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Technical Change, Uncertainty and Investment

The generation of new technology is a necessary development in order

to increase agricultural output. The development of new technologies in

agriculture is a growth industry with both the private and public sectors

making great strides in pushing back the frontiers of knowledge. Already

efforts are underway to apply emerging biotechnologies in agriculture in

both plant and animal production. In plant production examples include

improving existing plant varieties to inhibit the effects of herbicides and

pests, and developing new plant varieties that can resist bacteria and

disease and can biologically fix nitrogen. In animal production examples

of new biotechnologies include bovine growth hormone, embryo transfer, and

twinning.

The literature in agricultural economics on the innovation,

dissemination and adoption of new technologies acknowledges the role of

accumulated knowledge in increasing output (Hiebert; Kislev and Shchori-

Bachrach; Feder and O'Mara; Feder and Slade). The processes of innovation

and adoption are modeled within various information processing regimes:

passive vs. active accumulation of knowledge, Bayesian vs. ad hoc learning

frameworks. Although some of the studies mentioned above address the

dynamic aspects of the innovation and adoption processes, none have

explicitly developed their analyses within an intertemporal model of

investment decision making. Feder and Slade treat the acquisition of

information as an investment by the firm with a cost of aquiring

information similar to the cost of adjusting capital stock; their analysis

maintains static behavioral assumptions. Other work on uncertain future

technology has focused on the case of a new, well-defined technology that
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is expected to become available at some unknown future date. Dasgupta and

Heal, Hoel (1978, 1979), Kamien and Schwartz (1978) and Bhattacharya have

focused on the extraction of an exhaustible resource that has a non-

exhaustible substitute produced by a "backstop technology" or that allows

the new technology to render the existing technology obsolete.

Models of stochastic technical change in the literature, as well as

this work, must necessarily abstract from reality in order to glean some

general behavioral conclusions. Mirman considered the case of a random

element in the production function that represents the possibilities of

stochastic technical change which does not exhibit a systematic evolution

over time. He goes on to characterize the distribution of possible states

of a one-sector growth model and the sector's long-run behavior. Kamien

and Schwartz (1972) consider the scenario where a firm makes a one-time,

irreversible decision to adopt a new, well-defined technology. Their

analysis suggests that uncertainty about the time availability of this

improved technology is available tends to delay the adoption decision.

Balcer and Lippman focus on the more general case where more than one well-

defined technological innovation is anticipated with expectations about the

likelihood of such innovations being updated as time passes. Their

analysis suggests that the adoption of an innovation is not necessarily

delayed when many technological innovations are stochastically

anticipated.

Mathematical programming formulations such as Wicks and Guise and

Paris and Easter can incorporate stochastic technology within an

operational framework. This class of models considers the coefficients of

the technology matrix to be stochastic and sacrifices realism (e.g., linear

or quadratic objective functions, linear production technologies) for

computability.



Investment behavior under uncertainty for risk-neutral firms facing

adjustment costs has been addressed by Hartman, Pindyck (1982, 1984) and

Abel (1983, 1984). Abel (1983) corroborates Hartman's finding that

uncertainty about future prices leads to an increase in the current rate of

investment under constant returns to scale technology.1

This article examines the expected investment dynamics of a risk-

neutral competitive firm in the presence of uncertainty concerning the

future evolution of prices and technical change. Focusing on the

investment dynamics provides insight into the firm's accumulation (or

disinvestment) of capital which can be either an expansion of the current

technological processes being practiced or a shift to an improved, more

capital intensive technology. Production facilities may be available in

more than a few widely differing sizes. Variations in capacity utilization

rates may be accompanied by a wide range of technological adjustments.

Rather than focus on a firm stochastically anticipating one or more well-

defined, improved technologies in the future, a state of technology concept

is modeled as a stock variable which evolves in a stochastic manner.

