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TOWARDS A MORE GENERAL DYNAMIC ECONOMIC
MODEL OF THE OPTIMAL ROTATION OF FORESTS

The Faustmann model has played a key role in the determination of
optimal forest rotations. Faustmann (1968) introduced a simple and
deterministic competitive economic model, the objective of which was to
maximize the present value of perpetual returns to the fixed factor of
production, a unit of timber land. The optimal rotation problem, as
viewed by him, was a timber management problem abstracting from the
important multiple use characteristics of today's forest stand.
Samuelson (1976) took note of the problem. Hartman (1976), Berck (1981)
and Strang (1983) developed a modified Faustmann model where the forest
resource stock 'per se' is assumed to have consumptive value in the form
of "recreation", a general term used to capture non-timber forest uses
(e.g. wildlife habitat, flood control, viewing, and hunting).
| However, an important issue with bearing on the problem of optimal
forest rotation remains yet to be explored. Hartman correctly pointed
out that in any realistic model, regeneration costs and the costs of
producing and making recreational services accessible to users must be
explicitly considered. The required management decision would then be
based on net values. Consequently, recreational as well as timber
values should be considered net of their costs of generation and
maintenance.

This paper attempts to provide an alternative model formulation

that includes maintenance of recreational facilities (which involves

costs) as an explicit choice variable. It includes costs of maintaining

recreational facilities, a fixed regeneration cost of tree population




and implicitly considers costs of making recreational services acces-
sible to users. Initially we assume that the maintenance policy remains
the same during each period and develop a rotation model following the
classical Faustmann formulation. The model is then extended to allow
the maintenance policy to vary over time. These two alternative model
formulations are solved for the optimal rotation cycle. The solution
derived is then compared with the Faustmann and the Hartman-Strang

results.

The Model: Faustmann Formulation

In this forestry problem, the forest resource is assumed to be
owned by a hypothetical competitive firm operating in an environment of
certainty. The forest land is considered to be a source of timber that
can be sold in a competitive market when harvested and a source of a
flow of recreational values -that can be captured and marketed when kept
standing. Production of timber and recreational services involve
regeneration inputs, inputs required for preparing campgrounds, trail
passes, view points, maintaining mountain rescue teams, generating wild-

life habitat improvement programs, and providing program administration.

Maintenance activity involves inputs related to the preservation of the

flow of services of a standing forest in addition to protecting the
stock of trees.

Here an initially bare given plot of land is considered, G(t), with
all the trees harvested simultaneously. The value of tree growth
assumed in this analysis is shown in Figure 1. Individual trees are
assumed to be identical and even-aged. The forest manager responsible

for regenerating, maintaining, and harvesting a forest stand as well as




providing recreational services is faced with the problem of choosing a
sequence of time or rotation cycles for successive forest stands that
will maximize the net returns that can be made from harvesting and
maintaining a forest resource. It is assumed that the objective of the
resources manager is to maximize the present discounted value of all net
returns calculated over the infinite chain of rotation cycles. Rotation
cycle is defined to be the length of time between two regenerations and
is denoted by the variable T.

A growing forest along with other cooperating inputs yields a
positive value of recreational services, i.e., F(t) > 0, net of all
costs except of maintenance of flow of recreational services and
regeneration of trees. F(t) is assumed to be bounded with respect to t
(Figure 2). With the aging process some forests, in some locations
(1ike Redwoods of California or other forests elsewhere endowed with
unique species) provide high non-timber values. For them, F(t) is
likely to be non-decreasing with respect to t. For some others it is
plausible to assume that to an extent old growth trees are subject to
"wear out", defined as the decline in the quality of recreational value
or quality of the standing forest attributable to the normal forest
aging process. This flow of value ceases when the forest is harvested.
F(t) depends upon the maintenance activity and the forest site char-
acteristics.represented by the resourcés stock (biomass of trees) as

well as the age of the forest,

F(t) = F[t, M, X(t)] | (1)




current year's rate of maintenance effort.
A state variable that represents the tree population at time
t.
number of years since the initiation of the tree regenera-
tion process.
If the forest is preserved up to age t = T, its salvage or stumpage
value net of harvesting cost at age T is G(T). We assume that G'(t)}
0. Initially, the.stumpage value, G(t), increases at an increasing
rate, then at a decreasing rate, reaches a maximum, starts falling and
then may level off in a steady state (Figure 1).
Maintenance cost is
C(t) = C[F(t)] = CLF(t, M, X(t))], (2)
where C(t) is assumed to be nondecreasing.
Given these definitions, the quasi-rent which is revenue from
providing recreational services F(.) minus maintenance cost C(.) is:
R[t, M, X(t)] = F[t, M, X(t)] - C[F(t, M, X(t))] .
It is assumed that R is bounded with respect to t, and R'(t)
2). Then the net return from a single rotation is given by
T

= 1 R[t, M, X(t)JeTtdt + G(T)e T - B
(0]

the discount rate.
a fixed regeneration cost which is incurred at the beginning

of rotation cycle.

