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Technical Change, Uncertainty and Investment

The generation of new technology is a necessary development in order
to increase agricultural output. The development of new technologies in
agriculture is a growth industry with both the private and public sectors
making great strides in pushing back the frontiers of knowledge. Already
efforts are uhderway to apply emerging biotechnologies in agriculture in
both plant and animal production. In plant production examples include
improving existing plant varieties to inhibit the effects of herbicides and
pests, and developing new plant varieties that can resist bacteria and
disease and can biologically fix nitrogen. In animal production examples
of new biotechnologies include bovine growth hormone, embryo transfer, and
twinning.

The Tliterature in agricultural ecbnomics on the innovation,
dissemination and adoption of new technologies acknowledges the role of
accumulated knowledge in increasing output (Hiebert; Kislev and Shchori-
Bachrach; Feder and 0'Mara; Feder and Slade). The processes of innovation
and adoption are modeled within various information processing regimes:
passive vs. active accumulation of knowledge, Bayesian vs. ad hoc learning
frameworks. A]though some of the studies mentioned above address the
dynamic aspects of the innovation and adoption processes, none have
explicitly developed their analyses within an intertemporal model of
investment decision making. Feder and Slade treat the acquisition of
information as an investment by the firm with a cost of aquiring
information similar to the cost of adjusting capital stock; their analysis

maintains static behavioral assumptions. Other work on uncertain future

technology has focused on the case of a new, well-defined technology that




is expected to become available at some unknown future date. Dasgupta and
Heal, Hoel (1978, 1979), Kamien and Schwartz (1978) and Bhattacharya have
focused on the extraction of an exhaustible resource that has a non-
exhaustible substitute produced by a "backstop technology" or that allows
the new technology to render the existing technology obsolete.

Models of stochastic technical change in the literature, as well as
this work, must necessarily abstract from reality in order to glean some
general behavioral conclusions. Mirman considered the case of a random
element in the production function that represents the possibilities of
stochastic technical change which does not exhibit a systematic evolution
over time. He goes on to characterize the distribution of possible states
of a one-sector growth model and the sector's long-run behavior. Kamien
and Schwartz (1972) consider the scenario where a firm makes a one-time,
irreversible decision to adopt a new, well-defined technology. Their
analysis suggests that uncertainty about the time availability of this
improved technology is available tends to delay the adoption decision.
Balcer and Lippman focus on the more general case where more than one well-
defined technological innovation is anticipated with expectations about the
likelihood of such innovations being updated as time passes. Their
analysis suggests that the adoption of an innovation is not necessarily
delayed when many technological innovations are stochastically
anticipated.
| Mathematical programming formulations such as Wicks and Guise and

Paris and Easter can incorporate stochastic technology within an

operational framework. This class of models considers the coefficients of

the technology matrix to be stochastic and sacrifices realism (e.g., linear
or quadratic objective functions, linear production technologies) for

computability.




Investment behavior under uncertainty for risk-neutral firms facing
adjustment costs has been addressed by Hartman, Pindyck (1982, 1984) and
Abel (1983, 1984). Abel (1983) corroborates Hartman's finding that
uncertainty about future prices leads to an increase in the current rate of
investment under constant returns to scale techno]ogy.1

This article examines the expected investment dynamics of a risk-
neutral competitive firm in the presence of uncertainty concerning the
future evolution of prices and technical change. Focusing on the
investment dynamics provides insight into the firm's accumulation (or
disinvestment) of capital which can be either an expansion of the current
technological processes being practiced or a shift to an improved, more

capital intens%ve technology. Production facilities may be available in

more than a few widely differing sizes. Variations in capacity utilization

rates may be accohpanied by a wide range of technological adjustments.

Rather than focus on a firm stochastically anticipating one or more well-
defined, improved technologies in the future, a state of technology concept
is modeled as a stock variable which evolves in a stochastic manner.
Although the discovery of a specific innovation is a discrete event, once
these innovations are ready for dissemination the flow of operational
technical knowledge to the firm can be considered continuous. Thus,
focusing on the impact of uncertain technical change on capital
accumulation is not-especially restrictive. The next section develops a
model of the firm that is characterized by quasi-fixed factor-augmenting
technical change that is taken exogenously by the firm, allowing for costs
of adjusting the stock of capital. The following section considers the
effect of uncertainty on investment and the last section provides some

concluding comments.