Although the discovery of a specific innovation is a discrete event, once

these innovations are ready for dissemination the flow of operational

technical knowledge to the firm can be considered continuous. Thus,

focusing on the impact of uncertain technical change on capital

accumulation is not.especially restrictive. The next section develops a

model of the firm that is characterized by quasi-fixed factor-augmenting

technical change that is taken exogenously by the firm, allowing for costs

of adjusting the stock of capital. The following section considers the

effect of uncertainty on investment and the last section provides some

concluding comments.
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The Model

The firm uses capital, K(t), and labor, L(t), to produce output, y(t)

where labor represents a flexible factor and capital represents a quasi-

fixed factor. Assuming the presence of capital-augmenting technical

change, output can be expressed as

(1) Y(t) = F(L(t), B(t)K(t))

where F( ) is assumed to be a differentiable quasi-concave function. The

expression B(t)K(t) is referred to as the stock of effective capital where

B(t) is an index denoting the stock of accumulated technical knowledge

associated with capital-augmenting technical change. This representation

of capital-augmenting technical change implies that the firm draws upon a

stock of freely available technical knowledge. In agriculture, the

availability of the services of extension personnel and materials to the

operator suggests that this assumption is plausible.

However, the rate of growth in the stock of technical knowledge is

assumed to evolve in a continuous stochastic manner
2 

according to

(2) dB =03113 + B2K + 3I)dt + aBBdWB, B(0) = Bo

where I(t) is the rate of investment in time t, Bi, i = 1, 2, 3, 06 and 60

are known parameters, and W8(t) is a Weiner process where

(3) E WWB(0) = 0, Et(dW6(0)
2
)) = dt.

The rate of growth in capital-augmenting technical change is composed of

deterministic and stochastic drift components. The coefficient al is

interpreted as the expected proportional rate of growth in capital-

augmenting technical knowledge that can be passively accumulated by the
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farm operator independent of capital and investment. The coefficients B2

and B3 are interpreted as the change in the rate of expected change in

technical knowledge for a change in the capital stock and investment

levels, respectively. Observed rates of adoption suggest that adoption of

new technologies is not instantaneous and may be hampered by farm size

(Feder, Just and Zilberman). These coefficients describe the impact of

farm size on the rate of accumulation of technical knowledge by the

operator. It is assumed that these coefficients are non-negative, implying

that larger farm operators can increase their expected change in the stock

of technical knowledge as least as fast, if not faster, than smaller farm

levels of capital and investment.

Another form of uncertainty concerns the evolution of prices in the

future. The nominal wage normalized by output price, R, is assumed to

behave according to

(4) dR/R = a
R
dWR, R(0) = R

where R
o is assumed to 

be a known constant and

(5) E(c1WR(0) = 0, EUN(t))
2
)) = dt and EWWB(t)dWR(t)) = a dt

BR '

where aBR is the contemporaneous 
correlation coefficient between the

stochastic processes in (2) and (4). The stochastic specifications in (2)

and (4) imply that B(t) and R(t) are lognormally distributed and these

random variables will always take on positive values.3

The firm is also constrained by the capital accumulation equation

(6) dK = (I - dK)dt, K(0) = Ko

where I is the level of investment, 6 is the constant rate of depreciation,

and K
o 

is known.
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Since the current state of technical knowledge and prices are known,

the maximization of short-run unit profits in time to involves choosing

L(to) to

(7) max [F(L(to), B(to)K(to)) R(t0)L(t0)J.

Assuming an interior solution, the short-run profit maximization condition

is

(8) FL= R(to)

which implies that the maximizing short-run unit profit function can be

expressed as 70(t0), B(t0)K(t0)1, which is convex in real wage, R(to), and

concave in the effective capital stock, B(to)K(to).

The firm's intertemporal investment decision problem involves choosing

an investment plan to maximize the expected sum of discounted cash flow,

which at time t is 70(0, B(t)K(t)] - C(I(t)), subject to starting

conditions and constraints on the movement of the state variables. The

term C(I(0) is the cost of adjusting the capital stock and by assumption

is characterized by ICI > 0 and Cu > 0. The introduction of adjustment

costs leads to the sluggish adjustment in the capital stock only if the

cost of adjustment is convex (Brechling, Chapter 4).

