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A Parametric Model of Stochastic Production

Abstract

A parametric model of stochastic production is proposed and

demonstrated. The parametric model treats output as a random variable with

a distribution that is conditional on inputs. Maximum likelihood estimation

of the model is shown to produce consistent and asymptotically efficient

estimates.



Just and Pope (1979) made a significant contribution to the study of

stochastic production by explicitly modelling the dependence of the variance

of a stochastic production function upon Inputs, and by deriving a

consistent estimation method for their model. Antle (1983) extended this

work by constructing a model that expresses general moments of a stochastic

production function as functions of inputs, providing a consistent method

for estimating the parameters of the model, and providing a means for

testing which moments are significantly Influenced by Inputs. This moment

based model of stochastic production is a flexible tool that uses minimal

assumptions about the probability distribution of output. In this paper a

related model of stochastic production which uses stronger assumptions about

the probability distribution of output is described.

Section one addresses several reasons why the model might be of use In

production economics research. In section two the details of the model and

its estimation properties are presented. And section three presents some

results from an application of the model to the calculation of crop

insurance premiums.

orl)e Reiqsowfor.tbeitolle,t,

The moment based model could be characterized as a non-parametric

model of the probability distribution of output. It does not assume that

output has a known probability distribution. The only assumption that is

made about the probability distribution is that the moments of Interest

exist. This non-parametric character Is a strength if there is no

information for specifying a probability distribution and the moments of the

distribution are of primary interest. However, if there is sufficient

Information for specifying a parametric probability distribution, or if an

explicit expression for the distribution is needed, the nonparametric



2

character of the moment method is a weakness.

The method proposed in this paper, which shall be called the parametric

method, is intended for cases when there is sufficient Information for

specifying a distribution or when an explicit expression for the

distribution is needed. Such cases are likely to be encountered in

production economics research. For example, there may be sufficient prior

information for specifying a specific parametric distribution for a crop

yield. Or, a study on the value of Information might require an estimate of

the probability distribution of output for Informed and uninformed traders.

The parametric method is a generalization of linear regression-based

studies of stochastic production (eg. WolgIn). If output is expressed as a

linear regression function of a collection of inputs, then output can be

thought of as a random variable with a normal distribution that has a mean

conditioned on the collection of inputs. This model can be generalized by

treating output as a random variable with a distribution whose parameters

are conditional on a collection of inputs. The strengths of this approach

include the ability to express the entire probability distribution of output

with a small number of parameters (the moment method could require an

infinite number of moments in order to characterize an entire distribution),

and the ability to derive estimates that are consistent and asymptotically

efficient.

The empirical example in this paper Is concerned with the probability

distribution of corn yield. The parametric method is attractive for this

problem because there is fairly good information for specifying a parametric

probability distribution. One source of information is Day, who wrote:
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"I would suggest the skewed, bell shaped [Pearson] type I
function as a reasonable hypotheses for further research,
with the J shaped curve as an extreme limiting case that
must be confronted only because of paucity of data. The
bell shaped case may, of course, exhibit skewness in
either direction."

There Is other evidence that crop yields are significantly skewed and

unimodal, suggesting that the parametric form recommended by Day might be

appropriate.

DetM.I.s-ofk-tb.e..EararnAtric..tvlethod

The development in this section will use Day's suggested hypothesis

by treating output as a Pearson Type I, or Beta, random variable; the same

development can be carried out for other parametric forms. Output will be

specified to be distributed as a Beta random variable:

(1) p(y) =
r(a+b) 

1(a-1)
(M-y)

(b-1)

F(a) r(b) (a+b-1) <y 6M

where y is output, M Is the maximum possible output, a and b are the

parameters of the distribution, and R.) is the gamma function. If M is

known, this distribution is a member of the regular exponential family of

distributions, and it is a standard statistical result that maximum

likelihood estimates of the parameters are consistent, asymptotically

normal, and asymptotically efficient (see Cramer, for example). If M is not

known, then these results do not hold and it is not even known whether

maximum likelihood estimates are consistent. The difference between these

two cases is so great because when M is not known the support of the

probability distribution Is a random variable and the neighborhoods needed

to prove consistency cannot be constructed. Thus, in order to get good

statistical properties with this model it is necessary to specify a value



for M, the maximum output. For many agricultural applications it should be

possible to specify a reasonable value for M.

