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ABSTRACT

STOCHASTIC DOMINANCE OVER CORRRELATED PROSPECTS

A difficulty occurs in stochastic dominance applications when

alternatives are not mutually exclusive and mixed prospects may be

formed. Exhaustive examination of all possible mixed prospects is

often impractical. In this paper, rules are derived and tested for

deciding when and to what extent mixed prospects should be

examined.
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STOCHASTIC DOMINANCE OVER CORRELATED PROSPECTS

Stochastic dominance procedures are powerful methods for evaluating deci-

sions under uncertainty (as reviewed in Sawa; Cochran, Robison and Lodwick or

Zentner et al). However, difficulties can occur when the individual prospects

examined may be diversified; i.e., a convex combination or portfolio may be

formed. In such cases, while one pure prospect may dominate another,

diversified alternatives containing the dominated prospect may not be

dominated by the dominant pure prospect. E.g., monoculture corn might

dominate monoculture soybeans but fail to dominate cropping patterns

including both crops. Such results indicate that stochastic dominance can

yield misleading conclusions when the alternatives considered are not mutual-

ly exclusive. In this paper rules are developed indicating when dominance of

one prospect over another implies dominance over all convex combinations of

the two. The rules also identify cases when-users of -stochastic dominance

analysis should systematically study diversified alternatives.
•

•

THEORETICAL DOMINANCE OF A PURE ACTIVITY OVER DIVERSIFICATION

Ordinarily the examination cot diversification in stochastic dominance

analysis would be difficult because explicit integration of the probability

density function would be required. However, a number of moment based

stochastic dominance rules have been derived (Pope and Ziemer give a partial

review of the literature). Use of the moment-based rules in a study of the

diversification problem requires knowledge of the distribution of the

diversified combinations. This requirement led to the use of normal

distritautions for the theoretical ' investigations. Importantly. this '

restrictive assumption is relaxed in the empirical analysis.

The first theoretical result can toe stated -in the following theorem:
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Siven two normally d:strloutec orosoects, x arc x

and A2 positive variances

cisi:riouted witi means

and u
.2 

and correlation coefficient P c where

prospect x
1 

dominates x
2 

by SSD, then x
1 

dominates all convex combinations of

and x
2 

by SSD if P 1
1
/CT
2
.

Proof of this theorem is based on the moment-based SSD rule for normally

distributed prospects. This rule says that xl dominates x2 by SSD if ;II

2 . 2
and U <

1 - -2 P

2

with at least one inequality holding strictly. The mean and

variance of a convex combination (x
3
) of x

1 
and x

2 
are given by

(1) 4
3 

= Ag
1 

4- (1 - X)g
2 

and

(2) if 
3
2 

= X
2

CT
1
2 

4. 2PX(1 A)0
1
g
2 

4- (1

where 4
3 

and U
3
2 
are, respectively, the mean and variance of the convex combi-

nation, P is the correlation coefficient between x
1 

ana x and A is a real

number such that 0 A _ 1. •

The SSD condition on the means will be preserved over convex combinations

since 43 will always be less than or equal to gl. For.xl to dominate x. the
;.1

variance condition must also be satisfied. This condition is

2 2 2
(3) X

2
t7
1
2 

4. 2Pk 0"
1
2 
(A - A

2
) k (1 - 2X) 2. U 

2
1 1

where k is equal to the ratio U2/U1 and must be greater than or equal to 1.

It can be shown that this condition is always satisfied only if

(4) (A - 1) EX(k
2 

2Pk 4- 1) - (k
2 
- 1)3 2. 0

This is a convex function in A and thus will only violate the. inequality

between the roots (i.e., 'those A where the above function equals zero). One

root is at = 1, the other must fall at or above 1 for the result to hola.

The second root will always De greater tnan or equal to i wnenever l/K or
•

equivalently, ' /
2' 

which is the result statea in tneorem I.
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Discussion of Theorem 1

In general when x
1 

dominates x
2 

by SSD, theorem i says x
2 

can be dismissed

from consideration in all convex combinations whenever their correlation co-

efficient is no less than the ratio of 'their standard deviations. This ratio,

given that x
1 
dominates x

2 
by SSD, is known only to be positive and less than

or equal to 1. This implies that the only value of P that will always satisfy

the relationship is P=1. Thus to safely use SSD on potentially diversified

strategies without considering diversified alternatives one must assume per-

fect correlation. In an empirical setting, however, sample estimates ox Y,

and G
2 

will be known and one can speculate tnat it is safe to disregard

diversified strategies as long as rule 1 (theorem 1) holds (Clearly, this

would be subject to sampling error). Rule 1 also implies that diversified

strategies can never be ignored when x
1 

and x
2 

are negatively correlated

since 
U1/G2 

cannot be negative.