The firm's intertemporal decision problem is formally stated as

CO

(9) gk, r, b) = max EX e-Ps[7(R, BK) C(Olds)
I 6 t
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subject t

dK = (I - 6K)dt, K(t) = k

(10) dR = aRRdWR, R(t) = r

dB =(316 + B2K + B3I)dt + aBBdWB, B(t) = b

where p is the constant rate of time discount and Et denotes the

expectation operator starting at time t. Assuming that gk, r, b) exists

and is differentiable,
4 

the dynamic programming equation (DPE) for this

Weiner driven process is

(11) pJ(k, r, b) = max[n(r, bk) - C(I) + (I - 6k)Jk

+ (Bib + B2k + B3I)Jb+ (1/2)42 Jbb (1/2 
)ar2irr1̀ I aBaRGBRb"bri

where subscripts indicate partial differentiation.

An alternative characterization of (11) can be developed using the

Ito, or stochastic, calculus (Schuss). By Taylor expanding J(k, r, b),

dividing through by dt and taking the expectation starting at time t as

dt -> 0 (see Mangel, 1985, Chapter 2) one can develop an expression for the

expected change in the value function as

(12) (1/dt)Et{dJ) = (I - 6k)Jk+ (01b + 82k + 831)Jb

(1/2)a b J123 2 bb (1/2)4r2Jrr aBaRaF3Rb"br*

The DPE can now be more compactly written in terms of the expected change

in the value function as

(13) pJ(k, r, b) = max [7(r, bk) - C(I) + (1/d0EttodJ)].

Thus, (13) suggests that the opportunity cost of the stock of technical

knowledge and capital, pJ(k, r, b), is equal to the instantaneous cash
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flow, 7(r, bk) - C(I), plus the instantaneous expected change in the value

of the stock of technical knowledge and capital, (1/dt)Ettc1J). Assuming an

interior solution,

(14) CI(I) = Jk + B3Jb.

This states that, along the optimal path, the marginal cost of adjusting

the capital stock is equal to the marginal valuation of the capital stock

plus the marginal growth in expected capital-augmenting technical knowledge

arising from an increase in investment, 83, times the marginal valuation of

the stock of capital-augmenting technical knowledge, Jb. Using the
* *

optimized level of investment, I = I (k, r, b), the DPE,is the second order

non-linear partial differential equation

(15) pgk, r, b) = 7(r, bk) - C(I*) + (1* - 6k)Jk + (Bib + B2k + 8 I*)Jb

B 1
+ (1/2)A2 

bb + 
(1/2)0

21r2uirr I cre0760"br*

Along the optimal trajectory, (14) must necessarily hold, and suggests

that

(16) ai(I*) = d(Jk) + B3d(Jb).

Since the differentials in (16) are based on the evolution of stochastic

processes, the expected marginal cost of adjustment dynamics can be

expressed as

(17) Et(dCI(I*)) = Et[d(Jk)) + B3Et(d(Jb)).

The evolution of the marginal cost of adjustment, dyI ), is determined by

stochastically differentiating CO ) as follows



(18) dyI
* 
) = CIIdI

* + (1/2)CIII(dI
*
)
2 
+ o(dt)

where lim o(dt)/dt = 0. The evolution of investment, dl , is determined
dt-*0 * *

by stochastically differentiating I = I (k, r, b) as follows, recognizing

that I
* 

holds for all starting values,

(19) dl
*
= IkdK + IrdR + Ibc113

*(1/2)I*rr(dR)2 + (1/2)Ibb(a)2 + IbrdBdR + o(dt).

Squaring dl
* 

yields

* 2 *2 2 *2 2 * *(20) (dI ) = Ir (dR) + Ib (dB) +IrIbdRdB + o(dt).

Taking the expectation of (18) starting at time t, using (19) and (20), and

dividing through by dt as dt -> 0 yields

(21) (1/dt)Et(dCI(I*)) = CII(1/dt)Et(n*)

2* 2* * *
+ (1/2)CIII(ak2T2.„r a

,2 T
R. Lr

2
 + 2oBaRaBRbr II).

