted due to space limitations (see McCarl et a:t for the full proof).

Discussion of Theorem 2

Several observations can be made about this theorem, 1) As © tends to
infinity (extreme risk aversion) the theorem 2 rule reduces to that found in
theorem 1. 2) The theorem 2 rule (rule 2) yields ainsight into the tactors

which are relevant in determining the critical correlation coefficient

values. These factors are a) as the difference between the means decreases

the nminimum safe correlation coefficient increases; b). as the variances
increase; the critical correlation mnust bé lérger; iand c) the crltzcé;
correl#tion coefficient is larger for more risk aversé decision makers. 3
This rule is always less conservative than the rule given in theorem 1 and
permits the critical correlation coefficients to be negative given large
differences in means. 4) Both rules (1 and 2) are dependent on the normality
assumption. The sensitivity of these rules to violations of normality is

examined in the following section.
EMPIRICAL TESTING
The above rules pfovxde criteria for ceciding when to ignore nixec aiter-

natives or portiolios in 35D analysis given normaliy distridutec uncarLain

prospects. However, SSD appiications often involive comparisons of data from




unknown, pos#ibly nonnormal, distributions. Thus, the usefulness of these
rules in applied SSD analysis depends on their ability to .identify relevant
critical values when comparing uncertain prospeéts of various distributional
forms. This section uses simulation to explore the reliability ot the analy-

tically derived rules in evaluating normally and nonnormally distributed

data. Also, an empirical rule is estimated based on the study data.

Sinulation Experiment Design

The reliability of the rules derived above was 1investigated 1n cases char-
acterized by data from normal, right and left skewed beta and uniform distri-
butions. Initially, three 1000 member distributions were created with means
of 100 and variances of 15, 25, and SO for the normal and uniform families.
Positively and negatively skewed beta distributions with the same méan ana

variances were also created. The data used to approximate each distribution

consisted of 1000 equally likely points corresponding with the .00l through

.999 fractiles of the distributions. These twelve distributions were used as

.

reference distributions in the experiment.

Additional distributions were createa for comparison with these rererence

distributions. Each comparison distribution was from the same tfamily as thne
reference distribution but with a different mean and variance. The data uncer

the reference distribution (xl) were altered to become that of the comparison

distribution'(xz) by the following formula:

(7D

The ratio of the means of the rerererice ana comparison cistriputicns (. /i)

- <

TooK 9 vaiues from 1.05-2.5. The ratio oi the stanaarc aeviations of tne res-

erence and comparison distributions (;l/c2> toox nine values rrom U.95-0.25.

All combinations of these means and standara deviations were examinea, procu-




cing 81 comparison distributions for each reference distribution. Stocnastic
dominance was checked by examining all 1000'points using numerical integra-

tion (Pope and Ziemer‘’s empirical distribution function estimator). 1ln all
cases the reference distributions dominated the comparison distributions.

By construction the comparison distributions were perfectly correlated
with the reference distributions. To test for the effect of correlations of
less than one the observations of the comparison distributions were randomly
reordered to obtain correlations from .99 to -.9Y in intervals of .0l (the
minimum correlation achieved for the bet; distriéutlons was -.86). In tﬁrn.
given a set of correlated data, all convéx combiAatiﬁns of the reference and
comparison distributions between .05 of X, (the reference distribution? and

.95 of %, (the comparison distribution) through 0.?5 of xl and .05 oz X e 1D
.0S intervals, were tested for SSD using the_emplflcal distribution runction
estimator. The lowest correlat{on coefficient-at which -the reference distri-
bution dominated all convex combinations of the two distributions was noted.

This procedure was repeated ten timés for each céﬁparison.distrioution. thu§”
Creating ten empirical minimum safe correlation coefficients for eacn pair ;f
reference and comparison distributions. These empirical, minimum safe corre-
lation coefficiénts provided a basis for evaluatiﬂg the reliability ot the
analytically derived rules and for estimation of an empirical rule.