The Model

The firm uses capital, K(t), and labor, L(t), to produce output, y(t)
where labor represents a flexible factor and capital represents a quasi-
fixed factor. Assuming the presence of capital-augmenting technical

change, output can be expressed as
(1) y(t) = F(L(t), B(L)K(L))

where F( ) is assumed to be a differentiable quasi-concave function. The
expression B(t)K(t) is referred to as the stock of effective capital where
B(t) is an index denoting the stock of accumulated technical knowledge
associated with capital-augmenting technical change. This representation
of capita]éaugmenting technical change implies that the firm draws upon a
stock of freely available technical knowledge. In agriculture, the
availability of the services of extension personnel and materials to the
operator suggests that this assumption is plausible.

However, the rate of growth in the stock of technical knowledge is

assumed to evolve in a continuous stochastic manner2 according to

(2) dB =(B)B + BK + ByI)dt + agBdWg, B(0) = B,

B

where I(t) is the rate of investment in time t, Bss i=1,2, 3, og and Bo

are known parameters, and wB(t) is a Weiner process where

(3) E {dWg(t)] = 0, E((dHy(t)?)) = dt.

The rate of growth in capital-augmenting technical change is composed of
deterministic and stochastic drift components. The coefficient 31 is
interpreted as the expected proportional rate of growth in capital-

augmenting technical knowledge that can be passively accumulated by the




farm operator independent of capital and investment. The coefficients 82
and 83 are interpreted as the change in the rate of expected change in
technical knowledge for a change fn the capital stock and investment
levels, respectively. Observed rates of adoption suggest that adoption of
new technologies is not instantaneous and may be hampered by farm size
(Feder, Just and Zilberman). These coefficients describe the impact of
farm size on the rate of accumulation of technical knowledge by the
operator. It is assumed that these coefficients are non-negative, implying
that larger farm operators can increase their expected change in the stock
of technical knowledge as least as fast, if not faster, than smaller farm
levels of capital and investment.

Another form of uncertainfy concerns the evolution of prices in the
future. The nominal wage normalized by output price, R, is assumed to

behave according to
(4) dR/R = opdWp, R(0) = R/

where R0 is assumed to be a known constant and

(5) E{dHg(t)} = 0, E{(dMa(t))?)] = dt and E{dWg(t)dHg(t)) =

oBRdt,

where OgR is the contemporaneous correlation coefficient between the
stochastic processes in (2) and (4). The stochastic specifications in (2)
and (4) imply that B(t) and R(t) are lognormally distributed and these
random variables will always take on positive va]ues.3

The firm is also constrained by the capital accumulation equation
(6) dK = (I - &K)dt, K(0) = K0

where I is the level of investment, § is the constant rate of depreciation,

and KO-is known.




Since the current state of technical knowledge and prices are known,
the maximization of short-run unit profits in time to involves choosing

L(to) to

(7) max [F(L(t,), B(t,)K(t))) - R(t )L(t)].

Assuming an interior solution, the short-run profit maximization condition

is
(8) FL= R(to)

which implies that the maximizing short-fun unit profit function can be
expressed as n[R(to), B(to)K(to)], which is convex in real wage, R(to), and
concave in the effective capital stobk, B(to)K(to).