Given that all rotations are alike, the net return from all future

rotations is given by
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T
V_ A(T)<:; R[t, M, X(t)le-Ttdt + G(T)e "7 - c§j>
0
where A(T) = (1 - e"T) 1 = 1 + e+ 20Ty ).

To solve for the optimal rotation time (T), Equation (5) is to be

maximized with respect to replacment age T, subject to the law of motion

of the state variable, which describes the evolution of the system

through time.
The law of motion of the state variable is given by a differential

equation of the form,

dx
- = flt, M, X(1) . : (6)

Together with the initial conditions (X(0) = X; = 0), equation (6)
determines the time paths of the state variable as a function of M. Let
the solution to this initial value differential equation problem be
given by
X(t) =v(t, M; X,) . (7)
Then the objective is to maximize equation (5) subject to equation (6)
and the restrictions
x(T) =0, 0SML1, 0XT (8)
To analyze the problem, equation (7) is substituted into (5) yielding
T A
V_ = A(T) [ JR(t, M, v(.))e Ttdt + 6(T)e™"T - cBy . - (9)
0

The necessary conditions for an internal solution (assuming it exists)

with respect to T i.e., (3V_/sT = 0) is satisfied if and only if




RLT, M, y(M, T; Xg)]1 + G'(T) - rG(T) - r Vv, =0. (10)
The optimal rotation criterion as given by (10), once rearranged implies
that

R(.) +G"(T) = r[G(T) + V] . (11)
It specifies that the forest should be maintained until the incremental
net return from increasing T, resulting both from recreation R(.) as
well as timber production (G'(T)), R(.) + G'(T), equals marginal
opportunity cost, r[G(T) + V_], where opportunity cost represents
interest on wealth realized from a T-year rotation cycle, f.e., the cost
of preserving the forest for one more year over all the T-year rotation

cycles.

The Model: Optimal Control Formulation

The assumption that the rate of maintenance will be the same during
each time period is now relaxed, such that maintenance rate varies
through time, M = M(t). This leads to a deterministic optimal control
problem. We seek a maintenance policy, M, and harvesting time, T, to
maximize the objective functional (5), subject to the initial stock of
the state variable X(0) = 0, and the laws of motion of the system,
equation (6). The control variable is M, the state is X, and the
control parameter is T. Using Theorem 1 of Long and Vousden (1977), the
Hamiltonian for the problem can be written as

H = A(T) [R(t, M(t), X(t))e Tt] + ¢ f(t, M(t), X(t)) , (12)

where ¢ = the costate variable.

Given that an internal solution path (0 < M(t).ﬁ 1 and 0 £ T) exists,

having initial condition X(0) = 0, the equation necessary for the




determination of the optimal time horizon, T is given by the following
transversality condition (Long and Vousden, 1977, PP. 16-17).

A(T)e"T [R(T, M(T), X(T)) + G'(T) - rG(T)

+ (eTT/A(t)) ¢ (T) £(T, M(T), X(T)) - r V.1 =0

o(T) =0 forT < =.

To facilitate interpretation, define a transformed co-state variable as

A= gelt (14)
The ¢'s are shadow values of the state variable discounted to time zero,
and A is the spot or current period shadow value, The term (erT/A( )).
oT).F(T, M(T), X(T)) is zero because the terminal time is finite and

X(T) does not enter the salvage value term. In this case, the terminal

condition for A implied by its transversality condition is A(T) equals

zero.
The transversality condition given by equation (13) is satisfied
for a finite T if

R(T, M(T), X(T)) +G'(T) - rG(T) -rV_=0

R(T) + G*(T) = r[G(T) + V], (15)
where V_ is evaluated at t = T. The rotation period is extended to the
point where the quasi-rent and the marginal return from harvesting
during the Tth period is equal to the interest that could be earned on
the wealth obtained by optimally utilizing the multiple-use forest
resource over the T-year rotation period. The situation is alsd shown
in Figure 3. Note that the generalized Faustmann formulation (11) has
exactly this same necessary condition. If equation (15) is positive for

all T > 0, then the terminal time is not to be bounded above and T is




infinite (Kamien and Schwartz, 1981, p. 147). This implies, never to
harvest the forest. For an initially barren forest land, an identical
condition is required by the "never-to-cut a forest" rule developed by
Hartman (1976) and Strang (1983) in their models without costs of
recreation and regeneration. How plausible is this rule in the case
considered here, i.e. in the presence of both type of costs?

