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ABSTRACT

[he traditional approach to projecting the distribution of farms by size uses

a Markov model with stationary (constant) transition probabilities. While a

useful tool for extrapolation of current trends, the stationary Markov

approach cannot model the impacts on farm structure of varying economic and

social causal forces. Data are now available for developing Markov models

with nonstationary transition probabilities. A simple nonstationary Markov

model of U.S. farm structure is described and estimated, and its performance

in predicting actual changes in farm numbers and sizes through 1986 is

assessed. Further issues in the development of conditional projections of

farm structure are discussed.

Keywords: Farm structure, projections, Markov analysis, nonstationary

transition probabilities.
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SUMMARY

This report describes an approach for developing conditional projections of

the U.S. farm structure. By using the nonstationary variant of the Markov

model commonly employed in U.S. farm structure research, alternative outcomes

can be projected for the numbers and sizes of U.S. farms due to varying causal

factors. The nonstationary Markov model, thus, provides a means for

incorporating microlevel determinants of entry, exit, growth, and shrinkage of

farms into projections of the aggregate characteristics of the farm sector.

A nonstationary Markov transition probability matrix represented by a set of

multinomial logit functions was specified and estimated from nine regional

observations of 1974-78 transition probabilities. The results are promising.

Where t-tests are significant, statistical relationships between the observed

transition probabilities and variables representing hypothesized causal

factors carry the expected signs. More important, the estimated nonstationary

Markov model yields projections that are closer to the actual 1982 and 1986

farm size distributions than those generated by a stationary Markov model

derived from the same microdata.

At a minimum, these results illustrate the critical role played by model

specification in influencing projections of farm structure. Using the same

1974-78 census data in both cases, a stationary Markov model generates a

projected path of farm structural change that does not deviate greatly from

the 1974-78 trend of relative stability. A nonstationary Markov model that

makes fuller use of the information available in those data, however,

generates a path of structural change that seems to come closer to what

actually occurred after 1978.
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A Conditional Approach to
Projecting Farm Structure

Matthew G. Smith

INTRODUCTION

What the U.S. farm sector will be like in the future is a question that hasoccupied considerable attention among economists, businesspeople, and
policymakers. The problem comes posed in a variety of contexts, ranging fromhow particular policy or price regimes will engender changes in individual
farm firms to whether or how these factors will transform the aggregate
structure of the industry.1/

A well-developed body of theory and analytical methods already exists for
assessing firm-level responses to changes in the economic environment (for
examples, see [2] and references therein).2/ At the aggregate level, however,
assessing the impacts of institutional, technological, and outside economic
factors on the organization and performance of agriculture has proven much
more complex.

The literature discussing the general qualitative impacts on farm structure ofa range of causal factors is large. It is typified by studies conducted byU.S. Department of Agriculture (USDA) in the late 1970's [23] and by the
Office of Technology Assessment (OTA) in the 1980's [15]. Both of these
studies emphasized the significant and differing potential impacts on farm
structure of alternative scenarios for policy and technology. Yet, the
forecasts of farm numbers and sizes from each of these major research efforts
failed to link either the quantitative firm-level or qualitative sectoral
adjustments anticipated by researchers with projected quantitative changes in
farm structure. Instead, structural projections have for the most part been
linear extrapolations of historical trends [4, 14, 15].

Projections of farm structural change that are contingent on alternative
economic environments are difficult to make for several reasons. The reasons
fall into three main categories: adequacy of theory, data, and models.

1/The term "farm structure" can be defined in a variety of ways to refer to
the number of farms, their sizes in terms of inputs or outputs, or their
legal or financial structure. The term is used here in the limited form most
commonly found in the agricultural economics literature, to denote the numbers
of farms by their size in acres or gross value of sales.
2/Underscored numbers in brackets refer to items in the References section.
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First, the theoretical basis on which to make predictions of aggregate changes

in industrial structure is not well developed, particularly in the case of

agriculture, where hundreds of thousands of integrated firm-household units

compete in a wide array of input and output markets. These units display

tremendous diversity in terms of their physical and human capital and natural

resource endowments, production technologies, goals, and opportunity costs.

Conceptualizing the full range of interactions among them as they

simultaneously adjust to changing conditions is difficult.

Second, the available data have not offered a strong empirical foundation for

observing relationships between causal factors and changes in aggregate farm

structure. The principal resource has been the census of agriculture, which

provides a detailed cross-sectional "snapshot" every 4 or 5 years but does not

allow aggregate changes to be traced back to their origins in the management

decisions of individual farmers. The link between firm-level responses and

structural change, thus, cannot be readily observed.

Third, because of the complexity of the system, the lack of a clear

theoretical guide, and the lack of suitable alternatives to cross-sectional

time series data, most analysts have resorted to projection methods that seek

merely to identify historical trends in farm structure and then carry them

forward. Although such methods as age cohort analysis and nonlinear trend

extrapolation have also been employed at times, the dominant methodology since

the 1970's for U.S. farm structure projections has been the Markuv. chain with

constant transition probabilities.

A fixed-probability, or stationary, Markov model cannot capture changes in the

direction or pace of structural change due to varying causal factors. This

paper explores the assumptions and implications of the stationary Markov model

and then describes a nonstationary version of the same model that will allow

conditional projections of change in the farm sector. As an example, a

nonstationary model is estimated from longitudinal data from the census of

agriculture for 1974-78. The nonstationary Markov model is then compared with

a stationary model estimated from the same data to measure its relative

accuracy in projecting structural change in U.S. agriculture for 1978-86.

This paper emphasizes an alternative approach to modeling changes in farm

structure, one that allows for alternative futures for U.S. agriculture linked

to different scenarios for change in economic conditions. This report,

therefore, is more concerned with projection methods than projection results

and projects farm numbers and sizes for the purpose of comparing the

performance of alternative models rather than as actual forecasts of changes

in U.S. farm structure.

THE STATIONARY MARKOV MODEL

A stationary (constant probability) Markov process is one in which individuals

(such as firms or households) are distributed over a number of discrete

"states" (such as income levels or number of acres operated) at a given time.

These individuals then move among these states in a constant pattern over a

fixed length of time, so that at the end of the time period, they have been

redistributed among the states. Nothing interferes with the constant rate of

2



movements among states. All individuals are accounted for at the end of each
time period, and each must be in only one state at a given time. The model,
thus, allows the distribution of the individuals among the states to be
predicted one or several time periods into the future, given only their
starting distribution.

These ideas can be restated in mathematical form. The population of
individuals is distributed as the vector St over, the discrete and mutually
exclusive states sl, s2, ...sn at time t. In applications to farm structure
models, one state is usually defined as "not farming." This is the one to
which exiters go and from which entrants come. The probability pij of an
individual moving from state i at time t to state j at time t+1 depends only
on the starting state i and not on any prior state or exogenous factor.
Because it is a probability, pij must take a value between zero and one (the
zero-one condition), and because all individuals must be located in one of the
n states at time t+1 (even if it is the same state as before), the additional
restriction Epij - 1 for all i is imposed (the row-sum condition).

The transition probabilities pij form the n-by-n transition probability matrix
P, which transforms the distribution among states at time t (the 1-by-n vector
St) into the distribution at time t+1 (St+i) via the relation St_o_= SP.

The distribution after k periods is obtained by multiplying the initial state
vector St by the stationary transition probability matrix raised to the kth
power. That is, St+k =StPk. Another important feature of a stationary
Markov process is that, over time, the system willConverge-to -a dynamic
equilibrium distribution Se. The eqiiiiibrium-distribUtian depends only on the
Ersitiojbabilityiiiätrix P and is independent of the initial distribution
Sl. This implies that any two populations that can be represented by the same
stationary Markov model should converge to the same proportional equilibrium
distribution, differences in their beginning distributions notwithstanding.

In studies of U.S. farm structure, the states have usually been defined as
intervals of acres operated, or gross sales, and the individuals as farm
firms. The transition probabilities pij have been estimated in one of three
ways. The first, developed by Krenz for his study of farm size in North
Dakota, involves a procedure that manually "shifts" farms beginning from a
given census size distribution to yield the distribution reported in the
following census [12]. This is done under the assumption that farms will
either stay the same size, grow, or exit. No provision is made for entry into
farming or for existing farms to shrink in size.

The Krenz methodology was used to estimate the transition probability matrices
used in the U.S. farm structure projections of the 1970's. Daly, Dempsey, and
Cobb [7] constructed their model on the basis of the 1959 and 1964 Censuses of
Agriculture, and Lin, Coffman, and Penn [14] based theirs on the 1964, 1969,
and 1974 censuses.

A second approach is to estimate a stationary transition probability matrix
from a time series of proportional distributions. This method, developed by
Lee, Judge, and Takayama, uses restricted least squares regression to estimate
the transition probabilities, with quadratic programming employed to minimize

3



the errors in predicted proportions subject to the zero-one and row-sum

constraints [13]. This procedure also explicitly assumes stationary

transition probabilities, although the authors do suggest methods for testing

the validity of this assumption from the aggregate data [13, pp. 758-59]. It

was used to estimate the transition probability matrix on which the OTA farm

structure projections were based, using inflation-adjusted census data for

1969-82 [15, pp. 92-7].

A third procedure is possible when data on the size changes of individual

farms are available for directly calculating the estimates of pij as

pij nij / Einii, where nij is the number of individuals moving from state i

at time t to state j at time t+1. Transition probabilities estimated in this

manner will by definition meet the zero-one and row-sum conditions. The third

approach yields the most reliable estimates of the true transition

probabilities over the interval studied, but the requirement of sufficient

numbers of farm-level observations has, until recently, made this approach

impossible at the U.S. level.

However, advances in linking individual farm records from successive censuses

of agriculture have recently made a microdata-based approach to farm structure

projections possible. Data on the reported farm size in both 1974 and 1978 of

over 1.2 million farms were used as the basis for estimating a transition

probability matrix for U.S. farm size in acres [8]. Structural projections

were then made on the basis of the observed 1974-78 transition probabilities.
Despite the greater confidence in the accuracy of the historical transition

probability estimates offered by the microdata, projections of structure were

still based on the assumption of transition probabilities that are constant

thereafter.

The outcomes of the various methodologies for estimating transition

probability are illustrated in table 1. Results are summarized for the three

major U.S. farm structure projection studies discussed above [7, ]4, 15] and

an unpublished analysis [18] .of 1974-78 census microdata on size by sales that

follows the same methodology as that used in the Edwards, Smith, and Peterson

study [8] of size by acres./ Projections of farm numbers by gross sales

class for 1980, 1990, and 2000 are compared.

The wide range of the projections is apparent. For example, the projected

number of farms with sales of $500,000 and above in the year 2000 ranges from

39,000 [7] to 226,000 [14]. As already discussed, there are a variety of

possible explanations for the variance in the projections, from differences in

the data on which they are based (and the inflation trends implicit in those

data) to the transition probability estimation procedures used (and Any

assumptions about farm operator behavior implicit in these procedures). One

element common to all the studies, however, is that structural change in

agriculture is modeled as a stationary Markov process.

2/The results in [18] are based on the "maximum turnover" assumption, which

is one of the two methods of estimating entry and exit rates used by Edwards,

Smith, and Peterson [8, pp. 5-7].



