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TOWARDS A MORE GENERAL DYNAMIC ECONOMIC
MODEL OF THE OPTIMAL ROTATION OF FORESTS

The Faustmann model has played a key role in the determination of

optimal forest rotations. Faustmann (1968) introduced a simple and

deterministic competitive economic model, the objective of which was to

maximize the present value of perpetual returns to the fixed factor of

production, a unit of timber land. The optimal rotation problem, as

viewed by him, was a timber management problem abstracting from the

important multiple use characteristics of today's forest stand.

Samuelson (1976) took note of the problem. Hartman (1976), Berck (1981)

and Strang (1983) developed a modified Faustmann model where the forest

resource stock 'per se' is assumed to have consumptive value in the form

of "recreation", a general term used to capture non-timber forest uses

(e.g. wildlife habitat, flood control, viewing, and hunting).

However, an important issue with bearing on the problem of optimal

forest rotation remains yet to be explored. Hartman correctly pointed

out that in any realistic model, regeneration costs and the costs of

producing and making recreational services accessible to users must be

explicitly considered. The required management decision would then be

based on net values. Consequently, recreational as well as timber

values should be considered net of their costs of generation and

maintenance.

This paper attempts to provide an alternative model formulation

that includes maintenance of recreational facilities (which involves

costs) as an explicit choice variable. It includes costs of maintaining

recreational facilities, a fixed regeneration cost of tree population
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and implicitly considers costs of making recreational services acces-

sible to users. Initially we assume that the maintenance policy remains

the same during each period and develop a rotation model following the

classical Faustmann formulation. The model is then extended to allow

the maintenance policy to vary over time. These two alternative model

formulations are solved for the optimal rotation cycle. The solution

derived is then compared with the Faustmann and the Hartman-Strang

results.

The Model: Faustmann Formulation

In this forestry problem, the forest resource is assumed to be

owned by a hypothetical competitive firm operating in an environment of

certainty. The forest land is considered to be a source of timber that

can be sold in a competitive market when harvested and a source of a

flow of recreational values -that can be captured and marketed when kept

standing. Production of timber and recreational services involve

regeneration inputs, inputs required for preparing campgrounds, trail

passes, view points, maintaining mountain rescue teams, generating wild-

life habitat improvement programs, and providing program administration.

Maintenance activity involves inputs related to the preservation of the

flow of services of a standing forest in addition to protecting the

stock of trees.

Here an initially bare given plot of land is considered, G(t), with

all the trees harvested simultaneously. The value of tree growth

assumed in this analysis is shown in Figure 1. Individual trees are

assumed to be identical and even-aged. The forest manager responsible

for regenerating, maintaining, and harvesting a forest stand as well as



providing recreational services is faced with the problem of choosing a

sequence of time or rotation cycles for successive forest stands that

will maximize the net returns that can be made from harvesting and

maintaining a forest resource. It is assumed that the objective of the

resources manager is to maximize the present discounted value of all net

returns calculated over the infinite chain of rotation cycles. Rotation

cycle is defined to be the length of time between two regenerations and

is denoted by the variable T.

A growing forest along with other cooperating inputs yields a

positive value of recreational services, i.e., F(t) > 0, net of all

costs except of maintenance of flow of recreational services and

regeneration of trees. F(t) is assumed to be bounded with respect to t

(Figure 2). With the aging process some forests, in some locations

(like Redwoods of California or other forests elsewhere endowed with

unique species) provide high non-timber values. For them, F(t) is

likely to be non-decreasing with respect to t. For some others it is

plausible to assume that to an extent old growth trees are subject to

"wear out", defined as the decline in the quality of recreational value

or quality of the standing forest attributable to the normal forest

aging process. This flow of value ceases when the forest is harvested.

F(t) depends upon the maintenance activity and the forest site char-

acteristics represented by the resources stock (biomass of trees) as

well as the age of the forest,

F(t) = M, X(t)] (1)
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where

M = current year's rate of maintenance effort.

X(t) = A state variable that represents the tree population at time

t.

= number of years since the initiation of the tree regenera-

tion process.

If the forest is preserved up to age t = T, its salvage or stumpage

>
value net of harvesting cost at age T is G(T). We assume that G l(t)

0. Initially, the stumpage value, G(t), increases at an increasing

rate, then at a decreasing rate, reaches a maximum, starts falling and

then may level off in a steady state (Figure 1).

Maintenance cost is

C(t) = C[F(t)] = C[F(t, M, X(t))] , (2)

where C(t) is assumed to be nondecreasing.

Given these definitions, the quasi-rent which is revenue from

providing recreational services F(.) minus maintenance cost C(.) is:

M, X(t)] = M, X(t)] - C[F(t, M, X(0)] . (3)
>

It is assumed that R is bounded with respect to t, and Rs(t) 0 (Figure

2). Then the net return from a single rotation is given by

where

V1 = I REt, M, X(O]e- 
rtdt G(T)e-rT

r = the discount rate.