Equation (1) must be extended in order to model stochastic production;

it is necessary to introduce the affect of inputs on the distribution of

output. This will be done by conditioning the parameters of the distribution

on the inputs. The parameters, a and .1), will be expressed as functions of

the inputs. There are no strong a priori reasons for choosing any particular

functional form for relating the Inputs to the parameters, therefore many

forms could be tried. In section three a and b Will be represented as power

functions of the inputs; these functions have the advantage of being easy to

manipulate, and having a positive range.

Conditioning the parameters changes the distribution of y to a

conditional distribution, so (1) becomes:

(2) lo(y,x) =
I-
La(x)+t)(x)j

(a(x)-1) (1)(x)-1)(M-y) 
(x)-r[a(x)] r[b(x)] 

m(a(x)+1)1) 
0 
jY M

This model is closely related to linear regression models of production. The

only difference is that the parameters of the Beta distribution are written

as functions of the inputs instead of writing the mean of the normal

distribution as a function of the Inputs. The advantage of this

generalization is that the Beta distribution is a more flexible distribution

than the normal distribution, while remaining tractable. All of the moments

of the Beta distribution exist and are rational functions of the parameters.

An attribute of the distribution that is important for production analysis

is that the skewness and kurtosis of the distribution are unrestricted.

Estimation of the parameters of this model by the method of maximum
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likelihood produces estimates with good statistical properties. The first

order conditions of the maximum likelihood problem are a complicated system

of 2n highly nonlinear equations, when n inputs are included in the model.

Therefore explicit expressions for the maximum likelihood estimates are not

derived, and the small sample properties of the estimates are not

investigated. Rather, as is standard with maximum likelihood estimates, the

asymptotic properties of the estimates are considered.

The first asymptotic property to be considered is consistency (ie. the

convergence of the estimates toward the true parameters). Following the

method of Cramer this property can be examined by expanding the first order

conditions of the maximum likelihood problem in a first-order Taylor's

series. If a(x) and b(x) are continuously differentiable with respect to the

vector x and the observations are independent and identically distributed,

then it can be shown that there exists a solution to the system of linear

equations which converges in probability to the true parameter vector (see

Cramer).

Asymptotic normality, unblasedness, and efficiency can be verified in

the same manner. The Taylor's series expansion can be rearranged to show

thatN/H-(p* - p0) Is asymptotically distributed as a normal random variable

with mean zero and covariance matrix equal to the Inverse of the information

matrix (ie. the negative of the Hessian of the log-likelihood function),

where p* is the MLE and 0 is the true parameter vector. This result depends

upon the same assumptions as those used to prove consistency, and it means

that the maximum likelihood estimates for this problem are asymptotically

normal, unbiased, and efficient.

Calculation of the maximum likelihood estimates must be accomplished by



numerical maximization of the likelihood function, because analytic

expressions for the maximum likelihood estimates do not exist. Given the

current state of computer resources this is no hinderance to implementation

of this approach. Most likelihood functions exhibit smooth behavior, so that

convergence of nonlinear optimization routines usually can be achieved

rapidly.

Before concluding this section, it should be noted that the parametric

method can provide consistent estimates of the parameters of a stochastic

production process, even when the parametric family of distributions is

misspecified. This is because most parametric distributions can be estimated

by maximum likelihood methods. And, following the work of Huber and White,

maximum likelihood estimates are often consistent even when the likelihood

function is misspecified.

ApplicatIon-to-tbe.CaLcuLatIon.Q1,InlaunL2,PnemI 

In order to demonstrate the usefulness of the parameter based approach

to stochastic production, an application concerning the calculation of crop

insurance premia will be described. This application investigates the affect

of assumptions about the probability distribution of crop yields upon the

calculation of premiums for crop insurance. The prevailing assumption used

by the Federal Crop Insurance Corporation is that crop yields are normally

distributed (Botts and Boles). In this application, conditional normal

distributions (linear regressions) and conditional beta distributions were

fit to data on individual farms in several Iowa counties. Then the

probability of loss and the expected value of losses for several insurance

coverage levels were calculated under the two distributional assumptions.