Differentiating (15) with respect to k and using K = bk yields

(22) pJk= biric - [CI(I ) - Jk - — IsJk+ (I — 610.1.+ B J
KK 2 b

*Ni 2

4- °lb 112k P3
IT 

Jubk 

(1/,'ak2
r ubbk

+ (1/2)a J1211.'2 rrk aBaRaBO"brIC

Stochastically differentiating Jk(k, r, b) yields

(23.1) d(J.) =Jd dJ
K kk K J

rk R bk"

(1/2)Jrrk
(dR)2 4.(1/2)Jbbk(dB)2 

+ Jbrk(dB)(dR) + o(dt),

and then taking the expectation of d(Jk) starting at time t and dividing

through by dt as dt -> 0 yields
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(23.2) (1/dt)Et(od(Jk)) = (I* - SkIJi - kk B B3I*)Jbk

+ (1/2)a b2J123 bbk (1/2)oRr2Jrrk aBaRGBO"brk*

One can obtain an expression for the instantaneous expected change in the

marginal value of capital by using (14) and (22) in (23.2) to obtain

(24) (1/dt) EtWk)) = p+ 6)Jk - birK - B2Jb.

In a similar fashion, one can determine that by differentiating (15)

with respect to b and using (12) and (14) that

(25) (1/dt)Ejd(Jb)) = (p - 81)Jb - kIK 
E23 -01oJ aaa bb- B - R-BRrJbr'

Using (21), (24) and (25), (17) can be rewritten in terms of the expected

investment dynamics

(26) (1/dt)EttdI*) = (1/CII)[(p + 6)Jk - lyrr ic - BA]

(B3/CII)[(P 131)J1) kirK ar3bJbb aBaRafeJbrl
2 * 2 * *

(1/2)(CIII/CII 
)(aBb2 I 2 b + aRr2 I*2 r 20 a br II 1--B - R-BR- bra°

Uncertainty and The Expected Dynamics of Investment

The expected dynamics of investment, (1/dt)Etta), involves three

major components. The first is the presence of uncertainty elements

represented by the variances and covariances of the random price and

technical change processes (°B, - 
a 
R' 0 BR'1
' The second major component

measures the curvature of the value function and the cost of the adjustment

and investment demand functions (Jbb' Jbr' CII' CIII). The third involves

the effect of farm size on the absorption of additional capital-augmenting

technical knowledge (82, 83).
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Our ability to assess ceterus paribus changes in the expected

investment dynamics due to a perturbation in the uncertainty of a
* *

particular stochastic process depends on the signs of CI„, aBR' /1:4' Ir'

and the magnitude of the farm size effect 83. With 7(r, K) concave in

K = bk, 7( ) is also concave in b and in k.5 However, the curvature of the

value function is more difficult to determine. Using (15), the short-run

profit function can be expressed as

(27) 7(r, K) = pJ(k, r, b) + C(I*) - (I 610Jk - (81b + 82k + 831 PI)

rlb2Jbb (1/2)+2Jrr -
- 
(1/2)a aBaRaBO"br*

Thus, a7
2
/al

-2 
> 0, a7

2
lab

2 
< 0 and a7

2 /ak2 < 0 imply conditions (C.1)

through (C.3), respectively,

(C.1) (p

(C.2) (p

2 
[(I* - dkall)Jrr > Pkrr (811) 82k

2 2,1+ (1/2)aJ +„. 2b2
B- bbrr 2aOrrr all' urrrr

+ 20BaR0BRbJbrr + aBaRaBRbr Jbrrr],

B3/ Pbrr

- 281 - aB2)u bb 
e 

 

[(1* 
- u")u kbb 

L  
(81b

 
 
I  82k 

 

4*
133/ )Jbbb

2 2 2 1+ 20133-
b--bbb + (1/,)aB

b2 
Jbbbb + (

1/,
)a

,2
Rl urrbb

+ 2aaa rJ +aaa brJ I,B R BR brb B R BR brbb

(C.3) (P 26)J1(k < [(/* ")Jkkk 282Jbk 132k 4- 133I*Pbkk

+ 
1 

(1/2)a b2J
bbkk (1/2)QRr2 Jrrkk aBaRaBO"brkkh

The evaluation of the fourth order derivatives is required to determine the

convexity of J( ) in r and the concavity of J( ) in b and k.