The observed safe correlation values can be compared with the values de-
rived {from normality-based rules 1in theorémé 1 and 2 to discover the
frequency with which they are correct. Information on the empirical power oz

the test may also be gained. However, in order to do this, values of = are

needeac for use 1n the second rule. 7The vaiues or = used were based on the

relationship of the Pratt risk aversion parameter and the Tri1sKk premiunm.

These were set so-that 9 = 22/'.-l where 2 1s the risk premium diviaed Dy




(as explained in McCarl and Bessler). Under this setup the Pratt risk premium

for a bet with variance of ( 2 equals 2¢

1 1’

This choice of 6 transforms rule 2 to
8 Pz U/0, - by - 4)/220,

Z values used were 1.5 and 2.5, indicating a risk premium for accepting a
respective gamble 1.5 and 2.5 times the standard deviation of the gamble.
Experiment Results W

The- experiment results indicate that the analytically derived rules very
reliably identify safe levels of correlation for tne distributions studied.
Rule 1 was violated (with an observed minimum safe correlation coefficient
larger than specified by the rule) in only 1.5% of the 9,720 comparisons con-
ducted. Rule 2 (equation 6), less conservative than rule 1, was Qlolated in

6.5% of comparisons when Z2=1.5 and 3.3% when 2=2.5. The reliability of the

rules varied somewhat among the tamilies of distributions tested. FKFor the

uniform distributions rule 1 was never violated while rule 2 was violated in

less than 0.5% of comparisons. Rule 1 was violatéd in 3.3% of comparisons
between normal distributions while rule 2 waé violated'in 8.1% and l4.7% é;
comparisons for 2 levels of 2.5 and 1.5 respectively. The rules were vio-
lated with almost equal frequency for the two beta distributions. Rule 1 was
violated in 1.4% of comparisons while rule 2 was’violatec in 2.5 and 4.1% oz
comparisons for 2 values of 2.5 and 1.5 respectively. -

Since ﬁhe analytic rules appear conservativei can other, less conservative,
criteria be adopted? One approach for developing ;n alternative criterion is
to estimate the minimum sate correlation coeffic1ént empirically. This was
done using'the data sét created to test ihe ahaiytlc rules. Uniy a sudbset oz
the aata, specifically tTne maximum vaiue Or tae MINIAUM Saie correrat:ion
coefficients over the 10 replications for eacn tomparison distribution, were

used. Thus the empirical rule, estimated by ordinary least squares regres-




sion, provides a conservative estimate of the minimum safe correlation coet-.
ficient based on the simulated data. The form of the estimated empirical rule
was derived based on the terms contained in rulé 2 with the édditlon ot terms
for the third and fourth moments (see McCarl et g; for details).

The resulting estimated empirical rule is

12 1772 2 2 2

- 0.101(M1m3/02) + 0,047 (M1m4/02)# 0.118(M2m3102) - 0.039(u2m4/02)

(9) p=-0.13¢4 + 1,282 (0,/0,) = 0.636 (U ,/G) + 0.59 (U, /0, - 0.143(Glm3/0 )

where m3 and m4 are, respectively, the skewness and kurtosis of the dominant

-

(reference) distribution. All estimated parameters were signitficant at the
0.01 level. The relationship between this equation and the analytic rules can
be seen by noting that the second rule under the assumption on 6 leading to
equation (8) can be re-expressed as

10 Foz 01162 - (1/22)(ul/62) + (1/22)(32/52)

Note that, since 1/2Z is a constant, the seecond, thaird and fourth terms in

equation (9) are consistent with the right-hand side terms of equation (10).

The remaining terms in equation (95 were includéd to accéunt tor the an;u:'
ence of the third and fourth moments of the distribu;ions.'