Dominance Based on Relaxation of the SSD Criterion

The SSD criterion is rather conservative, being adverse to low probability.

crossings. Thus, a rule will be developed based on expected utility theory.

Freund has shown that under normality and constant risk aversion an equiva-

lent way of evaluating whether one uncertain prospect has larger expected

utility than another is to examine whether the following inequality holds:

(5) u
3 
- 0/2 U

3
2

where is the Pratt risk aversion parameter ffom tne constant risk aversion

utility function. Use of this condition leads to the following theorem.

Theorem 2

Given a) two normally distributed prospects x ana x, with means •=c

, variances
2 

anc I,
2 

ana correlation coetticient
1 2

D) that x -dominates x
2 

y SSD such that ,2 and
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C) a value which is the Pratt risk aversion coefficient, and

d) the definition that dominance occurs between two aistributions,

and x
2' 

such that

1) Li  
2: k
2 

and 2)
1 
- 0.50 if 

2
1

- 0.5 
, 2

3 3

then x
1 

will dominate all convex combinations of x and x
2 

whenever

(11
1 
- 11

2
)

1
CI
21

0'2

This theorem's proof relies upon the same approach outlined for theorem 1 but

is omitted due to space limitations (see McCarl et al .for the full proof).

Discussion of Theorem 2

Several observations can be made about this theorem. 1) As 0 tends to

infinity (extreme risk aversion) the theorem 2 rule reduces to that found in

theorem 1. 2) The theorem 2 rule (rule 2) yields insight into the tactors

which are relevant in determining the critical correlation coefficient

values. These factors are a) as the difference betcmen the means decreases
•••

the minimum safe correlation coefficient increases; b). as the variances

increase, the critical correlation must be larger; and c) the critical

correlation coefficient is larger for more risk averse decision maxers. 3)

This rule is always less conservative than the rule given in theorem 1 ana

permits the critical correlation coefficients to be negative given large

differences in means. 4) Both rules (1 and 2) are dependent on the normality

assumption. The sensitivity of these rules to violations of normality is

examined in the following section.

EMPIRICAL TESTING

The above rules provide criteria for deciding when to ignore mixec alter-

natives or port:olios in SSD analysis given normally distrioutec uncertain

prospects. However, SSD applications often involve comparisons of data from



unknown, possibly nonnormal, distributions. Thus, the usefulness of these

rules in applied SSD analysis depends on their ability to.iaentify relevant

critical values when comparing uncertain prospects of various distributional

forms. This section uses simulation to explore the reliability of the analy-

tically derived rules in evaluating normally and nonnormally distributed

data. Also, an empirical rule is estimated based on the study data.

Simulation Experiment Design

The reliability of the rules derived above was investigated in cases char-

acterized by data from normal, right and left skewed beta and uniform distri-

butions. Initially, three 1000 member distributions were created with means

of 100 and variances of 15, 25, and 50 for the normal and uniform families.

Positively and negatively skewed beta distributions with the same mean ana

variances were also created. The data used to approximate each distribution

consisted of 1000 equally likely points corresponding with the .001 through

.999 fractiles of the distributions.. These twelve distributions were used as

reference distributions in the experiment.

Additional distributions were createa for comparison with these reference

distributions. Each comparison distribution was from the same family as the

reference distribution but with a different mean and variance. The data under

the reference distribution (x
1
) were altered to become that of the comparison

distribution (x,.) by the following formula:

(7)
x -

= (  11 - 1) ti
2

ti
1

The ratio of the means of tne retererice ana comparison aistrIputions (-
2

took 9 values from 1.05-2.5. The ratio of tne stanaara aeviations of tne ref-

erence ana comparison aistributions
1
/;
2
) took nine values from U.95-0.25.