In order to evaluate the sign of Ib one notes from (14) that

(28) ,Ib=J +8J.kb 3 bb
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The term J

kb 
is interpreted as the change in the marginal valuation of the

capital stock given a change in the stock of technical knowledge. With

CII > 0 and B3 
>
'b can be signed as follows

*> >
I
b < 0 for Jkb < B3Jbb

In order to evaluate the sign of Ir one observes from (14) that

(29) CIIIr =J kr 133JW

Two cases arise in an attempt to determine the direction of Ir. The first

case is when the shadow values of capital and technical knowledge,

respectively, given a change in the real wage are in the same direction;

i.e., sign(J) = sign(Jbr). In this case, sign(1) = sign(J
kr). The

second case is when Jkr and Jbr are of the opposite sign. In this instance

* > >
Ir < 0 for Jkr < B3

J
br

An increase in uncertainty concerning technical change is

characterized by an increased value of 06 and an increase in future price

uncertainty is characterized by an increased value of GR. When there is a

zero correlation between a change in the real wage and a change in the

stock of technical knowledge, a BR = 0, an increase in 0.6 has the following

impact on (1/dt)Et[dI )

*- 203/CidaBbJbb - 
(CIII/CII)(313 

k u2T 
L2b

The first effect depends on the curvature of the value function with

respect to b. Specifically, if g ) is concave in b, J 
bb 

< 0 and the rate

of
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expected change in investment increases as aB is increased. The second

effect of an increase in a is to decrease (increase) Et as CIII > 0

(< 0). An increase in aR influences (1/dOEt ) according to

- (C111
1r
11)'
-

111 ir*

Thus, an decrease (increase) occurs in the rate of expected change in

investment as CIII > 0 (< 0). The term CIII can be viewed in terms of the

marginal cost of adjustment. Namely, C111 > 0 (< 0) implies that the

marginal cost of adjusting the capital stock is increasing at an increasing

(a decreasing) rate. Economic theory is sufficiently vague so as to

preclude an a priori specification of the sign of Cm.

When aBR 0
' an increase in aB generates two additional effects that

depend on the linkage of technical change to the evolution of the real

wage. The first effect depends in the sign of Jbr, while the second
* *

depends on the signs of (II) and Cm. An increase in price uncertainty

has the same marginal impact as an increase in aB.

In the case of quadratic costs of adjustment, (1/2)02, there are only

two components in (26) that involve the variances and covariance of the

stochastic processes. An increase in aB, or aR, leads to an increase in

E
t ) when aBR and Jbr have opposite signs or when aBR = 0. Otherwise,

one cannot make a definitive assessment about the impact of increasing

uncertainty of technical change or future price changes on the expected

investment dynamics of the risk-neutral competive firm.

These results critically depend on the farm size investment effect

associated with the absorption of capital-augmenting technical knowledge;

specifically, B3 > 0. With no farm size investment effect on the

accumulation of technical knowledge, 63 = 0, increased fluctuations in the
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variation of the stochastic processes influence the expected investment

dynamics via the term associated with Cm. With no farm size effects and

quadratic costs of adjustment, the expected dynamics of investment are

reduced to

(30) (1/dt)Et[dI*)/I* = (p + 6) - buic r /(0*)

which states that the proportional rate of expected change in investment is

equal to the opportunity cost less the instantaneous change in net cash

flow arising from a change in the capital stock per unit of capital

invested. Thus, the expected investment dynamics is independent of the

degree of uncertainty under, quadratic costs of adjustment and without an

investment farm size effect.

An increase in uncertainty can either increase or decrease the rate of

expected investment at the firm level. Increased fluctuations in the

stochastic processes can reduce the value of the effective capital stock.

On the other hand, the variances of these processes are an increasing

function of the stock of technical knowledge, creating an incentive for the

firm to increase investment in order to reduce the variance in the future.

The increased fluctuations also increase the expected adjustment costs as

time goes on, thus creating an incentive to increase current investment.