Figure 1 illustrates the relationship between"the empirical rule (rule 3;
and the analytic rules for the left-skewed beta disiribution. These relation-
ships are typical of the relationships for the other distributions studied.
Panel (a) shows shows the three analytic rules and rule 3 when Jl = 15 and
61102 = 0.25. In this case the empirical rule is.less conservative than the
most conservative analytic rule (rule 2 with 2 = 1.5) throughout the range ot
ﬁlluz covered by the data. Panel (b) demonstrates that when the variances for
the two distributions under comparison are more similar (tl)uz = .79) the enm-

pirical rule becomes more conservative reiative to the analytic rules and, in

fact, in this case- is almost 1identical with rule 2 with Z = Panel (o),
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Figure 1. Three analytic rules and empirical rule (Rule 3) for the left skewed
beta distribution with alternative values of oy and 01/02.




3
-~

when compared with panel (a), demonstrates another important relationship
among the rules. That is, when the dispersion (as measured by standard devia-

tion) of the distributions under comparison increases (Gl = 50) all tne rules

converge toward rule 1. In this case, ‘however, with 01/62 = 0.25 the empi-

rical rule is still less conservative than the analytic rules,A_Comparison:of

of panel (d) with panel (b) shows this same relationship but additionally

demonstrates that when both Gl and 61/07 are relaﬁively large, the empirical
rule is more conservative than rule 2 and is even more conservative than rule

< 1.4).

1 when the means of the two distributions are quite similar (hl/xz

The results in panel (d) also show that errors can arise when normaiity-based
rules are applied to nonnormal cases. The results show rule 3 to be above
portions of all the rules illustrating the incidence of Type I error and
indicating the importance of including higher moments in the empirical rule.
Note that the empirical rule, unlike the normality based ana;ytlc rules,

takes the third and fourth moments of the distributions into consideration.

The impact of this is illustrated in figure 2. _Panels (a) through (d) show

~

the empirical rule for the distributions studied.when Ji=15 and Ul/fz = U.Si
All panels include the analytic rules for reference purposes. Comparing pan-
panels (a) and (b)), illustrating rules for normal ana uniform distributions
reveals that a difference in kurtosis (3 for the normal distribution versus
1.8 for the uniform) has minimal effect on the minimum safe correlation coet-
ficient estimated by the empirical rule. However, panels (c) and (d) show
that -skewness does significantly affect the empiriéal rule. The minimum safe
correlation coeificients estimated by the empiricél rule for tne right-skewed
peta aistridbution (pénel (c)) 1s smaller than ror any oz the ot:

tion. Conversely, tne estimated saie correiatlon ccefiicirent Ior Tas

skewed beta distribution 1s larger than tor any other aistribution

fact 1s larger than that estimatea by analytic rule 2 with 2 = 1.3.
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Figure 2. Three analytic rules and empirical rule (Rule 3) for distributions
from different families with equal means and variances but different

third and fourth moments.




CONCLUDING .COMMENTS

Stochastic dominance can give misleading results wnen comparing alterna-:
tives that are not mutually exclusive or peffectly correlated. The results
presented here show that, given normally distr;buted prospects, 1x distribu-
tion 1 dominates distribution 2, then distribution 1 will dominate all convex
combinations of the two as long as

1 the efficiency ériterion is second degreq stochastic dominance and

the correlation coefficient satisfies f L.Ul/UZ: or

the criterion is expected utility maximization under constant apso-

-

lute risk aversion and the correlation coetficient satisfies:

Foz Gl/cz - (ul - uz)/(zeqluz)
where © is the Pratt risk aversion coefficient.
An empirical evaluation ot these rules suggested that, although they were
quite reliable, they were often conservative. Thus an empirical rule was

estimated. : . .-

These results and rules can be used in two ways. First, given a set oz

-

data, one may compute the rule vaiues and detefmine wheéher the comparisons
améng the alternatives will provide dominance results that afe also appi:i-
cable to convex combinatidns of the alterndtives. Second, if convex
combinations need to be considered, then the rules éan be usea to investigate
whether the convex combinations are adequate; 1i.e., wnhether tne correlatién
between two combinations is sufficient to ensure that dominance extends to

all intermediate combinations.
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