The firm's intertemporal investment decision problem involves choosing
an investment plan to maximize the expected sum of discounted cash flow,
which at time t is w[R(t), B(t)K(t)] - C(I(t)), subject to starting
conditions and constraints on the movement of the state variables. The
term C(I(t)) is the cost of adjusting the capital stock and by assumption
is characterized by ICI > 0 and CII > 0. fhe introduction of adjustment
costs leads to the sluggish adjustment in the capital stock only if the
cost of adjustment is convex (Brechling, Chapter 4).°

The firm's intertemporal decision problem is formally stated as

(9) J(k, r, b) = max Et{? e PS[n(R, BK) - C(I)]ds)
t




subject to
dK = (I - 8K)dt, K(t) = k
(10) dR = oRRdwR, R(t) = r
dB =(ByB + B,K + B;I)dt + opBdHg, B(t) = b

where p is the constant rate of time discount and Et denotes the
expectation operator starting at time t. Assuming that J(k, r, b) exists
and is differentiab]e,4 the dynamic programming equation (DPE) for this

Weiner driven process is
(11) pJ(k, r, b) = max[n(r, bk) - C(I) + (I - 6k)Jk
I

+ (Byb + Bk + B3I)J,+ (1/2)0lb? 3 + (1/2)o5r2a. brd, ]

r ¥ 98°ROBR
where subscripts indicate partial differentiation.

An alternative characterization of (11) can be developed using the
Ito, or stochastic, calculus (Schuss). By Taylor expanding J(k, r, b),
dividing through by dt and taking the expectation starting at time t as.

dt -> 0 (see Mangel, 1985, Chapter 2) one can develop an expression for the

expected change in the value function as

(12) (1/dt)E {dd) = (I - 6k)J+ (Byb + Bk + ByI)J,

| 2,2 22
+ (1/2)oBb Jbb + (1/2)0Rr‘ Jrr + OBURGBRerbr'

The DPE can now be more compactly written in terms of the expected change

in the value function as

(13) pd(k, r, b) = mgx [w(r, bk) - C(I) + (1/dt)E {dJ}].

Thus, (13) suggests that the opportunity cost of the stock of technical

knowledge and capital, pJd(k, r, b), is equal to the instantaneous cash
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flow, w(r, bk) - C(I), plus the instantaneous expected change in the value
of the stock of technical knowledge and capital, (l/dt)Et{dJ]. Assuming an

interior solution,
(14) CI(I) = Jk + B3Jb.

This states that, along the optimal path, the marginal cost of adjusting
the capital stock is equal to the marginal valuation of the capital stock
plus the marginal growth in expected capital-augmenting technical knowledge
arising from an increase in investment, 83, times the marginal valuation of
the stock of capital-augmenting technical knowledge, Jb. Using the
optimized level of investment, I*= I*(k, r, b), the DPE .is the second order

non-linear partial differential equation

(15) 0d(k, v, b) = m(r, bk) - C(I') + (I" - 8k)J, + (B;b + B,k + BoI")J,
+ (1/2)a5b? 3, + (1/2)02r20 _ + 0gOROpRD Ip -

Along the optimal trajectory, (14) must necessarily hold, and suggests

that
(16) dC (") = d(3,) + Byd(J,).

Since the differentials in (16) are based on the evolution of stochastic
processes, the expected marginal cost of adjustment dynamics can be

expressed as

(17) E (dC (1)) = E,(d(3,)} + B4E, (d(3)).

The evolution of the marginal cost of adjustment, dCI(I*), is determined by

*
stochastically differentiating C(I ) as follows




(18) dcC (I ) C dI + (1/2)CIII(dI ) + o(dt)

where 1im o(dt)/dt = 0. The evolution of investment, dI*, is determined
dt-+0 *
by stochastically differentiating I =1 (k, r, b) as follows, recognizing

that I holds for all starting values,

*_* *R I*B
(19) dI' = L,dK + I dR + I, d

* 2 * 2 *
(I/Z)Irr(dR) + (1/2)Ibb(dB) + IbrdBdR + o(dt).
*

Squaring dI yields

(20) (d1")? = 1 2(aR)%+ 12(dB)? +I I dRdB + o(dt).