Table 1- -Corrparison of Markov projections of U.S. farm structure

Farm size
Year Source Projection less than $20,000- $100,000- $200,000- $500,000 Total

(projection year) Basis $20,000 $99,999 $199,999 $499,999 plus Farms 

Thousands

1974 Census [25] nia 1,513.1 646.1 101.2 40.0 11.4 2,311.8

1978 Census [26] n/a. 1,374.5 659.3 141.1 62.6 18.0 2,255.5

1980 Daly and others 1959-64 1,388.5 447.5 45.5 24.0 13.0 1,918.5
(1972) [7]

Lin. and others 1969-74 1,640.1 662.1 131.5 69.8 20.6 2,524.1
(1980) [14]

1982 Census [27] 1,355.3 581.6 180.7 93.9 27.8 2,239.3

1990 Lin and others 1969-74 1,218.3 514.9 217.9 150.8 90.3 2,192.2
(1980) [14]

GrA 1969-82 991.6 486.8 126.2 144.2 54.1 1,802.9
(1986) [15]

Census micro 1974-78 1,301.1 689.6 177.2 90.0 27.3 2,285.2
(1986) [18]

1998 Census micro 1974-78 1,294.9 693.3 181.6 93.8 28.8 2,292.4
(1986) [18]

2000 Daly and. others 1959-64 584.0 325.5 54.0 40.5 39.0 1,043.0
(1972) [7]

Lin and others 1969-74 928.7 350.3 167.5 190.1 225.8 1,862.4
(1980) [14]

CEA 1969-82 637.6 362.6 75.0 125.0 50.0 1,250.2
(1986) [15]

Not applicable.

Table 1, thus, highlights the major shortcoming of the stationary Markov
approach to farm structure projections. Expectations based on the experience
of the early 1960's failed to anticipate the inflation of the 1970's, and
expectations formed in the 1970's apparently failed to incorporate the
disinflation and financial stress of the 1980's. Assessing the accuracy of
projections to 1990 and 2000 is at the moment impossible, yet their wide range
clearly indicates that at least some projections will miss the mark rather
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badly. Together, these facts suggest that the assumption of time-invariant

transition probabilities in farm structure projections is not particularly

useful.

AN ALTERNATIVE APPROACH TO MODELING FARM STRUCTURAL CHANGE

The remainder of this paper describes an alternative specification of the

Markov model that allows conditional forecasts of structural change. A

nonstationary Markov model, in which transition probabilities vary as a

function of exogenous factors, is specified. However, a long time series of

microdata on size changes of individual farms, from which transition

probability functions could ideally be estimated, is not available. As an

alternative, varying regional observations of transition probabilities in

1974-78 are treated as panel data from which relationships between

hypothesized causal factors and structural change might be estimated. The

resulting nonstationary model is then tested against a stationary Markov

model, derived from the same data, by comparing the projection accuracy of the

two models over 1978-86.

A Nonstationary Markov Model 

A nonstationary Markov process is one in which the probability of movement,

pij, can vary over time. The nonstationary transition probability, thus, is

denoted pii(t), with (t) the time period of the transition. (Specifically,

(t) is the time period beginning at time t and ending at time t+1.) The

transition probability varies over time in relation to exogenous factors, in

contrast to the stationary case in which it is assumed to be unaffected by

them. Generally, the probability of transition among states might be

described as dependent on the set of n exogenous factors X1, X2, ...Xn, where

Pi-j(t) = f(X). As before, the zero-one and row-sum conditions must hold for

all pii(t).

The nonstationary transition probabilities together form the nonstationary

transition probability matrix P(t). The distribution of the population among

states St is now transformed into the distribution St+1 by the operation

StP(t). The distribution St+k is obtained by multiplying the initial state

vector St by the product of the k transition probability matrices

Because the the transition probability matrices are not necessarily equivalent

from one time period to the next, raising the initial nonstationary transition

probability matrix to the power of the number of time periods does not yield

the same result as the period-by-period multiplication of the current

population distribution by the transition probabilities. This also means that

the system will not necessarily converge to an equilibrium distribution.

The nonstationary Markov model has been employed in several instances to

depict particular components of change in the farm sector. These applications

have been based on different methods of estimating transition probability

functions.

6



The simplest nonstationary model is that developed by Salkin, Just, and
Cleveland [17], which represented size transitions by Oklahoma cotton
warehouses as two different functions of time. A simple linear function, of
which the stationary Markov process is simply a special case with all time
coefficients set equal to zero, meets the row-sum requirement but violates the
zero-one probability limits after some number of time periods. A geometric
model, with the magnitude of change over time falling at a constant rate, had
somewhat better properties, although zero-one probability bounds are not
necessarily satisfied under this approach either. However, as the authors
point out, a more fundamental shortcoming of the time-dependent approach is
that it failsto reflect "the exogenous forces which actually influence the
transition probabilities" [17, p. 81]. In this respect, the time-dependent
Markov model does not mark a significant departure from the stationary case.

A second approach, developed by Hallberg, is to estimate a function for each
row of the transition matrix, with exogenous economic factors as the
independent variables [9]. In order to ensure that the resulting matrix will
conform to the row-sum condition, intercept terms must be constrained to sum
to one and the coefficients of the exogenous variables must sum to zero. Yet,
this approach still does not ensure that individual transition probabilities
will remain within the zero-one range. In his study of the Pennsylvania milk
manufacturing industry, Hallberg had to resort to ad hoc procedures to keep
the predicted probabilities within the permissible range.

A third approach that has appeared in the literature is to construct a
nonstationary transition probability matrix based on a multinomial logit
function [20]. This method by Stavins and Stanton meets the row-sum and zero-
one conditions under all circumstances and offers the additional advantage of
permitting a different set of explanatory factors for each cell of the
transition matrix. When compared with alternative methods of projecting
(known) future distribution of New York dairy farms outside the sample set,
including stationary Markov analysis, trend analysis, and negative exponential
functions, the multinomial logit-based nonstationary Markov model performed
the best [21]. The multinomial logit function, therefore, was chosen as the
basis for the model constructed here. The following section describes the
function in greater detail.

A Multinomial Logit Function

A logit function is based on the cumulative logistic probability function and
takes the general form:

pi = f (a + /3Xi ) =
1

1+  
1 (1)
a + /3Xi

where pi is the probability of the event j given the set of exogenous values
The logistic function yields a probability distribution similar to theJ —

normal but with slightly fatter tails.

4/The entire discussion of logit models draws heavily on [16, pp. 287-310].
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A linear relationship between the probability of event j (Pj) and the factors

that influence it (Xj) can be derived by rewriting the logistic function and

taking natural logarithms of both sides [16, pp. 287-9]. This yields

Pj
ln ( )= a + fiXj . (2)

1 - pi

Pj
Equation (2) is a logit function, where in ( ) is the natural log

of the odds ratio, or "logit," of pi. 1 - pi

In the case where only two outcomes, event j and event d (a binomial model),

are possible, pi + pd - 1 and pd - 1 - pi, so equation (2) can also be written

as:
ln (-121-) = a + fiXj.

Pd
(3)

A logit function relating the log odds of event j to the values of its causal

factors • can be estimated as in equation 3. Once the parameters of equationXj
3 have been estimated, the equation can be used to predict the probability of

event j under varying values of the causal factors. Let Xj* be a particular

set of values of the causal factors of event j. The predicted logit of j is

then given by:

Pd*

*
est [ in ] - a + xi*.Pj (4)

Equation 4 can be converted to the predicted ratio of pi to pd by raising base

e to the predicted logit. An additional adjustment is needed, however, to

produce an unbiased estimate of the predicted ratio pi/pd. This is because

simply taking the antilog of predicted value a + pxj* will give the median
value, rather than the mean, of the predicted logit pj/pd. To reduce this

bias, Dadkhah [6] suggests .estimating the predicted value of in (Pj/Pd) as

a + PX-i* + 0.5s7, where s2 is the variance of prediction of the estimated

logit function. With this correction added, the predicted ratio fo_ Pj to pd

can be obtained:

est (2242L
Pd*

= e a + pxj* + 0.5s2
(5)

To solve for the predicted probability of event j under the particular set of

exogenous values Xj*, the value of the predicted denominator Pd* can be

obtained:

15d*
1

1 + est(--124±-)
Pd*

The predicted probability of event j can then be solved by multiplication:

Pj*
Pi* = Pd* • est( ).

Pd*

The form of the logistic function ensures that the predicted probabilities pi

and pd will always take on values between zero and one. The two predicted

8



probabilities will also sum to one. The logit model can be extended to cases
with more than two outcomes (a multinomial logit model). With n possible
outcomes, logit functions for n-1 of them can be estimated similarly to
equation 3:

in
P1

(—)

Pd
— al P1X1

Pj
in (—) = ai + f3iXi

Pd

Pn
in

Pd

for all j d.

= an 4- Pfl)Cn

(8)

Once the parameters of the system have been estimated, they can be used to
predict the logits of the probabilities as in equation 4, given the particular
set of exogenous values Xn*:

[ ( Pl* ) 1

Pd*

est in

est [ ln( pd* ) ]
Pj* 

est [ ln (  Pn* )1

Pd*

for all j d.

- al 4- Plxl* (9)

= ai + ixi*

an -4- Pnxn*

The predicted logits are then converted to ratios as in equation 5, again
adding the correction for variance suggested by Dadkhah [6]:



1

1+

Pl* &l + PiX1* + 0.5s12

est  ) = e (10)

Pd*

Pj* aj + pixj* + 0.55j
est (  =

Pd*

Pn* an + PnXn* + 0.5sn2

est   =

Pd*
for all j d.

The predicted value of the denominator event pd* can be solved similarly to

equation 6:

13d* =

1

Pj*
1 + E est( 

yd Pd*

The remaining predicted probabilities can then be derived as in equation 
7:

Pj*

15j* = Pd* • est( ) (12)

Pd*
for all j d.

The predicted probabilities will all fall between zero and one and sum to one,

just as in the binomial case.

The multinomial logit function, thus, is a useful vehicle to represent the

range of possible size changes of farms over time, given their starting size.

For example, let Plj(t) be the observed probability of a fa
rm moving from size

class 1 to size class j in time period (t). The set of exogenous factors

X1j(t) is hypothesized to affect the 
probability of movement. Modeling this

as a multinomial logit function gives the relation:

Plj(t) 1

alj PljXlj (t)

Given a time series of observed transition probabilities and hypothesized

causal factors, a nonstationary Markov model can be estimated. One,

therefore, can estimate n-1 functions of the form:

Plj(t)
ln ( ) = alj PljX1j(t) , (14)

Pld(t)

for all j d, where ln(piP1d(t)) is the logit of pij(t), and Pld(t) 
is

j(t), /

(13)
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the denominator event. Once the n-1 functions have been estimated, estimated
values for the n-1 ratios ln(pi (t)/Pld(t)) can be obtained by inserting
values for the exogenous variables. After adding the correction for variance,
the logits can be converted to ratios as in equation 10. From these
estimates, the value of the denominator transition probability p ld(t) can be
estimated as in equation 11, and then the remaining n-1 transition
probabilities can be predicted as in equation 12.

The predicted values Pli(t), thus, will meet the restrictions Eifili(t) = 1,
and 0 < Pli(t) < 1 for all j.