(4)

CR = a fixed regeneration cost which is incurred at the beginning

of rotation cycle.

Given that all rotations are alike, the net return from all future

rotations is given by
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or

v. = 111 e-rT e-r2T vl ....

V. = A(T) M, X(t)]e-rtdt + G(T)e-rT -

o

where ACT) = (1 _ e-rT)-1 = (1 4. e-rT e-2rT . 1...J.

To solve for the optimal rotation time (T), Equation (5) is to be

maximized with respect to replacment age T, subject to the law of motion

of the state variable, which describes the evolution of the system

through time.

The law of motion of the state variable is given by a differential

equation of the form,

dx
= f(t, M, X(t)) .

dt

(5)

(6)

Together with the initial conditions (X(0) = X0 = 0), equation (6)

determines the time paths of the state variable as a function of M. Let

the solution to this initial value differential equation problem be

given by

X(t) = flt, M; X0) (7)

Then the objective is to maximize equation (5) subject to equation (6)

and the restrictions

X(T) = 0, 0 MI 1, ol T (8)

To analyze the problem, equation (7) is substituted into (5) yielding

V. = ACT) [ IR(t, M, ly(.))e-r tdt + G(T)e-rT - . (9)

The necessary conditions for an internal solution (assuming it exists)

with respect to T i.e., (aV./aT = 0) is satisfied if and only if
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R[T, M, T(M, T; X0)] + GI(T) - rG(T) - r V. = 0 . (10)

The optimal rotation criterion as given by (10), once rearranged implies

that

R(.) + W(T) = r[G(T) + V.] . (11)

It specifies that the forest should be maintained until the incremental

net return from increasing T, resulting both from recreation R(.) as

well as timber production (G1(T)), R(.) + GI(T), equals marginal

opportunity cost, r[G(T) + V.], where opportunity cost represents

interest on wealth realized from a T-year rotation cycle, i.e., the cost

of preserving the forest for one more year over all the T-year rotation

cycles.

The Model: Optimal Control Formulation

The assumption that the rate of maintenance will be the same during

each time period is now relaxed, such that maintenance rate varies

through time, M = M(t). This leads to a deterministic optimal control

problem. We seek a maintenance policy, M, and harvesting time, T, to

maximize the objective functional (5), subject to the initial stock of

the state variable X(0) = 0, and the laws of motion of the system,

equation (6). The control variable is M, the state is X, and the

control parameter is T. Using Theorem 1 of Long and Vousden (1977), the

Hamiltonian for the problem can be written as

H = A(T) [R(t, M(t), X(t))e-rt] +4)f(t, WO, X(t)) , (12)

where (1) = the costate variable.

Given that an internal solution path (0 M(t) .11 and 0 T) exists,

having initial condition X(0) = 0, the equation necessary for the
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determination of the optimal time horizon, T is given by the following

transversality condition (Long and Vousden, 1977, PP. 16-17).

A(T)e-rT [R(T, M(T), X(T)) + G s(T) - rG(T)

(erT/A( 0)(1)(T) f(T, M(T), X(T)) - r V.] = 0 (13)

(T) = 0 forT<a.

To facilitate interpretation, define a transformed co-state variable as

X = ert (14)

The cp's are shadow values of the state variable discounted to time zero,

and x is the spot or current period shadow value. The term (erT/A(T)).

(T).f(T, M(T), X(T)) is zero because the terminal time is finite and

X(T) does not enter the salvage value term. In this case, the terminal

condition for x implied by its transversality condition is x(T) equals

zero.

The transversality condition given by equation (13) is satisfied

for a finite T if

R(T, M(T), X(T)) + G i(T) - r G(T) - r V, = 0

or

R(T) + G s(T) = r[G(T) + V.], (15)

where V. is evaluated at t = T. The rotation period is extended to the

point where the quasi-rent and the marginal return from harvesting

during the Tth period is equal to the interest that could be earned on

the wealth obtained by optimally utilizing the multiple-use forest

resource over the T-year rotation period. The situation •is also shown

in Figure 3. Note that the generalized Faustmann formulation (11) has

exactly this same necessary condition. If equation (15) is positive for

all T > 0, then the terminal time is not to be bounded above and T is
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infinite (Kamien and Schwartz, 1981, P. 147). This implies, never to

harvest the forest. For an initially barren forest land, an identical

condition is required by the "never-to-cut a forest" rule developed by

Hartman (1976) and Strang (1983) in their models without costs of

recreation and regeneration. How plausible is this rule in the case

considered here, i.e. in the presence of both type of costs?

An unbounded terminal time implies

lim [R(T) + G s(T) - r(G(T) + V(T))] > 0 . (16)
T--*.