All combinations of these means and stanaara deviations were examinea, produ-
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cing 81 comparison distributions for each reference distribution. Stocnastic

dominance was checked by examining all 1000 points using numerical integra-

tion (Pope and Ziemer's empirical distribution function estimator). In all

•
cases the reference distributions dominated the comparison distributions.

By construction the comparison distributions were perfectly correlated

with the reference distributions. To test for the effect of correlations of

less than one the observations of the comparison distributions were randomly

reordered to obtain correlations from .99 to -.99 in intervals of .01 (the

minimum correlation achieved for the beta distributions was -.86). In turn,

given a set of correlated data, all convex combinations of the reference and

comparison distributions between .05 of x
1 
(the reference distribution) and

.95 of x
2 
(the comparison distribution) through 0.95 of x

1 
and .05 of x. in2

•

.05 intervals, were tested for SSD. using the. empirical distribution function

estimator. The lowest correlation coefficient-at which -the reference distri-

bution dominated all convex combinations of the two distributions was noted.

This procedure was repeated ten times for each comparison distrioution, thus

creating ten empirical minimum safe correlation coefficients for eacn pair of
•

reference and comparison distributions. These empirical, minimum safe corre-

lation coefficients provided a basis for evaluating the reliability of the

analytically derived rules and for estimation of an empirical rule.

The observed safe correlation values can be compared with the values de-

rived from normality-based rules in theordms 1 and 2 to discover the

frequency with which they are correct. Information on the empirical power ot

the test may also be gained. However, in order to do this, values of 1-,4 are

needea for use in the second rule. The values ot usea were based on the

relationship of tne Pratt risg aversion parameter and the risk premium.

These were set so that = 22:A.
1 

where Z is the risk premium diviaea by

•



(as explained in McCarl and Bessler). Under this setup tne Pratt risk premium

for a bet with variance of u
2
1 

equals a;
1
.

This choice of 0 transforms rule 2 to

(8) P 2.* 
0-1n2 

-
1 
- 4U

2 
)/2ZG

2

Z values used were 1.5 and 2.5, indicating a risk premium for accepting a

respective gamble 1.5 and 2.5 times the standard deviation of the gamble.

Experiment Results

The experiment results indicate that the analytically derived rules very

reliably identify safe levels of correlation for the distributions studied.

Rule 1 was violated (with an observed minimum safe correlation coefficient

larger than specified by the rule) in only 1.5% of the 9,720 comparisons con-

ducted. Rule 2 (equation 6), less conservative than rule 1, was violated in

6.5% of comparisons when Z=1.5 and 3.3% when 2=2.5. The reliability of the

rules varied somewhat among the families of distributions tested. For the

uniform distributions rule 1 was never violated while rule 2 was violated in

less than 0.5% of comparisons. Rule 1 was viokatea in 3.3% of comparisons,

•
between normal distributions while rule 2 was violated in 8.1% an 14.7% of

comparisons for 2 levels of 2.5 and 1.5 respectively. The rules were vio-
_

lated with almost equal frequency for the two beta distributions. Rule 1 was

violated in 1.4% of comparisons while rule 2 was violated in 2.5 and 4.1% ox

comparisons for Z values of 2.5 and 1.5 respectively.

Since the analytic rules appear conservative, can other, less conservative,

criteria be adopted? One approach for developing an alternative criterion is

•

to estimate the minimum safe correlation coefficient empirically. This was

done using the data set created to test the analytic rules. Only a suoset

the aata, specifically tne maximum value ox tne mlnimum sa:e correlatlon

coefficients over the 10 replications for eacn comparison distribution, were

used. Thus the empirical rule, estimated Dy ordinary least squares regres-

•

•



sion, provides a conservative estimate of the minimum safe correlation coef-

ficient based on the simulated data. The form of the estimated empirical rule

was derived based on the terms contained in rule 2 with the addition of terms

for the third and fourth moments (see McCarl et al for details).