For the normalization required to estimate the function, all observed pii(t)
are required to be greater than zero. This requirement apparently does not
raise particular problems for the kind of application considered here, given
the theoretical, although highly unlikely, possibility that farms move between
the largest and smallest size classes in a single period. A separate
multinomial logit function can be estimated for each row of the transition
probability matrix. This model meets all the mathematical requirements for a
nonsttionary Markov process, while allowing economic analysis of the effects
of exogenous factors on size transition probabilities. The model is also
flexible in that the specification of each individual transition probability
function can be different for each element of the matrix. Thus, varying
combinations of factors can be included to predict the growth or shrinkage of
farms beginning from different sizes./

5/In the multinomial case, the choice of denominator event can affect the
model's predicted probabilities in two ways. The first is simply through
differences in the specification of exogenous variables that can arise
depending on which event's logit is excluded (as the denominator) in the
estimation phase. Thus, the choice of denominators can affect the selection
of exogenous variables that drive the model. Second, models with the same
sets of exogenous variables can also differ somewhat according to the choice
of denominators. As an experiment, row seven of the transition probability
matrix (corresponding to farms with initial sales of $40,000-$99,999) was
estimated first with the denominator event set as p77 (where i—j, or the
probability of remaining in the same size class) and then with the denominator
set at p71 (j=1, or the probability of exiting). For events other than p71 or
p77, the same exogenous variables were used to estimate each individual logit
function in both cases. For the two alternative denominator events, the
exogenous variables for the logits were unchanged between the two as the
denominator changed. The two resulting models for row seven produced
different predicted probability distributions given the same values of the
exogenous variables. These differences were relatively small in predicting
within the 1974-78 sample period but increased for out-of-sample predictions.
In the model estimated later in this paper (table 5), the event pij (i=j, the
diagonal cells of the matrix) is used as the denominator for each row. A more
systematic means of evaluating the effects of different denominators and
choosing the most appropriate one would help in developing the "best"
nonstationary Markov model of structural change, but that is beyond the scope
of this paper.
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AN APPLICATION: A NONSTATIONARY MARKOV MODEL OF U.S. FARM STRUCTURE

In this section, a nonstationary Markov model of U.S. farm structure is
estimated, with the rows of the transition probability matrix represented by
multinomial logit functions. Because a time series of directly observable
transition probabilities is unavailable, longitudinal microdata from the 1974
and 1978 Censuses of Agriculture are grouped by geographic region and used as
panel data from which to estimate transition probability functions.

The Data

The data set used in this analysis consists of 1.2 million longitudinal
records from the 1974 and 1978 Censuses of Agriculture. It was constructed by
linking the two census files by means of respondent identification codes
originally designed for managing mailing lists. Records carrying the same
identification code in both censuses were linked to provide information on
size changes on individual farms continuing in the censuses for 1974-78.
Continuing farms, therefore, are defined as those continuing under the same
management.

The records for some farmers continuing in operation during 1974-78 likely
were not matched in the census files and, thus, were excluded, and other
records likely were matched and included when, in fact, the operator had
changed. Nevertheless, the data base is the most detailed yet available on
changes in individual U.S. farms over time. Thus, the data base makes
possible the most accurate estimates yet available of farm size transition
probabilities in a given time and place. The data set and its construction
are described in greater detail in [8].

In this study, data on the total value of agricultural products sold in 1974
and 1978 were used to construct transition probability matrices for farms
moving among size classes. Nine different size classes (states) were defined,
ranging from less than $2,500 to $500,000 and more. Data for both years are
in nominal dollars.6/

A 10th state was defined as "nonfarm," to which exiters go and from which new
entrants come. Entrants and exiters during 1974-78 are not precisely
identifiable as such in the longitudinal file due to the possibility of some
incorrect or missed record matches. Therefore, for this analysis, entry and
exit probabilities were estimated under the assumption that the longitudinal
file was a complete count of all farms continuing under the same management
during 1974-78. Thus, any farms counted in the 1974 census that failed to
show up in the linked 1974-78 longitudinal file, and for which the actual
1974-78 behavior is unknown, are assumed to have exited. Likewise, any farms
counted in the 1978 census but not matched in 1974-78 are assumed to have been
new entrants.

•e

6/At the time this analysis was completed, census data for 1982 had not yet
been linked to the 1978 census records to form a data base for 1978-82
comparable to that for 1974-78. Thus, the model is estimated only from data
covering 1974-78.
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Given these assumptions, the probability of exit from a given 1974 size class
can be estimated simply as the proportion of farms failing to reappear in the
census of 1978. However, estimating the probability of entry from the number
of "new" farms in 1978 is more difficult. In the case of entry, the divisor
with which to estimate probabilities is not obvious as it is in the case of
continuing or exiting farms because it requires an assumption about the
initial size of the "nonfarm" population. -

Assumptions about the size of the nonfarm population can affect the results of
Markov analysis. Stanton and Kettunen (19] show that the number of farms at
equilibrium is positively related to the size of the nonfarm population but
that the magnitude of the effect diminishes as the size of the assumed nonfarm
population increases. Edwards, Smith, and Peterson, in a study of farm size
by acreage based on the same longitudinal data file used here, found little
sensitivity to choices above 5 million potential entrants [8]. Five million,
thus, was chosen as the assumed initial size of the "nonfarm" population, and
entry probabilities were estimated on that basis.

Tables 2 and 3 provide an example of how transition probability matrices were
estimated from the 1974-78 longitudinal census data. Data are for the United
States. The boldfaced data in table 2 show the cross-classification of the
longitudinal farms by their 1974 and 1978 gross sales levels. The published
census 'totals of farm numbers by sales class in 1974 and 1978 are the row and
column sums, respectively (in normal typeface). The remaining numbers for
entrants and exiters, denoted by an underline, are then derived by subtraction

pof the longitudinal farms from the census total for the year.2/ Finally, the
assumed 5 million "nonfarms" (marked with an asterisk) are placed in the entry
row total cell for 1974. The transition probability matrix is then computed
by dividing the cell counts by the row sums and is shown in table 3.

Regional Transition Probability Matrices, 1974-78 

Estimation of a nonstationary Markov model built on multinomial logit
functions ideally requires a time series of observed transition probabilities.
Such a data set is currently unavailable. This section evaluates regional-
level transition probabilities for 1974-78:4 a_substitute.The implications
for regional transition prob-abiliti-ei—O-f -the stationary Markov assumption are
explored, and the regional data are then analyzed to determine whether or not
they are consistent with those assumptions.

The assumption of stationary transition probabilities, where pii(t) =pii(t+i)
for all i,j, and t,'implies that the only factor affecting the size class into
which a farm moves is the size from which it starts. The_time period_of_the
_movement, with its particular_configqration_of exggenous factors, such as---
prices and opportunity costs, is assumed to have no effect on the probability
of growth, shrinkage, or exit. The other attributes of the farm aside from
size, such as the personal characteristics of the operator, where he or she

7/The explicit assumption that farms not included in the longitudinal data
set, for which the actual behavior is unknown, were entrants and exiters in
1974-78 is reflected by the zeros in the "unknown" categories in both 1974 and
1978. The "unknown" category is then dropped from table 3 for simplicity.
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Table 2--Cross-classification of gross sales, 1974-78, census total farms 1974 and 1978, and derived entries and exits

1974

sales

State

1978 sales

Less than $2,500-

$2,500 4,999

(2) (3)

$5,000- $10,000-

9,999 19,999

(4) (5) 

$20,000- $40,000- $100,000- $200,000- $500,000

39,999 99,999 199,999 499,999 and over

(6) (7) (8) (9) (10) Unknown

1974

total

0 (entry) 1 3,944,779 278,364 153,639 146,322 130,980

Less than $2,500 2 371,873 126,642 73,427 46,081 19,129

$2,500-4,999 3 133 665 24,835 33,248 37,109 18,831

$5,000-9,999 4 147,634 15,923 22,858 44,914 41,364

$10,000-19,999 5 147,158 8,360 10,828 25,437 52,271

$20,000-39,999 6 138,570 3,866 4,410 9,935 26,717

$40,000-99,999 7 119,156 1,968 1,788 3,541 8,499

$100,000-199,999 8 31,908 451 379 555 1,130

$200,000-499,999 9 15,325 103 109 175 262

$500,000 ancrover 10 6,234 23 13 19 32

Unknown 1/

1978 Total n/a 460,535

Farm numbers 

124,398

7,095

6,313

16,486

46,366

67,030

28,153

2,739

533

62

0

138,837 48,390 25,274 9,017 0 5,000,000#

3,653 1,042 424 82 0 649,448

2,532 522 174 34 0 257,263

5,826 1,016 296 56 0 296,373

16,731 2,233 551 76 0 310,011

63,346 6,566 1,178 153 0 321,771

110,893 44,007 5,892 413 0 324,310

16,187 31,850 15,012 942 0 101,153

1,945 5,148 12,819 3,615 0 40,034

143 276 1,025 3,585 0 11,412

300,699 314,088 299,215 299,175 360,093 141,050 62,645 17,973

Numbers in bold typeface = Census longitudinal file.

Numbers in regular typeface = All farms, 1974 and 1978 census.

Underlined numbers = Derived from text.

# = Assumed number of potential entrants in 1974.

1/Unknown refers to those farms not captured in the longitudinal data set. In this analysis, all farms reported in the 1974 and 1978 censuses

and not captured in the longitudinal data set are assumed to have exited and entered over the period. Thus, the number of farms for which the

1974-78 movement is unknown is assumed to be zero.



Table 3--Transition probability matrix, U.S. farms by gross sales, computed from table 2 1/

Item i=
Pil

j= 1
Pi2
2

Pi3
3

Pi4
4

Pi5
5

Pi6
6

Pi7
7

Pi8
8

Pi9
9

Pi10
10

Igij
Row sum

Plj 1 0.7890 0.0557 0.0307 0.0293 0.0262 0.0249 0.0278 0.0097 0.0051 0.0018 1

P2j 2 .5726 .1950 .1131 .0710 .0295 .0109 .0056 .0016 .0007 .0001 1
P3j 3 .5196 .0965 .1292 .1442 .0732 .0245 .0098 .0020 .0007 .0001 1

P4j 4 .4981 .0537 .0771 .1515 .1396 .0556 .0197 .0034 .0010 .0002 1

P5j 5 .4747 .0270 .0349 .0821 .1686 .1496 .0540 .0072 .0018 .0002 1

P6j 6 .4306 .0120 .0137 .0309 .0830 .2083 .1969 .0204 .0037 .0005 1

P7j 7 .3674 .0061 .0055 .0109 .0262 .0868 .3419 .1357 .0182 .0013 1

P8j 8 .3154 .0045 .0037 .0055 .0112 .0271 .1600 .3149 .1484 .0093 1

P9j 9 .3828 .0026 .0027 .0044 .0065 .0133 .0486 .1286 .3202 .0903 1

P1Oj 10 .5463 .0020 .0011 .0017 .0028 .0054 .0125 .0242 .0898 .3141 1

1/ pij = probability of movement from state i to state j, 1974-78.

Figure Census Divisions

WEST

*Includes Alaska and Hawaii

NORTH CENTRAL
NORTHEAST

Middle
Atlantic j New England

South Atlantic



lives, or what else he or she does, also is assumed to have no effect on the

transition probability. The stationary assumption, thus, seems to imply that

observed transition probabilities should be the same across distinct

geographic areas over a given time period, as well as constant from one period

to the next.

The reasonableness of the assumptions of the stationary Markov model can be

tested by examining distinct regional transition probability matrices for

1974-78. Nine separate matrices were computed, one for each census division

(fig. 1). They were derived from the census microdata longitudinal file using

the methodology of table 2, with the U.S. total of 5 million potential

entrants in 1974 apportioned by division according to the proportion of total

U.S. farms in the division in 1974. The nine computed transition probability

matrices are listed in the appendix.

Stationary transition probabilities can be tested for in several ways.
Anderson and Goodman [1] present a formal statistical test of the hypothesis

that the pii(t) are constant over all T time periods. It is a chi-square

test, with the test statistic computed as

-2 [ZiEjEtmij(olnpii(.) - EiEjEtmii(olnpij(0],

where mii(t) is the number of individual observations on which the estimated

transition probability pii(t) is based, and pii(.) is the average transition

probability over all time periods. It is distributed as chi-square with

(T-1)(n-l)n degrees of freedom, with T the total number of time periods and n

the number of states.