An unbounded terminal time implies:

lim [R(T) + G'(T) - r(G(T) + V_(T))]1 >0 . (16)
T—e A

Given that R and G are bounded and monotonic in the relevant time
interval and assuming 1im G'(T) = 0, inequality (16) implies
T—=

Rim) > G(=) + Z R(.)e"Ttdt - cR . (17)

The inequality (17) can be interpreted as follows: Since R(=)/r =
Z R(=)e"Ttdt, the Teft-hand side is the accumulated discounted quasi-
rent stream derived from starting with an infinitely old forest and
never harvesting it. The right-hand side is the return obtained by
starting with an infinitely old forest, harvesting it immediately to
realize the stumpage value G(=), replanting the forest immediately by

incurring a regeneration cost C%, without ever cutting it again to

derive an accumulated discounted flow of quasi—rentz R(t)e'rtdt.

For some climax forests with very high non-timber values associated
with them, such that R(t) is non-decreasing, it is plausible to assume
that inequality (17) holds and (15) is positive. This implies that the
maximum net return is obtained if the forest is never cut. Otherwise,
given the general nature of the quasi-rent and the stumpage value

functions with respect to age of a forest, and the above interpretation;




it‘seems plausible to assume that equation (15) holds. This implies
that under the more general situation considered here, the maximum net
return is obtained at a finite rotation age.

How does the finite rotation period implied by equation (15)
compare with the simple Faustmann formulation as well as.Hartman-Strang
finite time generalized Faustmann formulation? For this comparison,
let us write equation (15) alternatively as

T
G'(T) _ 1 g R(t)ertdt - B R(T)

1
= +{
p

p G(T) G (°

(15*)

T
where p = 1 - e FT/p = 5 e"Ttdt, is the present value of a dollar stream

of return for T years. If R(.) = C% = 0, i.e., when a forest has only
stumpage value, equation (15') is converted into the simple Faustmann

rule

, 1 ’

G'(T)/G(T) = = > (18)
where G'(T)/G(T) is the growth rate of trees at the time of harvest.
If C% =0 and there is no variable costs associated with recreational

services, equation (15') turns out to be the generalized Faustmann rule

of Hartman and Strang:

T ‘
I -rt

o+ (19)
P b

If the quasi-rent flow R(t) is constant over time,g R(t)eTtdt = oR(T),
so that equation (15'), implies G'(T)/G(T) = 1/p - CR/0G(T). Since the

effective discount rate is now lower this indicates a longer rotation
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period than that suggested by the simple Faustmann rule given by
equation (18). Otherwise, the rotation period will depend on the sign
of the term within the braces in equation (15'), or equivalently on
whether ( %R(t)e’rtdt - C%)/p - R(T) } 0. The first term of this
expression is the net of regeneration cost discounted quasi-rent flow
per period and the second term is the marginal quasi-rent derived at
time T. If the former value is less than the latter value the effective
interest rate will go down further and that will imply a further
lengthening of the rotation period. Otherwise, the rotation period will
be less than or equal to that implied by the simp]e.Faustmann rule (18).

For comparison with (19), we decompose (15') as

T T
1 o F(t)ertdt  F(T) +<c(T) 1 oC(t)ertdt

oy e G(T)

e G(T) G(T)
(15'*)

Excepting the term within the parentheses, (15') is exactly the same as
(19). Thus, based on the logic developed earlier (i.e., whether the
discount rate is inflated or deflated or remain unchanged) the length of
rotation imblied by (15') or (15'') compared to that implied by (19)
will depend on whether the term of cost components within the paren-

theses is positive, zero, or negative, i.e., whether

; |
¢(T) - L. [ sc(t)ertdt + cR] (20)

P )
Here C(T) is the marginal variable costs incurred for recreational
services derived from the forest at time T. The second term is the per

period present value of accumulated costs over T-yeéars, associated with
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the regenerated forest. Hence, the difference between the finite rota-
tion period suggested by Hartman-Strang formulation and the more gener-
alized formulation developed here will depend crucially on the relative
size of the marginal variable costs at time T and the present value of
variable costs per period. The differences in costs will be reflected
in the differences in "effective interest rate" and hence in the optimal
rotation lengths.

Previous works for determining the optimal forest rotation ignored
some important costs associated with having the forest. Costs are
incurred in planting the trees. Costs are incurred in developing and
maintaining the forest to obtain recreational services. The inclusion
of these costs in the present paper lends it a more general character

and significantly complicates the derivation and interpretation of the

results. Despite the complexities, we obtain a relatively simple

relationship (equation 15') to isolate the conditions under which the
introduction of relevant costs leads to a shorter or longer optimal
rotation. The present work also reduces the set of parameters under

which the "never to cut" solution of Hartman and Strang would be valid.
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