The resulting estimated empirical rule is

(9) p = - 0.134 4,- 1.282 CU1
AT
2
) - 0.636 (li

1
/0.
2
) 0.59 (Al

2
/U
2
) - 0.143(G

1
m/ti

2
)

0.101(11
1
m
3
/CT
2
) 4- 0.047 (.11

1
m
4
/U
2
)1° 0.118(g

2
m
3
/g
2
) - 0.039(g

2 
m
4 
/0.
2 
)

where m
3 

and m
4 

are, respectively, the skewness and kurtosis of the dominant

(reference) distribution. All estimated parameters were significant at the

0.01 level. The relationship between this equation and the analytic rules can

be seen by noting that the second rule under the assumption on e leading to

equation (8) can be re-expressed as

(10) P G
1
/U.
2 
- (1/2Z)(g

1
/0.
2
) (1/2Z)(g

2
Al
2
)

Note that, since 1/22 is a constant, the second, third and fourth terms in

equation (9) are consistent with the right-hand tide terms of equation (10).

•

The remaining terms in equation (9) were included to account tor the intlu-

ence of the third and fourth moments of the distributions.
•

Figure 1 illustrates the relationship between-the empirical rule (rule 3)

and the analytic rules for the left-skewed beta distribution. These relation-

ships are typical of the relationships for the other distributions studied.

Panel (a) shows shows the three analytic rules and rule 3 when Ul = 15 and

1
OU
2 

= 0.25. In this case the empirical rule is-less conservative than the

most conservative analytic rule rule 2 with Z = 1.5) throughout the range of

it
1
/AI
2 
covered by the data. Panel (b) demonstrates that when the variances for

the two distributions under comparison are more similar (1'u2 = .75) the em-

pirical rule becomes more conservative relative to the analytic rules and, in

fact, in this case-is almost identical with rule 2 with Z = 1.5. Panel (c),

•

•



Rule 1 Rule 2 (Z*2.5)

Rule

"IP

Rule 2 (Z=1.5)

. I.A1 LS

141/4

22 U

Panel (a) Estimated minimum safe
correlation coefficients with
al• 15 and al/a2 = 0.25

Rule Rule 2 (Z=2.5

ariwrof, .1011

• ...1.0.014P.o.vi,

•. .

Rule 2 (Zel.5)

LA U 2 2.2 7.4

/q/u2

Panel (c) Estimated minimum safe
correlation coefficients with
a
I . 50 and a1 /a 0.25.2

as Rule 1

U

as
Rule 2 (Z=2.5)

az
as
1.2

4-42-1
-43- Rule 3.44.,

-43-4 Rule 2 (Z=1.5)

-43-0

.4  
L2 IA LS LS 2 7.2 2.4

14/112

Panel (b) Estimated minimum safe
correlation coefficients with
al = 15 and al/02 = 0.75.

Rule 3 Rule 1
as
a:
U
U
OA
43 Rule 2 (Z=2.5) Rule 2 (2=1.5)
12

-42

ire
1.4 1.11 1.3 2 21 2.4

hhl2

Panel /1) Estimated minimum safe
corm ,:lion coefficients with
al = 50 and alla2 = 0.75.

Figure 1. Three analytic rules and empirical rule (Rule 3) for the left skewed
beta distribution with alternative values of a1 and 

a
1
/a
2
.
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when compared with panel (a), demonstrates another important relationship

among the rules. That is, when the dispersion (as measured by standard devia-

tion) of the distributions under comparison increases (7
1 

= 50) all the rules

converge toward rule 1. In this case, 'however, with CT
1
Ai
2 

= 0.25 the empi-

rical rule is still less conservative than the analytic rules.. Comparison of

of panel (d) with panel (b) shows this same relationship but additionally

demonstrates that when both G
1 

and U /U,) are relatively large, the empirical

rule is more conservative than rule 2 and is even more conservative than rule

1 when the means of the two distributions are quite similar Cu
1
/ 2 < 1.4).

The results in panel (d) also show that errors can arise when normality-based

rules are applied to nonnormal cases. The results show rule 3 to be above

portions of all the rules illustrating the incidence of Type I error and

indicating the importance of including higher moments in the empirical rule.

Note that the empirical rule, unlike the normality based analytic rules,

takes the third and fourth moments of the distributions into consideration.

The impact of this is illustrated in figure 2. Panels (a) through (d) show •

the empirical rule for the distributions studied when .1=15 and Vir,:2 = 0.5.