A test of the hypothesis that the transition probabilities were equal across

the nine census divisions in 1974-78 can be made by applying the Anderson-

Goodman test as above with (t) denoting the geographic region and (.) the U.S.

totals as in table 2.8/ Computed in this way, the value obtained for the test
statistic is 38,833. This compares with a critical value for chi-square at

the 99-percent confidence level and 720 degrees of freedom of 810.4.2/ Thus,

the null hypothesis that transition probabiLities were the same in all nine
regions during 1974-78 is rejected by a wide margin.

Regional variability in transition probabilities can also be assessed more
informally. Table 4 summarizes the variability among census divisions by

8/The test breaks down cases in which some observed transition probabilities

are zero. This was true for a few cells in some of the regional matrices,
although the U.S. level had no zero cells. In these cases, the zero
probabilities were converted to 0.000001.
9/The degrees of freedom for the test are .calculated as follows: T-9

(number of regions), n=10 (number of states). Degrees of freedom —
(T-1)(n-l)n = 720. The critical value for chi-square is calculated as
0.5[(Z + (2v-1).512, where Za is the alpha point (probability of rejecting
the null hypothesis when it is true) of the standardized normal distribution
and v is the degrees of freedom [20, p. 24].
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Table 4--Matrix of coefficients of variation of Observed transition probabilities, nominal sales
for 1974-78. and nine census divisions 1/ 

Pil PI2 Pi3 Pi4 Pi5 Pi6 Pi7 Pi8 Pi9 Pil0

Plj 1

P2j 2

P3j 3

P4j 4

P5j 5

P6j 6

P7j 7
psi 8

P9j 9
P1Oj 1-0

- 1 2 3 4 5 6 7 8 9 10

2.8
6.1
5.1
4.4
5.0 -
6.9
12.3
15.5
7.0
5.8

40.0
13.1
16.1
24.4
37.5
54.4
69.6
72.7
62.1
46.0

28.1
10.9
10.1
10.4
21.0
37.3
62.3
59:0
64.1
117.3

14.2
19.0
9.8
9.4
6.9
20.6
41.0
46.2
46.6
101.2

9.5
25.6
17.9
8.9
8.5
11.2
20.0
34.2
31.4
58.1

26.5
34.3
27.5
18.2
14.3
11.7
22.9
22.2
29.1
48.9

32.1
42.1
31.5
24.9
17.1
17.5
16.6
25.5
23.3
46.1

24.7
33.9
36.6
33.9
28.7
26.0
9.9
14.0
17.9
38.9

43.4
45.9
55.9
53.9
57.1
59.6
33.1
10.9
11.1
17.2

105.5
70.1
72.7
91.9
87.6
69.9
84.3
37.1
20.5
13.3

1/1he coefficient of variation is calculated as the sample standard deviation divided by the
sample mean tines 100.

reporting the coefficient of variation (the standard deviation as a percentage
of the mean) of each cell in the transition probability matrix. The weighted
means of the pii's used as the denominators are the same as those calculated
directly from die U.S. level data in table 2.

The 1974-78 transition probabilities exhibit a wide range of values. For
example, p51, the observed probability that a farm with sales of $10,000-
20,000 in 1974 would exit by 197.8, ranged from 0.43 to 0,53. And p9,10, the
probability of movement from the $200,000-500,000 clasl-into the $500,000 and
over class, nearly doubles from the lowest to highest observed values (0.069
to 0.121).

A third way to look at regional differences in 1974-78 transition
probabilities is to calculate the proportional distributions of farms over
time and at equilibrium if the observed transition probabilities are held
constant. As an illustration, projected time paths for six of the nine census
divisions are depicted for small farms (gross sales of $2,500-19,999) in
figure 2. The regional transition probability matrices imply quite different

results from one another. Two project a sharp increase in the proportion of
small farms in 1974-78, followed by a gradual decline to an equilibrium level

well above that of 1974. Two others imply a steady decline, to an equilibrium

level below that of 1974. And, two others yield an increase in 1974-82 and a

constant proportion afterward. The observed regional patterns of structural

change in 1974-78 were clearly headed in different directions.

Viewed from these three perspectives, regional-level observations of 1974-78

transition probabilities do not support the assumptions of a stationary Markov

process. The probability of a farm starting from a given size class growing,

shrinking, or exiting in 4 years varied significantly from one region to the

next. Thus, seeking an explanation for these varying probabilities in the

particular economic characteristics of each region seems logical. The next

section presents nonstatiofiary transition probabilities modeled as multinomial

logit functions, estimated from the nine regional transition probability

matrices for 1974-78.
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Figure 2. Comparison of Stationary Markov Paths.
Projected Proportion of Farms with Sales $2.500-$19,999

by Census Division. 1974 to Equilibrium
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Transition Probability Functions for U.S. Farms by Gross Sales 

Following the procedures outlined above, a nonstationary Markov model was
estimated for U.S. farms by gross sales class from nine regional observations
of 1974-78 transition probabilities. The observed pij's were converted to
their logits, using the diagonal cells of the transition probability matrix
(pij, where i=j) as the denominator. The logits were then regressed on
exogenous variables as in equation (14) to estimate transition probability
functions.

A large body of literature discusses the causes of structural change in U.S.
agriculture. Babb [3] summarizes important factors, including variations in
input and output prices among farms of different sizes, technological change,
size economies, risk, price-cost margins, exchange arrangements, capital
requirements that affect entry, government policies, and farm operator
characteristics, such as management ability, goals, and alternative
opportunities.

Babb cites a number of factors, such as technological change and government
policies, that cannot be examined easily in the context of the data set used
here. Technology and government programs are assumed to be equally available
in all regions at a given time. Other factors, such as regional differences
in farm operators' characteristics and farm and nonfarm prices, are observable
as possible sources of differences in rates of structural change, however.
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These factors, along with their hypothesized relationships to farm entry,
exit, growth, and decline, are listed in table 5.

The age distribution of the existing operator population is assumed to affect
aggregate rates of structural change. An older population of operators is
likely to have higher rates of exit due to retirement. Age is also expected
to be negatively related to the likelihood of farm growth, as older operators
move past the expansion phase of the firm life cycle toward consolidation and
preparation for exit.

The extent of off-farm work by existing operators is hypothesized to be both a
symptom of more fundamental underlying forces and a causal factor in its own
right. Multiple jobholding in U.S. agriculture is generally seen as a
response to low farm incomes, particularly on smaller and midsized farms.
Viewed this way, off-farm work is likely to be associated in the long run with
higher rates of both exit growth and farm growth, as operators move out of
agriculture altogether or expand to a farm size sufficient to generate
adequate income. Shortrun effects of off-farm work may be quite different,
however. Off-farm work may impede exit as long as operators can earn
sufficient total income from the combination of sources. It may also lead to
farm size declines as operators devote more labor to higher paying off-farm
work. Off-farm work by existing operators is unlikely to affect directly the
rate of entry by new operators, however. Thus, while off-farm work and the
factors that underlie it are likely to be important forces in farm structural
change, making a priori judgments of the likely empirical relationship to
1974-78 transition probabilities is difficult.

Because the data used in the analysis are in nominal dollars, increases in
farm product prices are expected to be positively associated with farm growth

Table 5--Some possible sources of regional differences in farm
size (gross sales) transition probabilities

Variable

Age of existing

Hypothesized relation to:
Entry Exit Growth Shrinkage

operator population +*

Extent of off-farm
work by existing

+*operator population +/-

Change in farm
product prices

Change in farm
asset prices

±1 -

Change in nonfarm
incomes
(opportunities) +/-

*Starred entries were not rejected in the estimation results
reported in table 6.
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and negatively associated with shrinkage. Thus, inflation is assumed to be

reflected in apparent rates of farm structural change. All other things

equal, higher farm product prices are also :likely to be associated with higher

rates of entry and lower rates of exit, as higher commodity prices induce more

entrants to farming and keep farming more attractive to those who might

otherwise leave.

The value of farm assets, chiefly land, is hypothesized to be negatively

related to operator entry. Higher land prices, especially if also reflected

in lease rates, have been widely thought to pose barriers to entry. The

effects on exit or the performance of continuing farms is much more uncertain.

In times Of increasing farm asset values, as in 1974-78, the potential for

capital gains resulting from farmland appreciation may induce some operators

to sell their assets and exit, while inducing others with the additional

cushion of equity they need to remain in farming. The likely effect of rising

farm asset values on exit rates is unclear. The same is true of impacts on

farm expansion or contraction. Generally higher prices for farm assets

(whether reflected in sale prices or rents) can both propel and deter farm

expansion by simultaneously increasing some farmers' net worth and raising the

costs of expansion to all. The net relationship between changes in asset

values and farm growth or shrinkage will depend on a number of factors unique

to each farm firm, including operator expectations, attitudes toward risk, and

capital structure, none of which can be captured in the highly aggregated data

used here. Thus, no hypothesized relationship/between asset values and

aggregate rates of growth or shrinkage can-b‘ offered.

Finally, because farming is a relatively minor activity in relation to the

entire labor market, even in heavily agricultural areas, the opportunity cost

of farming is hypothesized as a major cause of structural change. Changes in

nonfarm incomes are assumed to be related negatively to entry and positively

to exit as the "pull" of improving nonfarm opportunities causes would-be

farmers to choose other employment and induces other farmers to leave for

other work. Similar to the effects of off-farm work, nonfarm incomes might

have offsetting impacts on continuing farms. In the long run, rising nonfarm

incomes may contribute to increasing farm size as improving opportunities off

the farm raise the minimum farm income (and, thus, farm size) necessary to

hold workers in farming [11]. Over the short term, however, operators able to

adjust their own labor allocation between the farm and nonfarm sectors might

choose to reduce their farm size in order to begin or increase off-farm

employment. Rising nonfarm incomes may be either positively or negatively

related to farm growth.

Regression Results 

The logits of the observed 1974-78 transition probabilities were regressed on

variables representing the above hypothesized causal factors, as in equation

(14). The 10 rows of the transition probability matrices were normalized by

their diagonal cells. Thus, a total of 10x(10-1)=90 equations were estimated.

All transition probability functions were estimated by an ordinary least

20



squares regression (OLS) from the nine regional observations weighted by the
number of farms in the region and size class in 1974.12/

Data on the hypothesized causal factors were developed for each region or
region and sales class. The age of the operator population in 1974 was
characterized as the proportion of operators aged 65 and older in each sales
class and region. Off-farm work was measured as the proportion of operators
in the sales class and region working off the farm 200 days or more per year.
Changes in farm product prices for 1974-78 were measured separately for each
region, by weighting the U.S. indices of prices received by farmers for crop
and livestock products by 1974 regional crop and livestock sales. Changes in
farm asset prices were computed as the index of change in the total value of
farm real estate in the region for 1974-78. And nonfarm incomes were measured
as the index of change in regional nonfarm personal income per capita for ,,
1974-78.

For many cells of the transition probability matrix, the independent variables
considered had little or no explanatory power. This was especially true of
cells in which the mean transition probability was extremely low and the
variance correspondingly large (see table 3 for the range of variation across
the observed transition probability matrices and [16, p. 293] for a general
discussion of this problem). The fit was also poor for all cells representing
entry and the behavior of very small farms. This was not unexpected, given
that only nine observations were available, the resulting heterogeneity of the
geographic regions used, and the lack of data on potential entrants on which
to base entry probabilities.