The data for this application comes from 15 counties In Iowa over the
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period 1961-1970. The data was collected by the Iowa Agricultural Experiment

Station as part of a study on the effects of corn rootworm. Farms were

sampled in years when they grew corn. In those years, detailed production

Information on soil characteristics, plant characteristics, fertilizer, and

pesticides was collected. For this study, variables on nitrogen application,

phosphate application, potassium application, soil slope, soil clay, and two

dummy variables to represent the planting of nitrogen fixing crops In

previous years were used as inputs. Other inputs were not included because

the data on them was judged to be inadequate. Corn yield per acre was used

as the output.

The sample consisted of 1263 observations. These observations cover

farms in the study, for the years when they grew corn, between the years

1964 and 1969. Because observations were taken only in years when corn was

grown, the sample is not a complete panel with time series observations for

each year for each member of the panel. This irregularity in the data led to

a decision against an attempt to exploit the cross-section, time series

property of the data set. It was also decided that it would be inappropriate

to pool all of the data because it is likely that farms over as wide a

geographic area as all of Iowa would have different underlying random

processes generating the probability distribution of crop yields.

Estimates of the normal model and the beta model were calculated for

each of the 15 counties in the sample. The data consisted of pooled

observations within each county. Thus, implicit in the construction of the

data set Is the assumption that farms within the same county have the same

basic random processes influencing their production. This is similar to the

assumption implicit in the Federal Crop Insurance Corporation practice of



using counties as their basic geographic units for the calculation of

Insurance. There was an average of 82 observations per county.

The normal model that was estimated was a standard linear regression

model. The beta model was estimated by maximizing the log-likelihood

function:

(3) L(p;y,X) =
N a lo t a

i=1 

l/
Il[In r(AIlx J

ii 
) - In r(Bx

IJ 
J) + EAIlx

IJ 
J- lin y

1 
+

3 6 i 
b t b 1

3
EBIlx 

Li 
J- l]In(til - y

1
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+ BIlx

ij 
J- I]ln(M) 3 4 • 
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where p refers to the vector of parameters. The maximum possible output, M,

was set to 200; the maximum observed output in the sample was 179.The

function (3) was numerically maximized with the Modular In-Core Nonlinear

Optimization System using analytical gradients of the objective function. A

quasi-Newton algorithm which uses the analytical gradients and builds up

information about the Hessian was used. The data was scaled so that all data

values were between 0 and 2 in order to Insure regular progression in the

steps of the algorithm. Convergence was typically achieved in 9 cpu seconds

on a CDC Cyber 205 computer. The analytical Hessian was constructed and

checked at the solution values, and found to be negative definite at every

solution.

Some intuitive checks on the parameters of the beta model were

performed by examining changes In the mean and variance of output with

respect to the Inputs. The expression for the mean of output for this model

is a relatively simple power function:

7j
-a)

(4) Ey = 200E 1 4- (B/A3 i xj

From expression (4) it is easy to see that the change in mean output with
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respect to input j is positive (negative) if aj is greater than (less than)

bj. using this result, some general statements about the variables in the

model can be made. Nitrogen and phosphates were found to increase mean yield

in every county except one. Potassium was found to decrease mean yield In

every county except one. This last result is perhaps due to the fact that

uneconomic levels of potassium applications were being made. Concerning soil

characteristics, it was found that increased slope decreased expected yield

in every county.

There is no simple analytic expression like (4) for the variance of

output. Therefore the change In variance with respect to change In a

particular input was evaluated numerically in different counties at

different Input levels. One property that this numerical investigation

revealed is that the change In variance is a smooth function of input

levels; that is, as input levels were varied the change In variance was

found to move smoothly without any abrupt Jumps. The behavior of the change

in variance was not found to be as regular as the change in the mean. In

nine counties nitrogen and phosphates were found to Increase the variance of

yield (at the Input values that were examined). In ten counties, potassium

was found to decrease the variance of yield. In general, it appears that the

fertilizer inputs either, Increase the mean of yield and Increase the

variance of yield, or decrease the mean and decrease the variance. This was

considered to be an intuitively reasonable result which lends some

credibility to the parameter estimates of the beta model.