The decrease in Et
[di principally depends on the farm size effect, the

magnitude and direction of the correlation between the evolution of the

real wage and the evolution of the stock of technical knowledge, and the

curvature of the cost of adjustment function (in particular, the sign of

CHI). The sign of CIII provides some insight into how the penalty

associated with larger and larger capital expansions (or contractions)

changes at the margin. This is illustrated in figure 1. With convex costs
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of adjustment and CII/ < 0, CI must asymptotically approach a constant c as

III becomes very large. That is, for very large changes in the capital

stock, the marginal cost of adjustment is constant implying that there is

no penalty to adjust the capital stock at the margin. With CIII > 0, CI

grows without bound implying that, at the margin, the larger the change in

the capital stock the greater the marginal cost of adjustment.

Concluding Comments

Uncertainty has been modeled as a set of a Weiner processes, where

changes in the variances and covariances of these processes suggest changes

in the level of uncertainty. The certainty version of the investment

dynamics in (26) is

(26') (1/dt)dI* = (1/CII)E0 + 6)Jk - bnic - B2Jb].

The investment dynamics do not depend on the sign of Cm. In the absence

of the investment farm size effect (B3 = 0) and in the presence of

quadratic adjustment costs (CHI = 0), the uncertainty and certainty cases

are equivalent. However, if B3 = 0 and Cm 0, the expected investment

dynamics depend on the evolution of both stochastic processes. Conversely,

if B3 0 and CIII = 0, the expected investment dynamics depend on the

stochastic evolution of the stock of technical knowledge and, only for

aBR 0, on the stochastic evolution of the real wage.

The exact nature of the exogeneous technical change information

available to the firm is not specifically addressed. As additional

technical knowledge is accumulated, capital and labor use adjusts

instantaneously to the extent allowed by the costs of adjusting the capital

stock. These results basically provide insight into the firm's decisions

to acquire (or disinvest) capital which can be an expansion of the current
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technological processes employed or a shift to an improved technology.

Since a wide range of technological production patterns are typically

available to the firm, this interpretation of the results is not especially

restrictive. In addition to the impact of price and technological

uncertainty on the optimal investment trajectory, the curvatures of the

cost of adjustment function and the value function play a role in how

quickly investment changes over time. In the absence of uncertainty,

equation (26) indicates that the curvature of C(I) influences the rate of

change in investment. In particular, as the curvature of the convex cost

of adjustment function becomes more extreme (as CH 00), expected changes

in investment become very small.
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Footnotes

1 The Abel (1983) and Hartman results suggest that price uncertainty

influences the expected investment dynamics given quadratic costs of

adjustment. Pindyck (1982) finds that for quadratic adjustment costs the

future price uncertainty does not influence the expected investment

dynamics. This discrepancy is attributed to the price uncertainty

assumption. While Pindyck (1982) considers current prices to be known with

certainty and the future movement of prices to be a random process, Abel

(1983) and Hartman allow for current price uncertainty as well.

2 
Sharp, discontinuous change in the state of technical knowledge is

another possible modeling approach. The discontinuous changes can be

modeled by a Poisson process (see Mangel, pp. 22-27). The assumptions of

the discontinuous processes model, also known as a jump process, implies

that the evolution of the process depends only on the current state (i.e.,

a Markovian process), but that the exit time from the current state depends

on the state.

3 One should be aware that an infinite number of stochastic calculi exist,

each with its own stochastic differentiation rules. While analysis using

the Ito calculus is widely conducted in economics, the Stratonovich

calculus is another poosibility. Stefanou and Mangel discuss how economic

interpretations of fundamental equations in stochastic dynamic analysis

change with the choice of calculus.

B
enveniste and Scheinkman identify the sufficient conditions to guarantee

that J( ) is differentiable for deterministic dynamic optimization. Brock
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and Magill presents some results on the properties of the value function

for stochastic variational problems in economics.

5 7(r, K) concave in K implies that
KK
(r, K) < 0. With K = bk,

and

37/ab = 710: ( ) (aKiab) = ITK( )k

32r/3b2 = k 7 (
KK
) (aociab) = k271 ( ).KK" 

By a similar manipulation, one can show that

a2iliak2= b27KK( ).
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Figure 1. The impact of Cm on the marginal cost of adjustment, C.
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