10/Because the transition probabilities in any one row are functionally
related (an increased probability of growth equates to a decreased probability
of staying the same size or shrinking, for example), the cross-equation error
terms in each row are expected to be correlated. This suggests that more
efficient estimates of the parameters might be obtained by estimating all nine
equations for each row of the matrix simultaneously, using a generalized least
squares (GLS) regression [16, pp. 347-49]. An OLS regression was used
instead, on both theoretical and practical grounds. While equation-by-
equation OLS regression yields parameter estimates that are not efficient
(minimum variance) in systems of equations in which the dependent variables .
are correlated, OLS still yields unbiased estimates of those parameters (that
is, the expected value of the parameter estimate is the true value for the
population). Thus, the OLS significance levels for the estimated coefficients
are on the conservative side. In applications such as this one, the precise
significance level of the individual parameter estimates in each equation is
not of primary interest. It is used only as one criterion to judge among
alternative specifications for each cell. A more practical reason for the
choice of OLS over GLS regression is ease of computation. With nine equations
for each row of the matrix, even the limited number of exogenous variables
considered here leaves a large number of possible combinations. ,Rather than
re-estimate all nine equations for each row every time the specification of
one cell equation was changed, individual transition probability functions
were estimated and selected on the basis of providing the best possible fit
(in terms of OLS regression coefficients significant at 0.10 or less) for that
cell. This made estimation of the model much less cumbersome.
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Significant results were obtained for somewhat larger farms, however, with

annual sales of between $5,000-500,000. The proportion of operators aged 65

or older in 1974 was positively associated with the probability of exit by

1978. This relationship was particularly strong among farms with initial

sales,of.$20,000-499,999, and is consistent with theoretical expectations.

Changes in nonfarm per capita incomes appeared to be related to size changes

on small to midsized farms. Where statistically significant, nonfarm income

growth was positively related to the probability of declines in farm sales and

negatively related to farm growth. These results may provide some evidence

for the short-term role of opportunity costs in encouraging small farm

operators to shift from onfarm to off-farm activities.

The proportion of operators working off the farm 200 days or more was

positively related to the probabilities of both exit and growth for farms with

sales of $40,000-99,999.11/ This result appears to be highly significant in

an economic sense as well. This class of midsized farms has been often

identified as one under particular stress, due to the combination of high

demands on operator labor (making off-farm employment difficult) and farm

production volume insufficient to generate adequate income. The data suggest

that the combination of this size of farm operation with extensive off-farm

work is not sustainable, and operators tend either to leave farming completely

or increase their farm size to improve total income.

Because the dependent variable measures change in farm sales in nominal

dollars, the rate of change in farm product prices is notable for its lack of

statistical significance. This is probably explained by the width of the

sales intervals used and the fact that, within each sales class, farms tend to

be clustered near the low end. Inflation alone was not sufficient to have an

appreciable impact on the probability of changes in sales class, even when

measured in nominal terms.

The set of regression results chosen for the model are summarized in table 6.

This system of equations forms a complete nonstationary Markov model of farm

size in gross sales. For rows 1-3 (entry and farms with initial sales of less

than $2,500 and sales of $2,500-4,999) and 10 (initial sales of $500,000 or

more), no coefficients for the hypothesized exogenous variables were

significant at 0.10 under a t-test, so these rows of the matrix were left

constant at the observed 1974-78 probabilities. The other six rows of the

transition probability matrix, representing farms with beginning sales of

$5,000-499,999, vary with the values of the exogenous variables. Cells of

these rows with zero coefficients for the exogenous variables are also

nonconstant because they take the value of the mean of their logit. When

converted back to estimated proportions, they will yield transition

11/The estimated relationship between growth (p78) and off-farm work is

reported in table 6. The logit function relating the probability of exit

(p71) to off-farm work was estimated as follows:
ln (p71/p77) =.-0.418378 + 7.5249 OFFWRK, R2 = 0.7372, standard error =

0.1608. Because off-farm work and the percentage of older operators were

highly correlated (0.602), including both explanatory variables at once did

not improve the overall fit.
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probabilities that vary according to the values of the logits of the other
cells of the row.

A predicted transition probability matrix is developed by inserting the
appropriate values of the exogenous variables into the system of equations
shown in table 6. Values of the exogenous variables for the entire United
States in 1974-78, which are shown in table 7, generate a set of predicted
logits, the log of the ratio (p/denominator). The predicted logits are then
converted to ratios as in equation (10). These are shown in table 8.
Finally, the denominator transition probability for each row is derived as inequation (11), and the remaining cells of the matrix are then computed as in(12). The resulting predicted transition probability matrix Is shown in
table 8.

The nonstationary model of table 6 predicts a matrix very close to the one
calculated directly from 1974-78 U.S. longitudinal data, as shown in table 7.The predicted nonstationary matrix exactly matches the directly computed
probabilities in rows 1,2,3, and 10 by assumption. For the variable rows ofthe matrix (4-9), the predicted probabilities give a very close fit as well,with a maximum divergence of about 0.01.

That the nonstationary Markov model gives a good fit to data within the
estimation period is not surprising. A more important test of the performanceof the model is how well it performs compared with a stationary model in
predicting farm structural change after 1978.

Prediction Performance of the Nonstationary Model, 1978-86 

To examine the relative performance of the nonstationary Markov model of farmsby gross sales class, U.S. farm structure was projected for 1978-86. Theseprojections were compared with those from a stationary Markov model estimateddirectly from the 1974-78 longitudinal data with the actual distributions offarms by sales.

Projected versus actual farm size distributions (as reported in the 1978 and1982 Censuses of Agriculture and the 1986 estimate by USDA's National
Agricultural Statistics Service (NASS) [24)) are shown in table 8.12/ Becausethe stationary Markov model was computed directly from the 1978 census andreproduces that distribution exactly, the stationary projection for 1978 isnot shown in the table. Projections are based on the actual distributions of4 years earlier. Thus, the 1982 projections are the result of multiplying the1978 census distribution by the transition probability matrix for 1978-82, andthe 1986 projections are the result of multiplying the 1982 census
distribution by the 1982-86 transition probability matrix. Projection errorsare not compounded from one interval to the next.

12/NASS estimates of U.S. farm numbers and their distribution by sales classare derived independently from those of the census through an annual samplesurvey. While NASS estimates may be revised for preceding years following therelease of new census data, current NASS estimates of farm numbers and sizes
in 1986 bear no functional relation to census data for 1982.

23



Table 6--Nonstationary Markov model of farms by sales class, estimated from 1974-78

census longitudinal file

Logit of

Pij

Coefficients of:
Intercept Nonfarm Age Offwrk 2

sreg

Rows 1-3 (initial sales up to $4,999): stationary

Row 4 (initial sales $5,000-9,999):
p41 0.27750 3.7545

(2.699)
p42
p43

-1.05646
-2.84807 0.01515*

(.0070)

0.217 0.11874

.25558
.400 .07457

p44 (denominator)
p45 -0.08004 .09993

p46 -1.00549 .24780

p47 -2.05253 .32875

p48 -3.81308 .44111

p49 -5.11144 .60222

p410 -7.02599 1.37248

Row 5 (initial sales $10,000-19,999):
p51 -0.07475 6.4784*

(2.959)

p52 -1.87721
p53 -1.58102
p54 -0.71160
p55 (denominator)
p56 -0.12566
p57 -1.13901
p58 -3.15380
p59 -4.63195
p510 -6.77211

Row 6 (initial sales $20,000-39,999):
p61 -0.40461 9.10865***

(2.402)

.406 .10339

.44226

.30047

.13992

.09382

.23550

.44486

.73495
1.05668

.673 .12165

p62 -2.93494 .68498

p63 -2.74564 .55483

p64 , -1.90150 .37584

p65 -5.62670 -0.03283** .559 .12128

(.0011)
p66 (denominator)
p67 2.49638 -0.01786* .347 .10180

(0.0093)
p68 -2.31102 .42079

p69 -4.11860 .78214

p610 -6.21380 1.03671

--Continued
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Table 6--Nonstationary Markov model of farms by sales class, estimated from 1974-78
census longitudinal file--Continued

Logit of  Coefficients of:
Pij Intercept Nonfarm Age Offwrk sreg

Row 7 (initial sales $40,000-99,999):
p71 -1.07203 13.6669*** .855 .11917

(2.122)
p72 -4.15683 .93919
p73 -4.20161 .88762
p74 -3.49926 .55335
p75 -2.53776 .48130
p76 -9.37480 0.05567** .596 .19154

(0.0173)
p77 (denominator)
p78 -1.19560 4.35799** .567 .13630

(1.439)
p79 -2.91724 .60357
p710 -5.82839 .89029

Row 8 (initial sales $100,000-199,999):
p81 -1.14645 15.7946*** .928 .08264

(1.668)
p82 -4.43837 1.04519
p83 -4.50985 .90253
p84 -4-.07671 .78185
p85 -3.37990 .45994
p86 -2.46915 .35206
p87 -0.68391 .27014
p88 (denominator)
p89 -0.73835 .20114
p810 -3.51872 .67454

Row 9 initial sales $200,000-499,999):
p91 -0.56714 10.0806*** .637 .11093

(2.878)
p92 -4.90484 .85570p93 -4.91613 1.00920
p94 -4.31181 .76170p95 -3.86193 .59878
p96 -3.20709 .31777p97 -1.87134 .39525
p98 -0.90663 .26269
p99 (denominator)
p910 -1.26206 .29810

Row 10 (initial sales $500,000 and up): stationary

--Continued

25



Table 6--Nonstationary Markov model of farms by sales class, estimated from 1974-78
census longitudinal file--Continued

1. Dependent variable is the logit of pij, defined as the log of (pij/denominator).

2. Parameter estimates derived by OLS regression, weighted by farm numbers irLsize

class i by region.

3. Standard errors of parameter estimates in parenthesis.

4. Number of observations — 9.

5. "Stationary" refers to rows fixed at observed 1974-78 transition probabilities.

6. Explanation of exogenous variables:

Nonfarm — Nonfarm r,74-78 —

(Nonfarm personal income per capita, region r, 1978 /

Nonfarm personal income per capita, region r, 1974)*100.
Data source: U.S. Department of Commerce, Bureau of
Economic Analysis, state level data tape on income, 1969-83.
U.S.-level ratios for post-1978 projections computed from

data provided in Survey of Current Business, various issues.

Age — Agei74 —

Proportion of operators aged 65 and over, size class i,
region r, 1974. Source: 1974 Census of Agriculture. U.S.

data for post-1978 projections taken from 1982 Census

of Agriculture.

Offwrk = Offwrki,r,74 =

Proportion of operators working 200 or more days off-farm,

size class i, region r, 1974. Source: 1974 Census of
Agriculture. U.S.-level data for post-1978 projections
taken from 1982 Census of Agriculture.

sreg =

Variance of prediction of the estimated logit function'
(standard deviation of the regression).

7. OLS significance levels:

* estimate significant at .10 level
** estimate significant at .05 level
*** estimate significant at .01 level
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Table 7--Values of exogenous variables used in projections of nonstationary Markov model

Row and sales  1974-78 1978-82 1982-86
class Nonfarm Age Offwrk Nonfarm Age Offwrk Nonfarm Age Offwrk

4 $5,000-9,999 .246 .218 .244
5 $10,000-19,999 .173 .187 .222
6 $20,000-39,999 .125 .133 .170
7 $40,000-99,999 .085 .068 .077 .098 .103 .1168 $100,000-249,999 .073 .061 .0699 $250,000-499,999 .075 .066 .077

All farms 144.97 141.68 126.40

Note: No data for empty cells.
Source: U.S. Department of Commerce, Bureau of Economic Analysis, and 1974, 1978, and1982 Censuses of Agriculture.

For the stationary model, the transition probability matrix in all periods was
the one derived in table 3, assuming a population of 5 million potential
entrants in each period. For the nonstationary model, transition probability
matrices for each period were derived by inserting the appropriate values of
the exogenous variables into the system of equations in table 6. The
particular transition probability matrix for the projection period was then
computed as in table 8. Five million potential entrants were also assumed in
the nonstationary model.