The beta model was used to examine the effect of probability

distribution assumptions on the calculation of insurance by first

constructing normal and beta distributions for county average values of
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Inputs. The results of this construction are shown In Table 1. Examination

of this table reveals that the means of the two distributions are very

close, but that the variance of the beta distribution usually tends to be

slightly smaller than the normal variance. This might be due to the fact

that the normal distribution imposes symmetry on the data, while this data

exhibited some significant skewness. The skewness in the data is reflected

in the parameters of the beta distribution. The relationship between a and b

Table 1
Distributions for Premium Calculations

Normal distribution Beta distribution
: County mean variance mean variance a b :

:Crawford 103.67 116.05 103.71 97.40 52.65 48.88:
:Fayette 115.28 197.94 115.23 161.46 34.28 25.22:
:Hamilton 120.02 208.51 120.00 171.58 32.97 21.98:
:Howard 87.25 413.55 86.84 422.14 9.44 12.30:
:Linn 122.80 116.82 122.85 121.48 47.31 29.71:
:Muscatine 127.14 102.40 127.19 90.40 64.51 36.93:
:Woodbury 97.12 346.15 97.06 285.14 16.52 17.52:
 1

determines the skewness of the beta distribution: a < b implies positive

skewness, a = b implies symmetry, and a > b implies negative skewness. Five

of the seven beta distributions reported in the table exhibit negative

skewness. This means that above average yields are more likely than yields

which are significantly below average.

A comparison of crop insurance premiums derived from these two

distributions is presented In Table 2. These premiums are the expected

losses under three coverage levels of 50 percent, 65 percent, and 75 percent

of average yield. The numbers in the table are expressed In units of bushels

per acre. For example, If the normal probability model was used then a

farmer in Woodbury county would have to pay approximately one-fourth bushel
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per acre to obtain coverage of 65 percent of average yield. To convert the

numbers to dollar units any price per bushel could be used. It should be

noted that the premiums in the table are much smaller than current premiums

for two reasons. First, a small data set was used to calculate the

distributions; it is probably less variable than a larger data set would be.

Second, no loading factors for catastrophes of infinitesimal probability or

for accumulation of capital reserves have been added to the premia. Thus

Table 2 should not be used for comparison with current premia, only for

Table 2
Insurance Premiums from Alternative Distributions

. .
: Normal Beta :
: County 50% 65% 75% 50% 65% 75% :
- -. .
: Crawford .0 .0011 .0291 .0 .0002 .0123 :
: Fayette .0 .0021 .1040 .0 .0008 .0563 :
: Hamilton .0011 .0076 .0990 .0 .0029 .0584 :
: Howard .113 .576 1.43 .072 .545 1.484 :
: Linn .0 .0004 .0179 .0 .0002 .0115 :
: Muscatine .0 .0 .0024 .0 .0 .0017 :
: Woodbury .026 .247 .834 .0044 .1135 .5395 :
1 1
comparison between the normal and beta distributions. The most apparent and

significant difference between the normal and beta models is that premiums

from the beta model are consistently smaller than premiums from the normal

model. This is a reflection of the skewness of the distributions. The

premiums depend upon the amount of probability mass in the lower tails of

the distributions. Negatively skewed distributions have less mass In the

lower tail than symmetric distributions. Most of the beta distributions that

were calculated from the data are significantly negatively skewed.

In many cases the magnitude of the premium difference is substantial,

suggesting that use of the beta density function could significantly reduce

the premiums charged to farmers for crop Insurance. For many of the entries
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in Table 2, the premium based on the normal distribution is more than twice

the premium based on the beta distribution. The magnitude of this difference

suggests that there are potentially serious implications to the Federal Crop

Insurance Corporation practice of using the normal distribution as a

maintained hypothesis. It appears that the symmetry forced on the

distribution of crop yields by the normal distribution causes the

probability of significantly below normal yields to be overstated, and this

causes Insurance premia to be higher than they should be.

In this application it was necessary to have an explicit expression for

the probability distribution of output, so that the probability of losses

could be calculated. It would have been very difficult to obtain the

necessary information with the moment based approach to stochastic

production. Whereas the parameter based approach provided estimates of the

distributions which could be used directly. And, as the example

demonstrates, the ability to model the distribution of output as something

other than normal can have a significant impact upon the results of a study.

It would appear that the technique of modelling output as a random variable

with a distribution conditioned on inputs can contribute to research on the

economics of agricultural production.
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