All panels include the analytic rules for reference purposes. Comparing pan-

panels (a) and (b), illustrating rules for normal and uniform distributions

reveals that a difference in kurtosis (3 for the normal distribution versus

1.8 for the uniform) has minimal effect on the minimum safe correlation coef-

ficient estimated by the empirical rule. However, panels (c) and (d) show.
•

that skewnessdoes significantly affect the empirical rule. The minimum safe

correlation coefficients estimated by the empirical rule for the rignt-skewed

neta distribution (panel (c)) is smaller than for any : the other cistrl

tion. Conversely, tne estimated safe correlation coefilcient fc,r tne _e±t-

skewed beta distribution is larger than for any other distribution anc in

fact is larger than that estimated by analytic rule 2 with Z = 1.5.

•

•



1.2 LS LI 2

ut/u2

Rule 2 (Z=2.5)

Rule 2 (Z=1.5)

4114 i I I I 

2.4

Panel (a) Normal distribution
with a m 15 and a /a 0.5.

1 1 2

Rule 2 (Z=2.5)

Rule 2 (Z=1.5)

1.4 LI 1.3 2

41/u2
22 7.4

Panel (c) Right skewed beta
distribution with a, = 15,
and a1/a2 = 0.5. '

1

la
47 Rule Rule 2 (Z=2.5)
IS
43

•

•

-47-

•

Rule Rule 2 (Z=1.5)

1.4 LS LI 2

ulfu2

2.2

Panel (b) Uniform distribution
with a1 si 15 and a1/a2 = 0.5.

Rule

Rule 2 (Z=2.5)

....roirsow •

Rule 2 (Z=1.5)/

La La

/11/112

Panel (d) Left skewed beta
distribution with aI = 15'and a1/a2 = 0.5.

Figure 2. Three analytic rules and empirical rule (Rule 3) for distributions
from different families with equal means and variances but different
third and fourth moments.
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CONCLUDING .COMMENTS

Stochastic dominance can give misleading results when comparing alterna- •

tives that are not mutually exclusive or perfectly correlated. The results

presented here show that, given normally distributed prospects, it distribu-

tion 1 dominates distribution 2, then distribution 1 will dominate all convex

combinations of the two as long as

1) the efficiency criterion is second degree stochastic dominance and

the correlation coefficient satisfies P 2. U ° or
1 2'

2) the criterion is expected utility maximization under constant abso-

lute risk aversion and the correlation coefficient satisfies:

P G.
1
/0.
2 

-
1 2

)/(20U
1

ti
2
)

where e is the Pratt risk aversion coefficient.

An empirical evaluation of these rules suggested that, although they were

quite reliable, they were often conservative. Thus an empirical rule was

estimated. •

These results and rules can be used in two ways. First, given a set of

data, one may compute the rule values and determine whether the comparisons

among the alternatives will provide dominance results that are also appli-

cable to convex combinations of the alternatives. Second, ii convex

combinations need to be considered, then the rules can be used to investigate

whether the convex combinations are adequate; i.e., whether the correlation

between two combinations is sufficient to ensure that dominance extends to

all intermediate combinations.

•



REFERENCES

Bawl, V. "Stochastic Dominance: A Research Bibliography." Management Science.

28(1982): 698-712.
•

Cochran, M.J., L.J. Robison, and W. Lodwick.- "Improving the Efficiency ot

Stochastic Dominance Techniques Using Convex Set Stochastic Dominance."

American journal of Agricultural Economics. 67(1985): 287-95.

McCarl, B.A. and D. Bessler. "How Big Should the Pratt Risk Aversion

Parameter Be ?" Unpublished paper, Texas Agricultural Experiment

Station: Texas A&M University, February 1986.

McCarl, B.A. and 1.0. (night, J. Wilson and J.B. Hastie. "Stochastic Domi-

nance Over Potential Portfolios: Caution Regarding Covariance."

Unpublished paper, Texas Agricultural Experiment Station: Texas R&M

University, February 1986.

•

Pope, R.D and R.F. Ziemer, "Stochastic Efficiency, Normality, ana ampling

Errors in Agricultural Risk Analysis.." American Journal of Agricultural 
Economics. 66(1984): 31-40.

Zentner, R.P., D.D. Greene, T.L. Hickenbotham, and V.R. Eidman. "Ordinary ana
Generalized Stochastic Dominance: A Primer." Department of Agricultural

and Applied Economics, University of Minnesota, Staff Paper pp. 61-127.

1981.

•

•

•

•

•

•

•

•