The relative prediction performance of farm structure models can be measured
in a number of ways. One measure to compare alternative models is the squareroot of the sum of squared deviations of projected farms by size class. As analternative, deviations can be weighted by farm size, so that projection
errors for numbers of large farms are counted more heavily than those for
small farms [5]. Another measure is the sum of absolute differences betweenthe actual and predicted proportional distributions of farms by size [8]. Oneother possible measure is the percentage of farms in the projected
distribution that were misclassified when compared with the actual
distribution. This measure can also be either unweighted or weighted by farmsize.

The five prediction measures were applied to the projection results of table
9. Summaries of the performance of the two models are presented in table 10.After the 1974-78 period, for which the stationary model performs perfectly(as expected) and the nonstationary model gives small errors, the
nonstationary Markov model demonstrates better predictive power in both futureperiods according to all five criteria. While the differences between the twomodels in the accuracy of predicting the 1982 farm size distribution are not
dramatic, they are more apparent when the 1986 projections are compared. Thenonstationary model appears to have captured, at least partially, some of theeffects of the changed farm economic performance of the 1980's.

The superior, performance of the nonstationary Markov model in making one-step-ahead farm structure projections suggests that it should also perform better
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Table 8- -Example of estimated U.S. transition probabilities fran nonstationary Markov model, 1974-78

calculated as ea + 
/3X+ O. s2:1/

Predicted. ratios (N/Pid),
Row--

Constant 
2 Constant
3 Constant
4 3.3461 0.3592 0.5226 1.0000 0.9277 0.3773 0.1355 0.0243 0.0072 0.0023
5 2.8652 .1687 .2153 .4957 1.0000 .8858 .3291 .0471 .0128 .0020
6 2.0988 .0672 .0749 .1603 .4231 1.0000 :9162 .1083 .0221 .0034
7 1.1004 .0243 .0222 .0352 .0887 .2764 1.0000 .4103 .0649 .0044
8 1.0100 .0204 .0165 .0230 .0378 .0901 .5234 1.0000 .4877 ' .0372
9 1.2129 .0107 .0122 .0179 .0252 " .0426 .1664 .4181 1.0000 .2959
10 Constant

Predicted transition probabilities:
Row-- Row sum:

0.7890 0.0557 0.0307 0.0293 0.0262 0.0249 0.0278 0.0097 0.0051 0.0018 1.0000
2 .5726 .1950 .1131 .0710 .0295 .0109 .0056 .0016 .0007 .0001 1.0000
3 .5196 .0965 .1292 .1442 .0732 .0245 .0098 .0020 .0007 .0001 1.0000
4 .4992 .0536 .0780 .1492 .1384 . .0563 .0202 .0036 .0011 .0003 1.0000
5 .4758 .0280 .0357 .0823 .1661 .1471 .0547 .0078 .0021 .0003 1.0000
6 .4306 .0138 .0154 .0329 .0868 .2052 .1880 .0222 ,.0045 .0007 1.0000
7 .3636 .0080 .0073 .0116 .0293 .0913 .3304 .1356 .0214 .0014 1.0000
8 .3111 .0063 .0051 .0071 .0117 .0277 .1612 .3081 .1502 .0115 1.0000
9 .3788 .0033 .0038 .0056 .0079 .0133 .0520 .1306 .3123 .0924 1.0000
10 .5463 .0020 .0011 .0017 .0028 .0054 .0125 .0242 .0898 .3141 1.0000

Transition probabilities calculated directly fram 1974-78 longitudinal data:
Row: Row'Sum:

0.7890 0.0557 0.0307 0.0293 0.0262 0.0249 0.0278 0.0097 0.0051 0.0018 1.0000
2 .5726 .1950 .1131 .0710 .0295 .0109 .0056 .0016 .0007 .0001 1.0000
3 .5196 .0965 .1292 .1442 .0732 .0245 .0098 .0020 .0007 .0001 1.0000
4 ,.4981 .0537 .0771 .1515 .1396 .0556 .0197 .0034 .0010 .0002 1.0000
5 .4747 .0270 .0349 .0821 .1686 .1496 .0540 .0072 .0018 .0002 1.0000
6 .4306 .0120 .0137 .0309 .0830 .2083 .1969 .0204 .0037 .0005 1.0000
7 .3674 .0061 .0055 .0109 .0262 .0868 .3419 .1357 .0182 .0013 1.0000
8 .3154 .0045 .0037 .0055 .0112 .0271 .1600 .3149 .1484 .0093 1.0000
9 .3828 .0026 .0027 .0044 .0065 .0133 .0486 .1286 .3202 .0903- 1.0000
10 .5463 .0020 .0011 .0017 .0028 .0054 .0125 .0242 .0898 .3141 1.0000

Predicted transition probabilities ndrus those calculated directly:
ROW-- ROW SUM:
1 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 •f 0 0 - 0
3 0 0 0 0 0 0 0 0 0 0 0
4 .0011 .0001 .0008 - .0023 - .0012 .0007 . .0002* .0001 .0002 .0000
5 .0011 .0011 .0008 .0003 - .0025 - .0025 .0007 .0006 .0003. .0001 .0000
6 - .0001 .0018 .0017 .0020 .0038 - .0032 - .0089 -0018 _ .0009 .0002 .0000
7 - .0039 .0020 .0018 .0007 .0031 .0045 - .0116 - .0001 ' .0033 .0002 .0000
8 - .0043 .0018 .0013 .0016 .0005 .0007 .0012 - .01068 .0018 .0021 .0000
9 - .0040 .0008 .0011 .0012 .0013 .0000 .0034 .0020 - .0079 .0021 .0000
10 0 0 0 0 0 0 0 0: 0 0 0

1/Logits predicted from coefficients aril values of exogenous variables reported in table 6.



Table 9--ActuA1 and projected fans by sales class, 1974-86 1/

Sales 1974 1978 1982 1986
class Census Census Nstat. Census Nstat, Stat, NASS Nstat, Stat.

Thousands

Less than $2,500 649,448 460,535 459,903 536,327 427,854 431,880 580,068 435,355 438,036$2,500-4,999 257,263 300,699 300,686 278,208 285,696 287,779 307,746 280,027 287,216$5,000-9,999 296,373 314,088 313,758 281,802 309,892 310,417 265,680 296,854 301,226$10,000-19,999 310,011 299,215 300,399 259,007 295,566 298,631 236,898 264,584 282,234$20,000-39,999 321,771 299,175 300,026 248,825 291,131 298,765 223,614 243,200 278,507$40,000-99,999 324,310 360,093 355,995 332,751 377,432 376,139 294,462 353,196 360,696$100,000-199,9992/101,153 141,050 141,508 180,689 173,130 161,386 305,532 300,531 294,069$200,000-499,999 40,034 62,645 62,650 93,891 79,105 77,152
$500,000 and. over 11,412 17,973 17,827 27,800 22,597 22,566

Total farms 2,311 775 2,255 473 2,251 941 2,239 300 2,262,4(Y 2,264,716 2,214,000 2,173,747 2,241,983

Census = Census of Agriculture [25, 26, 27].
Nstat. = Nonsationary Markov model estimated fran 1974-78 longitudinal census data.
Stat. = Stationary Markav model estimates fran 1974-78 longitartinal census data.
NASS = Estimate of farm numbers and sizes fran NASS [24].
1/ Projections are fran the census distribution of 4 years earlier. The stationary projection for 1978is exact because of assurptions used to construct the model.
2/ Figures for $100,000-199,999 in 1986 are for all farms with sales over $100,000. All projections usethe krxxan distribution of 4 years earlier as a starting point. Thus, errors are not canpounded fran oneperiod to the next.

Table 10--Conparison of alternative projection nethods, 1978-86 1/

1978 1982 1986
Measures of projection accuracy Nonstat. Stat. Nonstat. Stat. Nonstat.

Percent-Age misclassified 0.38 14.15 13.18 16.98 14.21

Weigited percent-Age misclassified 0.55 15.81 ' 13.92 11.47 • 7.98

Square root of sun of squared 4,620 135,817 134,302 177,327 165,248
deviations

Square root of sun of squared 371.7 10,928.2 10,193.0 5,269.3 1 4,256.0
weighted deviations (x 106)

Sun of absolute proportional 0.0039 0.1371 0.1279 0.1687 0.1438
differences

Nstat.- Nonstationary Markav model estimated from 1974-78 longitudinal data.
Stat.- Stationary Markav nodel estimated from 1974-78 longitudinal data.
1/Projections are fran the census distribution of 4 years earlier. Projection accuracy for1978 and 1982 is neasured against distributions published in the 1982 Census of Agriculture [27].Accuracy for 1986 is neasured against the annual estimate provided by NASS [24]. The stationary

projection for 1978 is exact because of assumptions used to construct the nuclei.
2/Weigl-ited rreasures are weigited by the midpoint of the sales classification. The open-ended

sales class was sited by the class average for 1974.
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in the more realistic test of projecting several periods ahead. This
comparison is made in table 11, which shows projections to 1986 using the 1974
census distribution as a starting point./ For the nonstationary model, new
values for the exogenous variables were inserted at each iteration.
Projection errors are allowed to accumulate from one period to the next.
These data are also summarized in figures 3-6.

Projecting ahead three time periods to 1986, the nonstationary Markov model
gives results that are closer to the NASS estimates for all gross sales
classes above $5,000. For farms with gross sales of $2,500-4,999, NASS
estimates an increase of approximately 22,000 farms since 1982, the
nonstationary model projects a decline of nearly 4,000 farms, and the
stationary model projects little change from 1982. The nonstationary model
also projects a steeper decline in the number of smallest farms (under $2,500
sales) than either the stationary model or NASS.

Table 11--Actual and projected farms by sales class, 1974-86. 1/

Sales 1974 1978 1982 1986
class Census Census Nstat. Census Nstat. Stat. NASS Nstat. Stat.

Less than $2,500 649,448 460,535 459,093 536,327 430,900 431,873 580,068 420,810 424,538
$2,500-4,999 257,263 300,699 300,686 278,208 287,373 287,772 307,746 274,025 282,478
$5,000-9,999 296,373 314,088 313,758 281,802 311,563 310,412 265,680 300,499 305,985
$10,000-19,999 310,011 299,215 300,399 259,007 297,187 298,628 236,898 275,441 296,706
$20,000-39,999 321,771 299,175 300,026 248,825 292,616 298,758 223,614 257,942 299,681
$40,000-99,999 324,310 360;093 355,995 332,751 377,947 376,133 294,462 377,563 384,905
$100,000-199,999 2/ 101,153 141,050 141,508 180,689 173,216 161,384 305,532 296,597 282,684
$200,000-499,999 40,034 62,645 62,650 93,891 79,395 77,144
$500,000 and over 11,412 17,973 17,827 27,800 22,660 22,562

Total farms 2,311,775 2,255,473 2,251,941 2,239,300 2,272,852 2,264,715 2,214,000 2,202,877 2,276,977

Census = Census of Agriculture [25, 26, 271.
Nstat. = Nonsationaryltuimv =del estimated from 1974-78 longitudinal census data.
Stat. = Stationary Markov model estimates from 1974-78 longitudinal census data.
NASS = Estimate of farm nuthers and sizes frau NASS [24].
1/Projections are from the census distribution of 4 years earlier. The stationary projection to 1978 is

exact the to assumptions used.
2/Figures for $100,000-199,999 in 1986 are for all farms with sales over $100,000. All projections use the

"mown distribution of 4 years earlier as a starting point. Thus, errors are not compounded from one period
to the next.