Taking the expectation of (18) starting at time t, using (19)fand (20), and
dividing through by dt as dt -> 0 yields

(21) (1/dt)Et{dCI(I*)} = € (1/dL)E, (41

22.*%2 22 %2

+ (1/2)CIII(oBb I%+ opr™ 1.7+ ZGBcRoBRbr I )

Differentiating (15) with respect to k and using k = bk yields

(22) pJ bn - [C (I ) - J - B3J ]I - &J K (I - 6k)J
+ (Blb + sz + 831 )ka + (1/2)oBb Jbbk

kk* B2

+ (1/2)0Rr J Kt OBOROBRerbrk’
Stochastically differentiating Jk(k, r, b) yields

(23.1) d(Jk) = Jp 9K + JpdR + J,, dB

bk
+ (1/2)Jrrk(dR)2 +(1/2)Jbbk(dB)2 + J, ., (dB) (dR) + o(dt),

and then taking the expectation of d(Jk) starting at time t and dividing

through by dt as dt -> 0 yields




* *
(23.2) (l/dt)Et[d(Jk)} = (I - 6k).]kk + (Blb + sz + 331 )ka
2,2 2.2
+ (1/2)oBb Jbbk + (1/2)oRr Jrrk + °B°R°BRerbrk'
One can obtain an expression for the instantaneous expected change in the

marginal value of capital by using (14) and (22) in (23.2) to obtain

(24) (1/dt) E,{(3)) = (p + 8)J, - br_ - B,J;.

In a similar fashion, one can determine that by differentiating (15)

with respect to b and using (12) and (14) that

2
(25) (1/dt)E {d(p)} = (p - B{)9y - km, - ogbdy, - 0gopogardy -

Using (21), (24) and (25), (17) can be rewritten in terms of the exﬁected

investment dynamics

(26) (1/dt)EL(dT ) = (1/C;)[(p + )3, - bu_ - B,d ]

2
+ (83/(:11)[(0 - Bl)Jb - k“K - OBbeb - OBURGBRerr]

2,2.*2 2.2 . *2 * *
- (1/72) (CIII/CII)(oBb Ib + opr Ir + ZOBURGBRbr Iblrl‘

Uncertainty and The Expected Dynamics of Investment

The expected dynamics of investment, (1/dt)Et{dI}, involves three
major components. The first is the presence of uncertainty elements
represented by the variances and covariances of the random price and
technical change processes~(oB, Ops °BR)’ The second major component
measures the curvature of the value function and the cost of the adjustment
and investment demand functions (Jbb, Jbr’ CII’ CIII)‘ The third involves
the effect of farm size on the absorption of additional capital-augmenting

technical knowledge (82’ 83).




Our ability to assess ceterus paribus changes in the expected

investment dynamics due to a perturbation in the uncertainty of a
* *

11 %see Ipe I
and the magnitude of the farm size effect 83. With n(r, k) concave in

particular stochastic process depends on the signs of C I
k = bk, m( ) is also concave in b and in k.5 However, the curvature of the
value function is more difficult to determine. Using (15), the short-run

profit function can be expressed as

(27) w(r, &) = pd(k, ¥, b) + C(I') - (I" - 8k)J, - (Byb + Bok + B5I")J
2.2 2 2 |

- (1/2)oBb Jbb - (1/2)0Rr Jrr - oBoRoBRerbr.
Thus, an%/ar? > 0, an2/ab? < 0 and a12/ak? < 0 imply conditions (C.1)

through (C.3), respectively,

(c.1) (o - oﬁ).]rr > (17 - sk)d
+ (1/2)02b2

*
+ (Blb + sz + 331 )Jd
2
rer + °RrJrrrr

br J | R

krr

+ 202J
bbrr R
bd

brr

+ 20g0p0gpbdy . + OgOpOEEbY Iy

2 * *

2

2,2 22
+ ZoBbebb + (1/2)oBb Jbbbb + (1/2)0Rr J

rrbb
+ 20g0p0ppdprp * OgORIBRO T prpp s

* *
(C.3) (b +28)d < [(I" - 8K)Jp + 28,0, + (81D + Bok + 831 )d,

2,2 2.2
+ (1/2)oBb Jbbkk + (1/2)0Rr Jrrkk + °B°R°BRerbrkk]‘

The evaluation of the fourth order derivatives is required to determine the
convexity of J( ) in r and the concavity of J( ) in b and k.

*
In order to evaluate the sign of Ib one notes from (14) that

*
(28) Cpylp= 3, + Bgd,,.
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The term ka is interpreted as the change in the marginal valuation of the

capital stock given a change in the stock of technical knowledge. With

N .
CII > 0 and 83 >0, Ib can be signed as follows

* >

>
I, 20 ford, - Bd,,.