Given that R and G are bounded and monotonic in the relevant time

interval and assuming lim GI(T) = 0, inequality (16) implies

R(.)

T-4.0

03

> G(.) + R(.)e-rtdt - cg . (17)
0

The inequality (17) can be interpreted as follows: Since R(x)/r =

R(c.)e-rtdt, the left-hand side is the accumulated discounted quasi-

rent stream derived from starting with an infinitely old forest and

never harvesting it. The right-hand side is the return obtained by

starting with an infinitely old forest, harvesting it immediately to

realize the stumpage value G(.), replanting the forest immediately by

incurring a regeneration cost C1,), without ever cutting it again to

derive an accumulated discounted flow of quasi-rent r R(t)e-rtdt.

For some climax forests with very high non-timber values associated

with them, such that R(t) is non-decreasing, it •is plausible to assume

that inequality (17) holds and (15) is positive. This implies that the

maximum net return is obtained if the forest is never cut. Otherwise,

given the general nature of the quasi-rent and the stumpage value

functions with respect to age of a forest, and the above interpretation;
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it seems plausible to assume that equation (15) holds. This implies

that under the more general situation considered here, the maximum net

return is obtained at a finite rotation age.

How does the finite rotation period implied by equation (15)

compare with the simple Faustmann formulation as well as.Hartman-Strang

finite time generalized Faustmann formulation? For this comparison,

let us write equation (15) alternatively as

Gl(T) _ 1

TOT

1
0 R(t)e-rtdt - C1(1 R(T)

G(T)
(15')

where p = 1 - e-rTir = I e-rtd-, is the present value of a dollar stream

of return for T years. If R(.) = CE,z) = 0, i.e., when a forest has only

stumpage value, equation (15') is converted into the simple Faustmann

rul e

1
G I(T)/G(T) = - , 18)

where G I(T)/G(T) is the growth rate of trees at the time of harvest.

If CR = 0 and there is no variable costs associated with recreational

services, equation (15') turns out to be the generalized Faustmann rule

of Hartman and Strang:

G' (T)/G(T) = .
P P•

(1, F(t)e-rtdt F(T)
G(T)  G(T)

(19)

If the quasi-rent flow R(t) is constant over time, f R(t)e-rtdt = pR(T),
0

so that equation (15'), implies G I(T)/G(T) = l/p - CIVpG(T). Since the

effective discount rate is now lower this indicates a longer rotation

•
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period than that suggested by the simple Faustmann rule given by

equation (18). Otherwise, the rotation period will depend on the sign

of the term within the braces in equation (15'), or equivalently on

whether (7R(t)e-rtdt - CI(1)/p - R(T) 1; 0. The first term of this

expression is the net of regeneration cost discounted quasi-rent flow

per period and the second term is the marginal quasi-rent derived at

time T. If the former value is less than the latter value the effective

interest rate will go down further and that will imply a further

lengthening of the rotation period. Otherwise, the rotation period will

be less than or equal to that implied by the simple Faustmann rule (18).

For comparison with (19), we decompose (15') as

G I(T). 1 1 F(t)e-rtdt F(T)

G(T) 
P P 

G(T)  717 
+

\\
+  }

Excepting the term within the parentheses, (15") is exactly the same as

(19). Thus, based on the logic developed earlier (i.e., whether the

discount rate is inflated or deflated or remain unchanged) the length of

rotation implied by (15') or (15") compared to that implied by (19)

will depend on whether the term of cost components within the paren-

theses is positive, zero, or negative, i.e., whether

C(T) 1 foC(t)e-rtdt

'GM p G(T)

• (15")

D
C(T) - . iC(t)e-rtdt C"] = 0

0 
. 0

(20)

Here C(T) is the marginal variable costs incurred for recreational

services derived from the forest at time T. The second term is the per

period present value of accumulated costs over T-years, associated with
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the regenerated forest. Hence, the difference between the finite rota-

tion period suggested by Hartman-Strang formulation and the more gener-

alized formulation developed here will depend crucially on the relative

size of the marginal variable costs at time T and the present value of

variable costs per period. The differences in costs will be reflected

in the differences in "effective interest rate" and hence in the optimal

rotation lengths.

Previous works for determining the optimal forest rotation ignored

some important costs associated with having the forest. Costs are

incurred in planting the trees. Costs are incurred in developing and

maintaining the forest to obtain recreational services. The inclusion

of these costs in the present paper lends it a more general character

and significantly complicates the derivation and interpretation of the

results. Despite the complexities, we obtain a relatively simple

relationship (equation 15") to isolate the conditions under which the

introduction of relevant costs leads to a shorter or longer optimal

rotation. The present work also reduces the set of parameters under

which the "never to cut" solution of Hartman and Strang would be valid.
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