13/Another variant of the stationary model (using each of the nine

divisional transition probability matrices held constant at the 1974-78

values, projecting forward from the 1974 divisional size distribution, and

then aggregating them after each iteration to form a U.S.-level projection)

yielded virtually the same results as the U.S.-level stationary projection

computed directly from the U.S. transition matrix. This is to be expected,

given that the U.S.-level transition matrix is merely a weighted average of

the divisional matrices.
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Figure 3. Projected and Actual Farms by Size, 1974-86
All farms with sales of $2,500 and more
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Figure 4. Projected and Actual Farms by Size, 1974-86
Farms with sales of $2,500 to $19,999
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Figure 5. Projected and Actual Farms by Size, 1974-86
Farms with sales of $20,000 to $99,999
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Figure 6. Projected and Actual Farms by Size, 1974-86
Farms with sales of $100,000 and more
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Obtaining reliable counts of the number of very small farms is difficult fortwo reasons. First, obtaining a complete census enumeration of very smallfarms is difficult. Second, the practice of classifying places as farms onthe basis of potential and actual farm product sales and the change in methodsof evaluating the level of potential sales from one year to the next may causefluctuations in the numbers of very small farms reported from one period tothe next [8, p. 9]. Thus, the official census and NASS estimates of smallfarm numbers are themselves subject to somewhat greater uncertainty than thosefor larger farms and form a less rigid standard against which to measure theperformance of farm structure models.

The nonstationary model performs particularly well in tracking relativechanges in the numbers of small and midsized farms ($20,000-99,999 grosssales) (fig. 5). The actual number of farms in this size class increased overthe 1974-78 sample period and then declined. The stationary Markov modelcontinues to project growth in the number of farms in this sales class through1986. The nonstationary model projects an increase in the number of farms to1982 but a decline for 1982-86. The nonstationary model was able to capture(albeit lagged one period) an inflection point in farm numbers outside thesample data set.

CONCLUSIONS

This report cites three major reasons for the difficulty of developingconditional projections of U.S. farm structure. These are the lack of anadequate, tractable, theoretical framework through which to aggregate themicrolevel responses of hundreds of thousands of individual firms, the lack ofdata relating microlevel to macrolevel changes in farm structure, and theresulting reliance on analytical methods designed only to identify andextrapolate from historical trends. Two of these obstacles have been largelyovercome. Recent successes in linking together the individual respondentrecords from successive censuses of agriculture have made available for thefirst time a broad data base on the farm-level components of structuralchange. This data base is under further development and is intendedultimately to include data from the 1974, 1978, 1982, and future censuses ofagriculture. The census longitudinal data offer new possibilities for theanalysis and projection of structural change in farming through bothrefinements of traditional stationary Markov analysis [8] and the developmentof nonstationary models like the one described here. Methods forincorporating variable transition probabilities while meeting the mathematicalrestrictions of the Markov model have also been developed, allowing thefullest use of available data on farm size changes [20]. With a larger numberof more heterogeneous observations of transition probabilities and exogenousfactors covering multiple time periods, more detailed models could bedeveloped that are better suited to the analysis of the structural impacts ofalternative policies and economic environments than the model estimated inthis paper, which was based on a limited number of somewhat heterogeneousregions over a single 4-year period.

Two of the three major difficulties can thus be surmounted. The third, theinadequacy of our theoretical understanding of the link between firm-levelmanagement responses and aggregate sectoral change, remains before us. Whichfactors are fundamental causes of structural change in agriculture? How are
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they transmitted through the decisions of individual farm operators and

others? What are the linkages and channels of feedback among farmers'

simultaneous managment decisions? Through what channels do public policies

influence structural change? A clearer theoretical guide to these

relationships would aid in model specification. Teigen [22] explores some of

these linkages in a simulation model, where technological diffusion among

farms, its impacts on aggregate markets, and resulting feedbacks on per-farm
profitability drive structural changes in the farm sector. This would seem to

be a fruitful area for further investigation.

Another area of improvement in Markov models of farm structure lies in
incorporating demographic effects more directly. Representing rates of entry
of new operators as a cohort phenomenon keyed to changes in the number of farm
youth able, available, and willing to take up careers in farming would bring
the Markov approach to farm structural change into greater harmony with
another of the most commonly used quantitative methods in farm structure
research, age cohort analysis, as well as eliminate the uncertainties
surrounding any arbitrary estimate of a fixed pool of "would-be" farmers.

Conditional projections of farm numbers and sizes hold the potential to
contribute significantly in the formation of public policy. Farm structure
and structural impacts often figure prominently, even when not cited
explicitly, in debates over food, agricultural, and rural development policy.
Projections of farm structure are themselves often an important element of
these discussions. It is widely shared among economists, policymakers, and
the public that, even if only dimly understood, structural change in U.S.
agriculture is not an autonomous process. A wide range of factors, some of
which can be controlled or influenced by public policy and some of which can
not, will determine farm numbers, sizes, and characteristics. Thus,
developing models that can reflect, at least in part, the range of alternative
futures for the farm sector would seem to be a positive step.
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Appendix table 1--Transition probability matrix, farms by sales 1974-78, census division 1 (New England)

1978 sales

1974

sales

0 (exit)

j = 1

Less than

$2,500

2

$2,500-

4,999

3

$5,000-

9,999

4

$10,000-

19,999

5

$20,000-

39,999

6

$40,000-

99,999

7

$100,000-

199,999

8

$200,000- $500,000

499,999 and over

9 10

1974

total

1974

number

of farms

Probability of transition from state i (1974) to j (1978) .

0 (entry) 1 0.7649 0.0851 0.0332 0.0241 0.0189 0.0213 0.0316 0.0124 0.0661 0.0023 1.0000 50,180
Less than $2,500 2 .5443 .2644 .1012 :0492 .0219 .0107 .0062 .0009 .0010 .0000 1.0000 6,886
$2,500-4,999 3 .5181, .1456 .1415 .1180 .0439 .0174 .0128 .0015 .0005 .0005 1.0000 1,957
$5,000-9,999 4 .4823-' .1010 .1054 .1399 .1015 .0453 .0192 .0039 .0015 '. .0000 1.0000 2,030
$10,000-19,999 5 .4610 .0527 .0493 .0696 .1624 .1506 .0472 .0055 .0013 .0004 1.0000 2,371
$20,000-39,999 6 .4347 .0216 .0187 .0368 .0561 .1973 .2210 .0108 .0023 .0006 1.0000 3,421
$40,000-99,999 7 .3737 .0115 .0059 .0127 .0262 .0554 .3586 .1454 .0099 :0007 1.0000 4,423
$100,000-199,999 8 .3644 .0036 .0029 .0051 .0080 .0202 .0998 .3297 .1605 ..0058 1.0000 1,383
$200,000-499,999 9 .3621 .0052 .0034 '.0017 .0052 .0121 .0345 .1207 .3483 , .1069 1.0000 580
$500,000 and over 10 .6800 .0000 .0000 .0000 :6000 .0000 .0067 .0133 .0467- .2533 1.0000 150

Source: 1974-78 Census of Agriculture longitudinal file and 1974 Census of Agriculture published data. Number of potential entrants in 1974 derived
from U.S. total estimate of 5 million, apportioned by share of total U.S. farm numbers by division. For further explanation of methods used to derive
transition probabilities, see table 2.

Appendix table 2--Transition probability matrix, farms by sales 1974-78, census division 2 (Mid Atlantic)

1978 sales

1974

sales i =

0 (exit)

i = 1

Less than

$2,500

2

$2,500-

4,999

3

$5,000-

9,999

4

$10,000-

19,999

5

$20,000-

39,999

6

$40,000-

99,999

7

$100,000-

199,999

8

$200,000-

499,999

9

$500,000

and over

10 '

1974

total

1974

number

of farms

Probability of transition from state i (1974) to j (1978)

0 (entry) 1 0.7761 0.0711 0.0321 0.0264 0.0211 0.0218 0.0360 0.0099 0.0041 0.0012 1.0000 225,214
Less than $2,500 2 .5662 .2130 .1126 .0682 .0248 .0090, .0051 .0007 .0003 .0001 1.0000 29,905
$2,500-4,999 3 .4758 .1280 .1537 .1476 .0618 .0213 .0101 .0011 .0004 .0001 1.0000 9,771
$5,000-9,999 4 .4515 .0691 .1001 .1733 .1417 .0426 .0188 .0018 .0012 .0000 1.0000 11,136
$10,000-19,999 5 .4302 .0372 .0452 .0868 .1814 .1655 .0477 .0048 .0010 .0002 1.0000 12,517
$20,000-39,999 6 .3991 .0118 .0149 .0305 .0644 :2064 .2587 .0114 .0022 .0006 1.0000 17,091
$40,000-99,999 7 .3641 .0042 .0040 .0084 .0204 .0481 .4020 .1376 .0102 .0008 1.0000 17,883
$100,000-199,999 8 .3418 .0025 .0025 .0045 .0092 .0180 .0922 .3540 .1643 .0110 1.0000 4,011
$200,000-499,999 9 .3617 .0021 .0021 .0041 .0069 .0083 .0304 .0878 .3845 .1120 1.0000 1,446
$500,000 and over 10 .5339 .0000 .0000 .0000 .0054 .0000 .0054 .0136 .1030 .3388 1.0000 369

Source: 1974-78 Census of agriculture longitudinal file and 1974 Census of Agriculture published data. Number of potential entrants in 1974 derived
from U.S. total estimate of 5 million, apportioned by share of total U.S. farm numbers by division. For further explanation of methods used to derive
transition probabilities, see table 2.
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Appendix table --Transition probability matrix, farms by sales 1974-78, census division 3 (East North Central)

1974

sales i =

1978 sates

1974

number

of farms

0 (exit) Less than

$2,500

j = 1 2

$2,500-

4,999

3

$5,000-

9,999

4

$10,000-

19,999

5

$20,000-

39,999

6

$40,000-

99,999

7

$100,000- $200,000-

199,999

8

499,999

9

$500,000

and over

10

1974

total

Probability of transition from state i (1974) to j (1978)

0 (entry) 1 0.8072 0.0418 0.0256 0.0270 0.0262 0.0264 0.0306 0.0101 0.0042 0.0009 1.0000 961,374
Less than $2,500 2 .5948 .1831 .1079 .0676 .0284 .0107 .0059 .0012 .0003 .0000 1.0000 89,608
$2,500-4,999 3 .5402 .0925 .1330 .1395 .0645 .0202 .0082 .0014 .0004 .0000 1.0000 46,016
$5,000-9,999 4 .5015 .0459 .0750 .1613 .1455 .0500 .0176 .0027 .0004 .0001 1.0000 63,024
$10,000-19,999 5 .4614 .0209 .0295 .0766 .1828 .1713 .0509 .0057 .0009 .0001 1.0000 71,975
$20,000-39,999 6 .4078 .0080 .0102 .0256 .0731 .2214 .2338 .0179 .0021 .0002 1.0000 75,493
$40,000-99,999 7 .3413 .0037 .0031 .0073 .0193 .0742 .3803 .1552 .0151 .0005 1.0000 72,343
$100,000-199,999 8 .2955 .0016 .0020 .0029 .0070 .0182 .1581 .3583 .1514 .0049 1.0000 19,799
$200,000-499,999 9 .3851 .0013 .0013 .0031 .0051 .0101 .0439 .1342 .3465 .0694 1.0000 5,446
$500,000 and over 10 .5417 .0013 .0000 .0025 .0013 .0038 .0139 .0215 .0934 .3207 1.0000 792

Source: 1974-78 Census of Agriculture longitudinal file and 1974 Census of Agriculture published data. Number of potential entrants in 1974 derived
from U.S. total estimate of 5 million, apportioned by share of total U.S. farm numbers by division. For further explanation of methods used to derive
transition probabilities, see table 2.