*
In order to evaluate the sign of Ir one observes from (14) that

*

(29) Cy I =4

11lr = dgr * B3dppe

*
Two cases arise in an attempt to determine the direction of Ir' The first
case is when the shadow values of capital and technical knowledge,
respectively, given a change in the real wage are in the same direction;
. k3 - . * .
i.e., s1gn(Jkr) = s1gn(Jbr). In this case, s1gn(Ir) = s1gn(Jkr). The

second case is when Jkr and Jbr are of the opposite sign. In this instance

* >
Ir < 0 for J J

>
kr < B3Jpp-

An increase in uncertainty concerning technical change is
characterized by an increased value of og and an increase in future price
uncertainty is characterized by an increased value of OR- When there is a
zero correlation between a change in the real wage and a change in the

stock of technical knowledge, Ogr = 0, an increase in og has the following

impact on (l/dt)Et{dI*]

21*2

- 2(B3/Cyp)ogbdyy, - (Cppp/Crplog b,
The first effect depends on the curvature of the value function with
respect to b. Specifically, if J( ) is concave in b, Jbb < 0 and the rate

of
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expected change in investment increases as g is increased. The second

effect of an increase in og is to decrease (increase) Et{dI*} as C

11; > 0

(< 0). An increase in op influences (l/dt)Et[dI*} according to

2 %2
= (Cypp/Cyplogril.”.

Thus, an decrease (increase) occurs in the rate of expected change in
investment as CIII >0 (< 0). The term CIII can be viewed in terms of the
marginal cost of adjustment. Namely, C;;; > O (< 0) implies that the
marginal cost of adjusting the capital stock is increasing at an increasing
(a decreasing) rate. Economic theory is sufficiently vague so as to
preclude an a priori specification of the sign of CIII'

When OgR # 0, an increase in og generates two additional effects that
depend on the linkage of technical change to the evolution of the real
wage. The first effect depends in the sign of Jbr’ while the second
depends on the signs of (I;I:) and CIII‘ An increase in price uncertainty
has the same marginal impact as an increase in og-

In the case of quadratic costs of adjustment, (1/2)¢12, there are only
two components in (26) that involve the variances and covariance of the
stochastic processes. An increase in ogs Or op, leads to an increase in
Et{dI*} when OgR and Jbr have opposite signs or when OgR = 0. Otherwise,
one cannot make a definitive assessment about the impact of increasing
uncertainty of technical change or future price changes on the expected
investment dynamics of the risk-neutral competive firm.

These results critically depend on the farm size investment effect
associated with the absorption of capital-augmenting technical knowledge;
specifically, B3 > 0. With no farm size investment effect on the

accumulation of technical knowledge, B3 = 0, increased fluctuations in the
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variation of the stochastic processes influence the expected investment
dynamics via the term associated with CIII' With no farm size effects and
quadratic costs of adjustment, the expected dynamics of investment are

reduced to

(30) (1/dt)E,(AI}/T = (p + 8) - bm, /(oT")

which states that the proportional rate of expected change in investment is
equal to the opportunity cost less the instantaneous change in net cash
flow arising from a change in the capital stock per unit of capital
invested. Thus, the expected investment dynamics is independent of the
degree of uncertainty under, quadratic costs of adjustment and without an
investment farm size effect.

An increase in uncertainty can either increase or decrease the rate of
expected investment at the firm level. Increased fluctuations in the
stochastic processes can reduce the value of the effective capital stock.
On the other hand, the variances of these processes are an increasing
function of the stock of technical knowledge, creating an incentive for the
firm to increase investment in order to reduce the variance in the future.
The increased fluctuations also increase the expected adjustment costs as
time goes on, thus creating an incentive to increase current investment.
The decrease in Et{dl*} principally depends on the farm size effect, the
magnitude and direction of the correlation between the evolution of the
real wage and the evolution of the stock of technical knowledge, and the
curvature of the cost of adjustment function (in particular, the sign of
CIII)‘ The sign of CIII provides some insight into how the penalty
associated with larger and larger capital expansions (or contractions)

changes at the margin. This is illustrated in figure 1. With convex costs
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of adjustment and CIII < 0, CI must asymptotically approach a constant ¢ as
| 1| becomes very large. That is, for very large changes in the capital
stock, the marginal cost of adjustment is constant implying that there is

no penalty to adjust the capital stock at the margin. With C >0, CI

IT1
grows without bound implying that, at the margin, the larger the change in

the capital stock the greater the marginal cost of adjustment.