Appendix table 4--Transition probability matrix, farms by sales 1974-78, census division 4 (West North Central)

1978 sales

1974

sales i =

0 (exit)

j = 1

Less than $2,500-

2,500 4,999

2 3

$5,000-

9,999

4

$10,000-

19,999

5

$20,000-

39,999

6

$40,000- $100,000-

99,999 199,999

7 8

$200,000-

499,999

9

$500,000

and over

10

1974

total

1974

number

of farms

Probability of transition from state i (1974) to j (1978)

0 (entry) 1 0.8107 0.0267 0.0200 0.0249 0.0293 0.0340 0.0381 0.0104 0.0046 0.0013 1.0000 1,237,936
Less than $2,500 2. .5719 .1538 .1116 .0878 .0442 .0184 .0094 .0021 .0007 .0001 1.0000 80,428
$2,500-4,999 3 .5384 .0752 .1090 .1408 .0867 .0334 .0136 .0022 .0006 .0001 1.0000 46,772
$5,000-9,999 4 .5128 .0387 .0680 .1408 .1457 .0660 .0236 .0036 .0007 .0002 1.0000 68,625
$10,000-19,999 5 .4813 .0177 .0279 .0788 .1706 .1570 .0589 .0064 .0013 .0001 1.0000 93,832
$20,000-39,999 6 .4237 .0072 .0099 .0267 .0896 .2266 .1951 .0185 .0024 .0003 1.0000 118,933
$40,000-99,999 7 .3349 .0031 .0034 .0082 .0259 .1046 .3738 .1309 .0146 .0007 1.0000 120,514
$100,000-199,999 8 .2626 .0019 .0019 .0037 .0091 .0289 .2037 .3434 .1371 .0076 1.0000 31,554
$200,000-499,999 9 .3516 .0013 .0008 .0022 .0051 .0107 .0570 .1553 .3335 .0824 1.0000 9,816
$500,000 and over 10 .5766 .0016 .0016 .0021 .0011 .0090 .0185 .0296 .0957 .2643 1.0000 1,892

Source: 1974-78 Census of Agriculture longitudinal file and 1974 Census of Agriculture pyblished data. Number of potential entrants in 1974 derived
from U.S. total estimate of 5 million, apportioned by share of total U.S. farm numbers by division. For further explanation of methods used to derive
transition probabilities, see table 2.



Appendix table 5--Transition probability matrix, farms by sales 1974-78, census division 5 (South Atlantic)
• . • L

1978 sales .',.._

0 (exit) Less than $2,500- $5,000- $10,000- $20,000- $40,000- $100,000- $200,000- $500,000 1974
.1974 $2,500 4,999 9,999. 19;999 39,999 99,999 :199,999 .499,999 and over ., .1974 number
sales i = j = - 1 2 3 4' • 5 6 - 7 '8 9 '-'10 . total of farms

Probability of transition from state i (1974) to j (1978)

0 (entry) 1 0.7742 0.0735 0.0355 0.0312 0.0257 0.0208 0:0222 0.0095 0.0055 0.0019 1.0000 639,889
Less than $2,500 2 .5932 .2156 .1004 .0535 .0218 .0085 .0043 .0015 .0010 - .0002 1.0000 110,117
$2,500-4,999 3 .5437 .1110 .1306 .1278 .0582 .0171 .0086 .0020 .0009 .0002 1.0000 36,869
$5,000-9,999 '4 .5344 .0682 .0785 .1422 .1141 .0422 .0148 .0038 .0015 .0002 1.0000 39,761
$10,000-19,999 5 .5286 .0380 .0431 .0841 .1494 .1073 .0386 .0078 .0027 .0005 1.0000 35,213
$20,000-39,999 6 .5020 .0198 .0211 .0377 .0776 .1712 .1433 .0209 .0054 .0010 1.0000 28,237
$40,000-99,999 7 .4453 .0116 .0099 .0162 .0288 .0665 .2605 .1338 .0253 .0020 1.0000 27,938
$100,000-199,999 8 .3444 .0091 .0063 .0082 .0138 .0280 .1090 .2932 .1752 .0129 1.0000 11,252
$200,000-499,999 9 .3707 .0056 .0042 .0064 .0088 .0140 .0365 .1022 .3509 .1006 1.0000 4,990
$500,000 and over 10 .5078 .0027 .0041 .0007 .0027 .0034 .0088 .0183 .0805 .3712 1.0000 1,479

Source: 1974-78 Census of Agriculture longitudinal file and 1974 Census of Agriculture published data. Number of potential entrants in 1974 derived
from U.S. total estimate of 5 million, apportioned by share of total U.S. farm numbers by division. For further explanation of methods used to derive
transition probabilities, see table 2.

Appendix table 6--Transition probability matrix, farms by sales 1974-78, census division 6 (East South Central)

1978 sales

0 (exit) Less than $2,500- $5,000- $10,000- $20,000- $40,000- $100,000- $200,000- $500,000 1974

1974 $2,500 4,999 9,999 19,999 39,999 99,999 199,999 499,999 and over 1974 number

sales i = j = 1 2 3 4 5 6 7 8 9 10 total of farms 

Probability of transition from state i (1974) to j (1978)

0 (entry) 1 0.7839 0.0748 0.0421 0.0359 0.0246 0.0163 0.0134 0.0055 0.0028 0.0006 1.0000 661,544

Less than $2,500 2 .6122 .1809 .1075 .0641 .0239 .0072 .0028 .0011 .0004 .0001 1.0000 138,232

$2,500-4,999 3 .5176 .0984 .1416 .1499 .0660 .0192 .0056 .0014 .0003 .0001 1.0000 49,369

$5,000-9,999 4 .4809 .0580 .0853 .1697 .1421 .0484 .0129 .0019 .0007 .0001 1.0000 43,643

$10,000-19,999 5 .4655 .0328 .0429 .0927 .1760 .1396 .0425 .0063 .0016 .0002 1.0000 30,529

$20,000-39,999 6 .4591 .0190 .0223 .0427 .0871 .1831 .1592 .0221 .0049 .0005 1.0000 19,306

$40,000-99,999 7 .4408 .0133 .0121 .0182 .0315 .0695 .2607 .1270 .0252 .0016 1.0000 16,515

$100,000-199,999 8 .3971 .0073 .0060 .0087 .0158 .0268 .1001 .2599 .1677 .0106 1.0000 5,636

$200,000-499,999 9 .4119 .0046 .0050 .0064 .0046 .0159 .0310 .0947 .3359 .0901 1.0000 2,197

$500,000 and over 10 .5351 .0000 .0000 .0000 .0068 .0091 .0091 .0295 .0703 .3401 1.0000 441

Source: 1974-78 Census of Agriculture longitudinal file and 1974 Census of Agriculture published data. Number of potential entrants in 1974 derived

from U.S. total estimate of 5 million, apportioned by share of total U.S. farm numbers by division. For further explanation of methods used to derive

transition probabilities, see table 2.



Appendix table 7--Transition probability matrix, farms by sales 1974-78, census division 7 (West South Central)

1974

sales

.$200,000-499,999

1978 sales

1974

number

of farms
i=

0 (exit)

i = 1

Less than

$2,500

2

$2,500-

4,999

3

$5,000- $10,000- $20,000- $40,000-
9,999 19,999 39,999 99,999

4 5 6 7

$100,000-

199,999

8

$200,000-

499,999

9

$500,000

and over

10

1974

total

Probability of transition from state i (1974) to 1 (1978)

0 (entry) 1 0.7735 0.0727 0.0401 0.0336 0.0247 0.0198 0.0206 0.0085 - 0.0050 0.0016 1.0000 708,916
Less than $2,500 2 .5268 .1978 .1346 - ..0873 .0338 .0111 .0057 .0020 .0008 .0001 1.0000 132,468
$2,500-4,999 3 .4768 .0907 .1310 .1675 .0902 .0284 .0113 .0028 .0010 .0002 1.0000 43,675
$5,000-9,999 4 .4742 .0553 .0771 .1506 .1478 .0641 .0243 .0052 .0013 .0002 1.0000 40,640
$10,000-19,999 5 .4634 .0321 .0404 .0881 .1564 .1396 .0649 .0114 .0031 .0006 1.0000 33,821
$20,000-39,999 6 .4498 .0203 .0196 .0398 .0897 .1741 .1660 .0322 .0075 .0009 1.0000 28,157
$40,000-99,999 7 .4199 .0115 .0114 .0185 .0327 .0812 .2621 .1328 .0275 .0024 1.0000 29,416
$100,000-199,999 8 .3431 .0089 .0072 .0093 .0180 .0320 .1421 .2763 .1519 .0112 1.0000 12,141

9 .3892 .0024 .0052 .0064 .0099 .0202 .0605 .1363 .2977 .0723 1.0000 5,936
$500,000 and over 10 .5175 .0033 .0013 .0053 .0026 .0079 .0224 .0428 .1187 .2782 1.0000 1,517

Source: 1974-78 Census of Agriculture longitudinal file and 1974 Census of Agriculture published data. Number of potential entrants in 1974 derived
from U.S. total estimate of 5 million, apportioned by share of total U.S. farm numbers by division. For further explanation of methods used to derive
transition probabilities, see table 2.
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Appendix table 8--Transition probability matrix, farms by sales 1974-78, census division 8 (Mountain)

0
m
m

m

1974

sales

1978 sales

1974

number

of farms
i

0 (exit)

= i = 1

Less than

$2,500

2

$2,500-

4,999

3

$5,000- $10,000-

9,999 19,999

4 5

$20,000-

39,999

6

$40,000-

99,999

7

$100,000-

199,999

8

$200,000-

499,999

9

$500,000

and over

10

1974

total

Probability of transition from state i (1974) to 1 (1978)

0 (entry) 1 0.7598 0.0580 0.0300 0.0298 0.0301 0.0307 0.0342 0.0143 0.0087 0.0044 1.0000 240,458;
n Less than $2,500 2 .5343 .2181 .1093 .0730 .0349 .0160 .0108 .0025 .0008 .0002 1.0000 23,1700,
, $2,500-4,999 3 .5328 .0982 .1088 .1233 .0808 .0351 .0153, .0042 .0014 .0002 1.0000 10,549r)m••

$5,000-9,999

$10,000-19,999

4

5

.5077

.4927

.0540

.0273

.0733

.0360

.1293 .1307

.0803 .1452

.0692

.1387

.0279

.0667

.0050

.0104

.0021

.0025

.0007

.0002

1.0000

1.0000

13,530

15,887co $20,000-39,999 6 .4529 .0139 .0162 .0349 .0907 .1862 .1718 .0262 .0064 .0008 1.0000 17,320
r.) $40,000-99,999 7 .4097 .0056 .0060 .0131 .0347 .1140 .2878 .1051 .0211 .0029 1.0000 19,061.-' $100,000-199,999 8 .3667 .0051 .0040 .0063 .0122 .0381 .1959 .2456 .1147 .0114 1.0000 6,825_$200,000-499,999 9 .4165 .0038 .0023 .0072 .0075 .0171 .0616 .1409 .2511 .0920 1.0000 3,457 -$500,000 and over 10 .5871 .0015 .0000 .0015 .0015 .0058 .0116 .0247 .0929 .2736 1.0000 1,378

Source: 1974-78 Census of Agriculture longitudinal file and 1974 Census of Agriculture published data. Number of potential entrants in 1974 derivedfrom U.S. total estimate of 5 million, apportioned by share of total U.S. farm numbers by division. For further explanation of methods used to derivetransition probabilities, see table 2.