Concluding Comments

Uncertainty has been modeled as a set of a Weiner processes, where
changes in the variances and covariances of these processes suggest changes
in the level of uncertainty. The certainty version of the investment

dynamics in (26) is

(26') (L/dt)dI” = (1/C; )l (p + 8)J, - b - Byd,].

The investment dynamics do not depend on the sign of CIII' In the absence
of the investment farm size effect (63 = 0) and in the presence of
quadratic adjustment costs (CIII = 0), the uncertainty and certainty cases
are equivalent. However, if 83 = 0 and CIII # 0, the expected investment
dynamics depend on the evolution of both stochastic processes. Conversely,
if 33 # 0 and CIII = 0, the expected investment dynamics depend on the
stochastic evolution of the stock of technical knowledge and, only for

OBR # 0, on the stochastic evolution of the real wage.

The exact nature of the exogeneous technical change information
available to the firm is not specifically addressed, As additional
technical knowledge is accumulated, capital and labor use adjusts
instantaneously to the extent allowed by the costs of adjusting the capital
stock. These results basica11y provide insight into the firm's decisions

to acquire (or disinvest) capital which can be an expénsion of the current




technological processes employed or a shift to an improved technology.
Since a wide range of technological production patterns are typically
available to the firm, this interpretation of the results is not especially
restrictive. In addition to the impact of price and technological
uncertainty on the optimal investment trajectory, the curvatures of the
cost of adjustment function and the value function play a role in how
quickly investment changes over time. In the absence of uncertainty,
equation (26) indicates that the curvature of C(I) influences the rate of

change in investment. In particular, as the curvature of the convex cost

of adjustment function becomes more extreme (as CII + =), expected changes

in investment become very small.




Footnotes

1 The Abel (1983) and Hartman results suggest that price uncertainty

influences the expected investment dynamics given quadratic costs of
adjustment. Pindyck (1982) finds that for quadratic adjustment costs the
future price uncertainty does not influence the expected investment
dynamics. This discrepancy is attributed to the price uncertainty
assumption. While Pindyck (1982) considers current prices to be known with

certainty and the future movement of prices to be a random process, Abel

(1983) and Hartman allow for current price uncertainty as well.

2 Sharp,'discontinuous change in the state of technical knowledge is
another possible modeling approach. The discontinuous changes can be
modeled by a Poisson process (see Mangel, pp. 22-27). The assumptions of
the discontinuous processes model, also known as a jump process, implies
that the evolution of the process depends only on the current state (i.e.,
a Markovian process), but that the exit time from the current state depends

on the state.

3 One shbu]d be aware that an infinite number of stochastic calculi exist,

each with its own stochastic differentiation rules. While analysis using
the Ito calculus is widely conducted in economics, the Stratonovich
calculus is another poosibility. Stefanou and Mangel discuss how economic
interpretations of fundamental equations in stochastic dynamic analysis

change with the choice of calculus.

4 Benveniste and Scheinkman identify the sufficient conditions to guarantee

that J( ) is differentiable for deterministic dynamic optimization. Brock




18

and Magill presents some results on the properties of the value function

for stochastic variational problems in economics.

3 n(r, k) concave in k implies that "xx(r’ k) < 0. With x = bk,

an/ab = nKK( ) (3kx/3b) = nK( )k

and

a%n/ab? = k m_ () (3k/3b) = kPm_ ().

By a similar manipulation, one can show that

2 2_ .2
3 m/3k™=b nKK( ).
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Figure 1. The impact of cIII on the marginal cost of ad justment, CI.
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